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Neural Network application to key-point 
detection in radiographs

Physicians have to locate so called key-points e. g. for surgical 
procedures. Up to now, this was always done manually. In order 
to automate this process, innovative software was developed 
that uses artificial intelligence (AI) combining a clipping-
window approach with the newly developed prediction shifting. 
The program can predict the key-points with a high degree of 
accuracy–making the AI as precise as a physician. 
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hips etc.), specific structures have to 
be marked with precise points. This 
method is used in almost all orthopaedic 
or surgical X-ray analyses. The angles of 
these points in relation to each other 
and their distances from each other help 
the physician make a specific diagnosis. 
This process is known as predictive 
analytical key-point detection. The 
goal of this project is to use CNNs to 
automate this process in order to enable 
fully autonomous analysis in other 
areas of X-ray diagnostics over the long 
term. This involves applying various 
CNN structures (existing ones as well as 
self-developed ones) to the radiological 
analysis (X-ray image analysis) and 
drawing comparisons between them. 

There are already AI methods that 
include localization (using facial 
recognition, for example) [14]. This 
paper discusses the applicability of 
these methods to the issue at hand here. 
In addition, new methods are being 
developed that allow for more accurate 
key-point detection. 

In this paper the cephalometry 
(measurement of the cranium) is 
examined as a medical subfield, in which 
key-point detection is the mainly used 
and most important analysis technique. 
Cephalometry is used in areas such as 
orthodontic diagnostics and therapy 
planning, aesthetic surgery planning 
and, sometimes, in post-traumatic 
reconstructive surgery planning. 

As a starting point, methods are 
developed in this paper to automatically 
locate the so-called Sella point, that was 
chosen for its great importance for the 
analysis. It is used as a datum point for 
almost all cephalometric analyses and 
is the center of the Sella turcica (Latin 
for “Turkish seat”). The Sella turcica 
is located in the centre of the cranium 
base and, as such, is a nearly constant 
datum point for these analyses, 
regardless of factors such as growth-
related or traumatic changes to the bony 
viscerocranium. 

made it possible to achieve an extreme 
increase in efficiency and accuracy 
in automated detection of structures 
in recent years [3, 9]. This can be seen 
exemplary at the MNIST database [6] 
which is used frequently to evaluate the 
quality of image recognition methods 
using the example of handwritten digit 
recognition.

These CNNs have already started being 
used to deal with classification tasks in 
X-ray diagnostics. For example, you can 
analyze a mammography for cancer foci 
[13]. There are already many examples of 
CNNs for chest x-rays, even commercial 
products (oxipit). 

In addition to these classification tasks, 
in many X-ray image analyses (cranium, 

To get to 
the point
Neural Network application to key-point 
detection in radiographs

1. Introduction

The results of the X-ray image analysis 
provide the basis for medical diagnostics 
and treatment planning. Up to now, 
these analyses are performed manually, 
making them a drain on time and 
human resources, and an expensive task 
in the specialized medical field of X-ray 
image analysis. In light of these facts, 
this paper will explore the option of a 
standardized, computer-based analysis 
of X-ray images.

There are a variety of automated, 
computer-aided approaches used to 
extract information from images –
finding “features” in images. The 
best results here are achieved by 
artificial intelligence in the form of 
convolutional neural networks (CNNs) 
[2]. Among other benefits, CNNs have 
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On top of that, the following basic AI 
methods were used in this work in the 
experiments:

In order to reduce overfitting dropout 
was used. This involves randomly 
deactivating a fixed percentage of 
neurons in every learning step in the 
respective layer it is being applied to 
and optimizing the network without 
these neurons [12]. This distributes the 
learning process across more neurons 
and increases the probability of detecting 
relevant patterns and structures, 
and thus counteracts overfitting. The 
training loss converges more slowly as 
a consequence of dropout, since it is 
not the entire network that is learning 
simultaneously.

Furthermore, data-augmentation was 
applied:

In the lateral cephalogram analysis, the 
points to be found cumulate heavily. 
As a result, a prediction of the middle 
of the point cloud that is independent 
of the input might be enough for a low 
deviation with respect to the individual 
lateral cephalogram image (Fig. 4).

