Title: | To get to the point, Neural Network application to key-point detection in radiographs |
Authors: | Schott, Constantin Tilman, Paul-Gerhardt-Schule Dassel, Dassel |
Contributors: | Editor: Physikalisch-Technische Bundesanstalt (PTB), ISNI: 0000 0001 2186 1887 HostingInstitution: Physikalisch-Technische Bundesanstalt (PTB), ISNI: 0000 0001 2186 1887 |
Pages: | 16 |
Language: | en |
DOI: | 10.7795/320.202106 |
Resource Type: | Text / Article |
Publisher: | Physikalisch-Technische Bundesanstalt (PTB) |
Rights: | Download for personal/private use only, if your national copyright law allows this kind of use. |
Dates: |
Available: 2021-09-13 Accepted: 2019-12-06 Submitted: 2019-10-06 |
File: |
Download File
(application/pdf)
4.18 MB (4383661 Bytes)
MD5 Checksum: 6e64c07aa9500ba6374094338387e449 SHA256 Checksum: 368c6290d074b55dd543914c8d087631b600ff43d5ef003464cca86f14411f90 |
Keywords | artificial intelligence ; neural network ; deep learning ; key-point detection ; convolutional neural network ; cephalometry ; machine learning ; x-ray image ; radiograph ; automated analysis |
Abstract: | Physicians have to locate so called key-points e.g. for surgical procedures. Up to now, this was always done manually. In order to automate this process, innovative software was developed that uses artificial intelligence (AI)combining a clipping-window approach with the newly developed prediction shifting. The program can predict the key-points with a high degree of accuracy—making the AI as precise as a physician. |
Series Information: | Junge Wissenschaft. Paper 06/2021 |
Other: | In der Jungen Wissenschaft werden Forschungsarbeiten von Schüler/innen, die selbstständig, z.B. in einer Schule oder einem Schülerforschungszentrum, durchgeführt wurden, veröffentlicht. |
Citation: | Schott, Constantin Tilman. To get to the point. Neural Network application to key-point detection in radiographs. Physikalisch-Technische Bundesanstalt (PTB), 2021. Verfügbar unter: https://doi.org/10.7795/320.202106 |