Title: | Vine Leaf Disease and AI, Detection of grapevine leaf diseases based on RGB-images, deep learning and its integration in a mobile application |
Authors: |
Licka, Maria-Theresa, Elisabeth-von-Thadden-Schule, Heidelberg Schweikert, Mario, Leibniz-Gymnasium, Neustadt an der Weinstraße |
Contributors: | Editor: Physikalisch-Technische Bundesanstalt (PTB), ISNI: 0000 0001 2186 1887 HostingInstitution: Physikalisch-Technische Bundesanstalt (PTB), ISNI: 0000 0001 2186 1887 |
Pages: | 16 |
Language: | en |
DOI: | 10.7795/320.202210 |
Resource Type: | Text / Article |
Publisher: | Physikalisch-Technische Bundesanstalt (PTB) |
Rights: | Vervielfältigung nur zum eigenen persönlichen Gebrauch. |
Dates: |
Available: 2023-03-16 Accepted: 2022-06-20 Submitted: 2022-02-04 |
File: |
Download File
(application/pdf)
5.15 MB (5402223 Bytes)
MD5 Checksum: d11ddf3532651e8f83133066a1b19b29 SHA256 Checksum: a1b1a821a128f236d35c25258e2b9b03fcd5a709ce33cd3c556c546e1c2b5d6c |
Keywords: | Grapevine leaf ; Disease ; Smartphone App ; Machine learning ; Convolutional Neural Network ; Python ; Tensorflow ; Pesticide usage ; Agriculture ; Sustainability |
Abstract: | This project enables early grapevine leaf disease identification on grape leaves by cell phone images, thereby allowing a precise usage of pesticides. The application is based on artificial intelligence (AI) which is trained to detect and differentiate the most common diseases. A continuous update of the extent and geographical location of disease spreading gives further valuable information to the winemakers using the application. |
Series Information: | Junge Wissenschaft. Paper 10/2022 |
Other: | In der Jungen Wissenschaft werden Forschungsarbeiten von Schüler/innen, die selbstständig, z.B. in einer Schule oder einem Schülerforschungszentrum, durchgeführt wurden, veröffentlicht. |
Citation: | Licka, Maria-Theresa ; Schweikert, Mario . Vine Leaf Disease and AI. Detection of grapevine leaf diseases based on RGB-images, deep learning and its integration in a mobile application. Physikalisch-Technische Bundesanstalt (PTB), 2022. DOI: https://doi.org/10.7795/320.202210 |