In the actual application example, 
the original images (without data 
augmentation) are shifted by a random 
value while making sure, that the Sella 
itself stays within the image boundaries 
(Fig. 5).

As a result, the network is forced to 
learn only the truly relevant correlations 
between inputs. If the network 
optimized to the augmented input 
is then tested on normal application 
examples without augmentation, the 

After successfully automating this 
key-point-analysis of the Sella point, 
the developed method should be 
transferred on other important points 
of the cephalometric X-ray analysis. 

2. Preliminary considerations 
and methodology

2.1 Problem statement

As mentioned above, the Sella turcica 
is used on an X-ray image of the side 
of the cranium (lateral cephalogram) 
as an application example. On the 
two-dimensional projection of the 
cranium using a lateral cephalogram, 
the Sella turcica can be identified as an 
oval opening upward. The Sella point 
(S-point) “is defined as the (geometric) 
center of the bony crypts of the Sella 
turcica” [15] (Fig. 1 and 2).

The boundaries of the structure must be 
identified individually from one lateral 
cephalogram to the next. The shape 

of the Sella turcica also varies (Fig. 3). 
The purpose of automated analysis is to 
yield a reliable result, comparable to a 
professional medical analysis, in this 
complex initial situation.

2.2 Basic AI methodology

There are three basic possible app-
lication areas for the CNNs used in this 
paper:

1. Classification of images (e. g. binary 
classification → output between  
0 and 1) 

2. Key-point detection (→ output of a 
coordinate of the point(s))

3. Image segmentation (→ output of an 
image on which, for example, the 
detected features are drawn)

In this work, these three application 
options (sometimes in combination) are 
used to locate the Sella points.

Fig. 1: Sella turcica in 
lateral cephalogram

Sella point

Fig. 2: Sella turcica with 
Sella point drawn in

Fig. 3: Various Sella turcica structures with Sella point marked
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network should detect them with a 
higher degree of accuracy compared to 
a net without image augmentation.

On top of that, histogram equalization 
was utilized. Lateral cephalogram 
images sometimes have significantly 
different contrast values. These values 
can be offset by a histogram equalization 
[5] (Fig. 6).

For all the nets the hyperparameters 
used were optimized in a random 
search [19]. 

These hyperparameters include the size 
of the batches the training dataset was 
split into, the number of convolutional 
layers (and their number of kernels and 
their respective sizes), the max-pooling 
layer kernel-sizes, the amount of 
dropout, the size of the fully-connected 
layers on top (if used), the loss function 

and optimization function (with 
learning rate etc.). For all nets the Adam 
[8] optimization function and the ReLu 
activation function [4, 17] turned out to 
be optimal. 

2.3 Tools

Programming was performed on a 
computer with Intel i7-8700-CPU, 
32  GB  DDR4-RAM and a Nvidia 
Geforce GTX 6000Ti with 6  GB  RAM 
and with an Ubuntu 18.04  LTS 
operating system. The programming 
environment consisted of a Jupyter 
notebook [7] with browser-based server-
client architecture, where the server 
used the local host environment via a 
loopback. The programming language 
used was “Python” combined with 
the “TensorFlow” library with GPU 
support and the “Keras” deep learning 
library with TensorFlow backend. The 

calculated data were analyzed and 
graphically depicted using the Python 
Matplot library [18].

All the programs used for this paper 
are stored as a GitHub project at https://
github.com/tinoti l/DeepLearning _
FRS_JuFo_2019.

2.4 Data

420 anonymized lateral cephalograms 
of the side of the cranium (FRS) 
analyzed by medical specialists are the 
basis of all the following analyses. The 
pictures themselves where taken from a 
private orthodontic doctor’s office. The 
optimal points for each cephalogram 
are the geometric mean of the points 
of two doctors with an experience in 
this kind of x-ray image analysis of over  
25 years. 

Fig. 4: Distribution of Sella points 
(without data augmentation)

Fig. 6: Comparison of a Sella image with weak contrast before (left) and after a histogram 
equalization (right) and the associated pixel intensity histograms

Fig. 5: Distribution of Sella points 
(with data augmentation)

Mathematik | Seite 4

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2021/06/JUWI-06-21-img-06.jpg
https://github.com/tinotil/DeepLearning_FRS_JuFo_2019
https://github.com/tinotil/DeepLearning_FRS_JuFo_2019
https://github.com/tinotil/DeepLearning_FRS_JuFo_2019
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2021/06/JUWI-06-21-img-04.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2021/06/JUWI-06-21-img-05.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2021/06/JUWI-06-21-img-06.jpg


JUNGE wissenschaft 15 / 18 | Seite 5JUNGE wissenschaft 06 / 21 | Seite 5

doi: 10.7795/320.202106

enable the detection of multiple faces at 
once [14].

In medical applications comparable 
approaches are also already used in 
the Biomedical Image Segmentation 
and feature Localization with e. g. 
so-called U-Nets [10]. Such a U-Net 
structure was used as a first approach. 
In this structure, another part with 
up-convolutions (expansive path) was 
attached to the classic CNN (contracting 
path). For finding the S-point, the lateral 
cephalograms were used as the input 
and a corresponding image matrix 
with the maximum activation at the 
optimal point was used as the output. In 
addition, the pixels around the optimal 
point were activated to the effect of 
a statistical standard distribution in 
order to enable gradual convergence 
to the optimal point. The optimal 
scaling factor of this Gaussian was 
experimentally determined and then 
fixed for all further experiments. This 
creates what is known as the heatmap 
for training. The point of maximum 
activation of the output-heatmap gets 

300 of the images were part of the 
training data set, 100 made up the 
validation data set and 20 made up the 
test data set. While this assignment 
remains the same for a learning cycle 
(first to last epoch), the images are 
randomly re-assigned to these data 
sets (cross-validation) before each 
subsequent learning cycle (weights 
reset). 

The original image has a size of 
993 × 1123 pixel with 150 dpi. 

The pieces of data listed below each 
represent the mean values of five 
learning cycles (5-fold CV).

3. Evolution of approaches

3.1 Image segmentation: 
Heatmap approach 

A heatmap method is used as the first 
approach for automated localization of 
the Sella point on a lateral cephalogram. 
This process is based on facial 
recognition CNNs, where heatmaps 

interpreted as the predicted S-point. 

As shown in Figure 7, a multi-channel 
feature map is created in the left half 
(CNN), which then gets turned back 
into an output image through up-
sampling and other convolutions in the 
right half. 

3.2 Key-point detection 
network using entire lateral 
cephalogram

3.2.1 Pre-trained key-point detection 
network

As a second approach a CNN was 
used and its output feature maps are 
interpreted by a DenseNet, which itself 
outputs a 2 × 1 vector - the predicted 
S-point coordinate. 

The deep learning library Keras offers 
different pre-trained CNNs whose 
weights have already been optimized to 
certain applications, and are therefore 
able to detect basic structures reliably. 
During an initial test, a pre-trained 

Fig. 7: Example structure of the U-Net (according to Ronneberger et al. [10])
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evaluated on two levels using a clipping 
window approach. First, a classification 
CNN classifies selected partial images 
according to the categories “Sella” 
or “not Sella”. In the second step, 
a key-point detection network sets 
the S-point on the classified images  
of a Sella turcica. 

Since only a section of the lateral 
cephalogram image is input (partial 
image size 150 × 150 pixels) into a 
network, down-sampling no longer 
needs to be applied to the input lateral 
cephalogram image. As a result, a lateral 
cephalogram image that is 750 × 750 
pixels can be used as an initial input, 
thereby increasing the information 
density.

3.3.1 Classification network 

A simple CNN with only 3 convolutional 
layers and two interpreting Dense layers 
was used as a classification network. 
In this process, an output of 0 was 
assigned for Sella and 1 for non-Sella. 
Therefore, a sigmoid function was 
used as an activation function of the 
output layer. Since all outputs greater 

VGG16 network [11] was used with a 
two-layer DenseNet. 

The coordinates of the points are 
standardized for all key-point 
detections. In doing so, each coordinate 
value was divided by the width of the 
respective image edge (x-coordinate/ 
width of the image, y-coordinate/ height 
of the image). As a result, the expected 
outputs were limited to a range between 
0 and 1. Here, only the DenseNet and 
the top two layers of the VGG16 network 
were trained. This was done to prevent 
overwriting weights of the lower layers 
that had already been optimized and 
to reduce the training time. The lateral 
cephalogram images were used as input 
data and the standardized coordinates 
of the S-points were used as output. As 
the VGG16 network uses RGB images as 
input the grayscale channel values were 
duplicated to generate a three-channel 
picture. These input images were also 
rescaled using PIL (Python Image 
Library) in order to fit the VGG16 input 
dimensions.

Dropout was utilized as needed 
increasing from 0.2 up to 0.7.

3.2.2 Custom key-point  
detection network

In the next step, the pretrained VGG16 
network was replaced by a custom 
trained, smaller network with only 4 
convolutional layers and two dense 
layers on top. 

In this example data augmentation 
was used extensively varying between 
a random shift over 3/4 or 1/2 of the 
output range. 

In order to enable a learning process 
the pictures had to be down-sampled 
to an input size of 150 × 150 pixels from 
an original size of 993 × 1123 pixels. A 
larger input cannot be implemented in 
this key-point detection network due to 
hardware limitations. 

3.3 Clipping window approach

An improved approach for precisely 
detecting the S-point is based on the 
process of Ciresan et al. [1]. The image is 

Fig. 8: Example of generating partial images 
based on the Sella points that have already 
been identified in the entire lateral 
cephalogram (with 10 points for 
purposes of simplification)

Fig. 9: Deviations of predictions from the expected 
values in mm for 20 test Sella images, depending 
on the position of the ground truth point on 
the Sella partial image (image center: 
75|75 pixels)
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than 0.5 can be interpreted as 1 and all 
those less than 0.5 can be interpreted 
as 0 in the binary classification of 
this case example, the model is not as 
susceptible to overfitting. For learning 
purposes, the corresponding Sella 
image was generated from each lateral 
cephalogram with the set Sella point as 
the middle point. The non-Sella images 
were able to be generated by randomly 
selecting partial images from the X-ray 
images. The edges of the non-Sella 
images adhered to a minimum distance 
of 75 pixels from the set Sella point. 

To ensure practical use of the network, a 
method must be developed that divides 
the entire input lateral cephalogram 
into partial images that are then divided 
into categories of “Sella” and “non-
Sella” by the classification network. 
There are a variety of search patterns 
that can be used to accomplish this. A 
square with a side length that is 1/5 of 
the total image height is used as the size 
of these images.

The a priori knowledge of the 
accumulation of S-points on the lateral 
cephalogram images (Fig. 4) can be 
used to generate pictures of a high 
probability of containing the Sella. 

First, all the manually set Sella points 
that have already been analyzed once are 
used as centres of the generated images, 
which are then fed into the classification 
network as input to be classified (Fig. 8). 

As already mentioned, the classification 
network uses a sigmoid function as an 
activation function of the output layer. 
Unlike functions such as the heaviside 
step function, the advantage here is 
that differences in equivalence between 
the input and the learned patterns are 
depicted. Despite this, a clear distinction 
(0 or 1) is favored through a larger 
gradient (major change in each learning 
step) in the value range between 0 and 1.  
Therefore, in the clipping window 
approach, the network can assess the 
degree of similarity to the Sella that 
the input image depicts. Accordingly, 

only the image with the highest degree 
of equivalence to a Sella is ultimately 
selected. 

If none of the partial images output 
using the described search method yield 
an equivalence of at least 99.9 %, a simple 
overlapping sliding window process 
(fixed offset in x- and y-directions) is 
used. 

3.3.2 Key-point detection network 
using Sella partial image

Again, a key-point detection network 
outputs the exact coordinate of the 
Sella point. This time, however, it is 
not operating on the entire lateral 
cephalogram, but only on the partial 
image containing the Sella structure, 
that has been positively classified by the 
classification net. 

Image augmentation, an even 
distribution of optimal points in the 
output area, is absolutely necessary for 
the training set, since the images were 
created for the training data set based 
on the optimal point. Without image 
augmentation, the S-point would always 
be in the center of the image.

3.3.3 Key-point detection network 
using Sella partial image with 
prediction shifting

A consideration of the average error, 
depending on the position of the Sella 
on the partial image (based on the 
optimal points), results in the following 
distribution (Fig. 9).

The prediction becomes more accurate 
the more centrally the Sella is located. 
Between the edge areas and the 
center, the deviations can be seen to 
be reduced by more than half. This 
can be correlated with the higher 
information density of the central areas 
(see “valid padding”), as well as better 
visibility of the relevant structures.  
To make use of this fact, the same 
net was used to make two separate 
prediction. Between the predictions the 

partial image was recentered, with the 
previously predicted Sella point as the 
new centre. Only the second prediction 
then is the final prediction of the 
network. The network used is the same 
as in 3.3.2. 

As a second measure the coordinate was 
split into two separate scalars for the 
x and the y coordinate that are being 
predicted by separate networks. 

4. Results 

4.1 Image segmentation: 
Heatmap approach

Learning is not possible for this kind 
of network in this application example. 
The U-Net learns to output a completely 
non-activated output, by adapting to 
the desired output. Similar results can 
be seen when using different heatmap 
generation methods (other than 
U-Nets).

The heatmap approach is a quantitative 
key-point detection. This means that the 
focus is on detecting multiple structures 
(e. g. faces) simultaneously, during 
which the accuracy of an individual 
prediction is less relevant. During X-ray 
image key-point detection, each point 
only needs to be detected and located 
once, but with very high accuracy, which 
is not possible using this approach. 

Therefore, qualitative key-point 
detection methods must be developed 
and tested. 

4.2 Key-point detection 
network using entire lateral 
cephalogram

4.2.1 Pre-trained key-point detection 
network

The quality of this approach can be 
seen in Fig. 10, where the deviation of 
the validation data set from that of the 
training data set is shown. The diagram 
shows clear overfitting. The deviation of 
the training data set converges to zero, 
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for the task at hand than the complex 
one used previously.

4.2.2 Custom key-point detection 
network

The learning progress of the custom net 
can be seen in (Fig. 12).

This simplified and more specialized 
model learns more quickly because 
fewer parameters have to be optimized 
(30 seconds for 30 epochs instead of 
2.30 minutes for 30 epochs with the 
pre-trained model). Here, an average 
deviation of just 3.2  % of the image 
size (4.8 mm) can be identified with the 
test data set. Using additional dropout, 
overfitting can also be minimized here.

A dropout of 0.2 prevents overfitting 
here as well, and allows the model 
to achieve an even lower average test 
deviation of 2.8  % of the image size 
(4.2 mm).

The average deviation of predictions 
of the test data set (3  % of image size, 
4.5  mm) differs from the average 
deviation of predictions of the validation 
data set (2 % of image size, 3 mm).

The specific Data-Augmentation used 
on the custom network did not improve 
the results. 

By randomly shifting the points onto an 
area that is 3/4 of the image area, only 
a test deviation of 8 % of the image size 

although the deviation of the validation 
data set fluctuates significantly and 
does not converge. This means that the 
network can set the learned points in 
the training data set very precisely but 
fails at new, unseen tasks. An average 
deviation of 23  % of the image size 
(34.5 mm) in the test data shows similar 
discrepancies as the validation data set.

Using a dropout of 0.2 (deactivation 
of every fifth neuron), it was possible 
to make noticeable improvements to 
the overfitting problem (Fig. 11). The 
predictions of the test data set were 
made with an average deviation of 11% 
of the image size (16.5  mm) using this 
new model. 

Despite the dropout, we also have a 
relatively high fluctuation of validation 
loss in this adjusted model. If the 
dropout is increased even further, the 
deviation can also be further reduced 
with a very high dropout up to a certain 
point.

At a dropout of 0.5 (50 % of all neurons 
are deactivated in every learning step), 
the deviation was able to be reduced to 
7  % of the image size (10.5  mm), and 
to 6 % of the image size (9 mm) with a 
dropout of 0.7.

Such a positive reaction to high dropout 
speaks to the fact that a simpler network 
would be able to achieve better results 

Fig. 10: Training and validation loss over 
epochs (pre-trained key-point detection 
network; no dropout)

Fig. 11: Training and validation loss over 
epochs (pre-trained key-point detection 
network; dropout of 0.2)

Fig. 12: Training and validation loss over epochs (custom 
key-point detection network; no dropout)

Mathematik | Seite 8

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2021/06/JUWI-06-21-img-12.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2021/06/JUWI-06-21-img-11.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2021/06/JUWI-06-21-img-10.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2021/06/JUWI-06-21-img-11.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2021/06/JUWI-06-21-img-12.jpg


JUNGE wissenschaft 15 / 18 | Seite 9JUNGE wissenschaft 06 / 21 | Seite 9

doi: 10.7795/320.202106

(12  mm) could be achieved, and 7  % 
(10.5 mm) at 1/2 the image area.

4.3 Clipping window approach

4.3.1 Classification network

After adjusting the network structure 
and the dropout, the network achieves an 
accuracy of 98.8 % correct classification 
for lateral cephalogram partial images 
after 150 epochs.

Further improvement to 99.5 % correct 
classification for lateral cephalogram 
partial images was achieved using 
histogram equalization. 

Using the clipping window search 
algorithm the Sella structure was 
identified every time in each of the 20 
test images and an image of a complete 
Sella was outputted each time. 

4.3.2 Key-point detection network 
using Sella partial image

After a total of 60 training epochs, an 
average deviation of the test data set of 
2.5 % of the partial image size (0.8 mm) 
was achieved. While this approach 
exhibits a low average deviation, 
the scattering of the losses is high 
(at maximum 10  %, 3.2  mm) with a 
standard deviation of 1.2 mm.

4.3.3 Key-point detection network 
using Sella partial image with 
prediction shifting

Fig. 13 compares the approach of 4.2.3 
(left) and of 4.3.3 (right).

Both networks described 4.3.2 and 4.3.3 
are applied to the Sella partial images 
created using the classification network 
described in 4.3.1 from the whole X-ray 
images. 

The classification process (4.3.1) 
consequently extracts Sella partial 
images with a size of 150 × 150 pixels  
from the entire input lateral 
cephalogram which itself has a 

Fig. 13: Waterfall plot of prediction errors for 20 Sella partial images (test data set)

Fig. 14: Deviation of predictions with respect to the points set by specialists:
Left: Pre-trained key-point detection network (3.2.1) 
Middle: Custom key-point detection network (3.2.2) 
Right: Clipping window approach with prediction shifting (3.3) 
Red circle: Average Sella size
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number of activation cumulations 
on the heatmap) is very low (singular 
cumulation). Therefore, learning is not 
possible for this kind of network in this 
application example. The U-Net learns 
to output a completely non-activated 
output, by adapting to the desired 
output. Due to the low stimulus density, 
the parts of the desired heatmap 
that are non-activated are too large. 
These problems could be addressed by 
enlarging the distribution radius of 
activations, although this inevitably 
would make the output less specific. The 
same problem also applies to possible 
heatmap approaches without using a 
U-Net structure. However, this kind of 
method could help in other radiological 
tasks, such as detecting carious areas, 
since this involves quantitative key-
point detection.

A key-point detection network was 
used in the next step. The reduction 
of complexity of the output allowed 
predictions that achieved an average 
deviation of just 4.2  mm with the 
redesigned and custom network. A 
key-point detection network is useful 
for finding individual, specific points. 
Due to the limitations of the available 
hardware, the size of the lateral 
cephalogram images needed to be 
reduced from the original 993 × 1123 to 
150 × 150 pixels.

Further important localization 
information is lost due to the above 

prediction shifting, as tested on the test 
data set, is clearly the most precise.

4.5 Application on other points

To test the transferability of the 
developed method, it was tested on the 
incisal point. This is another important 
point to be placed on the foremost tip of 
the first incisor (Fig. 15, 16).

The mean deviation of 0,65  mm and 
maximum deviation of 1,4 mm is very 
comparable to the results seen on the 
original application on the Sella point.

5. Discussion

In this project, different methods 
were developed and compared for 
automatically carrying out key-point 
detection on X-ray images using 
neural networks. The research used 
the example of the Sella point on 
lateral cephalograms of the side of the 
cranium. Three different approaches 
were compared.

A heatmap approach, as is used in 
facial recognition, was introduced in 
the first step. This network structure is 
particularly well-suited for detecting 
multiple points at the same time, but 
less so for precisely setting individual 
key points.

During X-ray image key-point detec-
tion, the stimulus density (i.e. the 

standardized size of 750 × 750 pixels. The 
exact middle point of the Sella now can 
be determined on these partial images 
by the key-point detection net (4.3.3) 
with an average deviation of 1.8 % and 
maximum 5 % of the partial image size. 
In order to make this approach 
comparable to the prior ones the error 
should not be correlated to the Sella 
partial image but to the entire lateral 
cephalogram (as in 4.1 and 4.2), leading 
to an average deviation of 0.36  % 
of the image size and a maximum 
deviation of 1  % of the image size.  
Based on an original lateral 
cephalogram as it is presented to the 
doctor, this corresponds to an average 
deviation of 0.6  mm and a maximum 
deviation of 1.5 mm. 

4.4 Comparison of approaches 

Finally, if the three processes examined 
in this paper are compared based on the 
absolute deviations for the respective 
coordinates of the Sella point (Fig. 14), 
the increase in accuracy can be seen 
clearly, as has been shown in the course 
of this project. The average deviation 
of 6  % (9  mm) in the optimized first 
approach was reduced to 0.36 % of the 
image size (0,6 mm) in the third process.

The following three diagrams (Fig. 14)  
shows the deviation of predictions 
of the respective networks in the x- 
and y-direction. Here, the custom, 
combined network from 3.3 with 

Fig. 15: Incisor in lateral cephalogram

Incisal point

Fig. 16: Incisor with Incisal point drawn in
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mentioned max pooling and valid 
padding. However, these methods 
were necessary in this application in 
order for the CNN error to converge 
while keeping the number of optimized 
parameters within the bounds set by the 
hardware.

This sets a upper limit on the possible 
accuracy of key-point localization. 
This type of network has shown itself 
to be suitable for finding points in this 
research, but it exhibits significant 
precision problems in prediction.

Two neural networks that build on each 
other were used as a third approach. 
First, a classification CNN extracts the 
partial image from the entire image 
containing the Sella. Only once this 
partial image is extracted does a key-
point detection network set the precise 
S-point on it. This limits the influence 
of the loss of localization information 
of the key-point detection network on 
final prediction.

This approach is also based on the way 
a doctor works, first by searching for 
the most likely search area for the Sella 
structure, and then (after detecting the 
Sella) approximating the S-point.

Lastly the method of prediction shifting 
was used based on the fact that a more 
central position of the relevant structure 
leads to a more accurate prediction.

It could be speculated that this is 
correlated with the higher information 
density of the central areas (see “valid 
padding”) as well as better visibility of 
the relevant structures in the centre.

Using the clipping window and 
prediction shifting, the divide and 
conquer paradigm was successfully 
applied.

The goal of developing a workable 
procedure for predictive analytic key-
point detection was achieved using 
the clipping window approach and the 
prediction shifting developed here. The 

Sella point on which these methods 
were tested was able to be located with 
an average deviation of 0.6 mm.

After a reliable way to automatically 
detect the S-point has been developed, 
this method can be applied to other 
relevant points of cephalometric X-ray 
analysis.

Unlike some algorithms or programs 
which are not capable of learning, a 
neural network structure is not tied to 
the original application area. Instead, 
it can be transferred to other problems 
using the same solution approach with 
little to no change in accuracy.

This transferability of this approach was 
proven by testing it on the incisal point. 
The deviation only differs by less than 
0,01  mm from the results of the Sella 
point which shows the applicability of 
the method to different points.

In the context of a manual evaluation by 
a specialist, Segner and Hasund write the 
following about the reproducibility of 
manual point localizations: “It generally 
will not be possible to reproduce the 
measured values of the first evaluation 
with an accuracy of 0.1 or 0.5  mm, no 
matter whether the evaluation was done 
(by a doctor) digitally or by hand” [16].

The deviation of the neural network 
from the points set by professionals that 
was determined in this paper is thus 
comparable to the deviation that occurs 
between two medical evaluations. The 
developed method thus enables practical 
results for radiologic evaluation to be 
achieved.

However, the existing results thus far 
only pertain to the example application 
of the methods on two points.

In localization of other important 
points on a lateral cephalogram as well, 
certain features have to be detected and 
correlated in order to approximate the 
respective position.

This ability is especially important in 
localizing the Sella point, since this is 
an imaginary point. This means that 
the point is not set on a real structure, 
but rather has to be constructed based 
on the surrounding structure of the 
Sella turcica. This makes localization 
difficult and demonstrates the ability of 
the model to not only detect features, 
but also to correlate different detected 
features to each other.

The application to the incisal point has 
furthermore shown a certain degree of 
transferability, in particular to a non-
imaginary point which is to be placed 
on an actual depicted structure.

The actual transferring of this method 
to other points can be executed in 
further research.

Outside of lateral cephalogram analysis, 
there are a few other X-ray image 
evaluations that have so far applied 
manual key-point detection. This 
includes all orthopaedic, bone-related 
malpositions, i.e. malpositions of the 
hip, knee or spine. The transferability of 
the process developed here can also be 
tested in this field.

6. Outlook

Based on these results, the next goal in 
this process is the automated evaluation 
of other points based on the described 
method of the clipping window with 
prediction shifting. To do so, new data 
sets are required that must be created by 
hand.

The long-term goal here is being able 
to perform completely autonomous 
X-ray image evaluation (possibly with 
diagnosis) in cephalometry based on 
key-point detections by applying this 
method.

Here, only the angles and distances 
between the individual points need 
to be calculated in the last step. The 
appropriate software already exists for 
this purely algebraic task. However, 
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This project succeeded in identifying 
the Sella point with an average deviation 
to the manually set points of less than 
1  % of the image size and an absolute 
deviation of 0.6 mm. This is within the 
spread range for specialist evaluation.

Using the method developed by 
combining a clipping window process, 
a classification network, two key-point 
detection networks and prediction 
shifting, the method has already been 
successfully tested on an additional 
point of cephalometric analysis. The 
transferability has been proven.
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at the moment, it only produces 
calculations based on points set by 
hand.

An opportunity for the direct 
implementation of the system in an 
application environment is thereby given.

In the next step, transferring the 
methods to similar X-ray image 
evaluations (hip, knee, or spine X-ray 
images) is to be tested.

Any real-world implementation of this 
kind of automation will certainly still 
(currently) need the supervision and 
review of a specialist, but the evaluation 
can be accelerated and standardized. 
That is an advantage for both the doctor 
and for the patient. This application area 
is an example of a beneficial human-
machine collaboration.

In following projects, image 
preprocessing could be examined in 
greater detail. In this paper, histogram 
equalization was applied to compensate 
for contrast differences. Other methods 
include edge detection or thresholding, 
for example. In both methods, irrelevant 
data can be discarded before beginning 
training, which enables faster and more 
reliable detection by the network. This 
can reduce the necessary network 
depths and, as a result, the calculation 
effort as well. On the other hand, 
preprocessing images too heavily can 
destroy important structures on some 
images. Individualized preprocessing 
tailored to each image increases 
the effort needed for learning — a 
compromise needs to be found.

7. Summary

The goal of this research was to develop 
methods for automated key-point 
detection on X-ray images, using the 
example of Sella points within lateral 
cephalogram of the side of the cranium 
with the aid of artificial intelligence, 
specifically the use of convolutional 
neural networks.
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