Title: Radioluminescence mapping of 241Am-doped environmental samples and nuclear materials
Authors: Luchkov, Maksym, Physikalisch-Technische Bundesanstalt (PTB), Fachbereich 6.3. Strahlenschutzdosimetrie, ORCID: 0000-0002-0818-3759
Contributors: HostingInstitution: Physikalisch-Technische Bundesanstalt (PTB), ISNI: 0000 0001 2186 1887
Language:en
DOI:10.7795/720.20231026B
Resource Type: Dataset / Measurement Data
Publisher: Physikalisch-Technische Bundesanstalt (PTB)
Rights: https://creativecommons.org/licenses/by/4.0/
CC-BY 4.0 International
Relationships: References: DOI 10.1007/s10967-023-09235-2
Dates: Available: 2023-10-26
Classifications: INSPEC A2940M Scintillation detectors, scintillators and photomultipliers ; INSPEC B7420 Particle and radiation detection and measurement
File: Download File (application/zip) 3.33 MB (3493264 Bytes)
MD5 Checksum: f584055129e205f7694349c696bb7a47
SHA256 Checksum: a4dddc6b0e3b1e85b58bc73f4d63cb309c6806c46f0b11985a9fe1bebdbb1e71
Keywords alpha-particle sources ; alpha-particle detection ; luminescence of gases ; radioisotope imaging ; photomultipliers ; molecular visible and ultraviolet spectra
Abstract: The files contain the radioluminescence images of selected samples and other data relevant to the corresponding article. For scanning measurements, the photon count rate is reported for each pixel of the image where each pixel designates the particular detector orientation (pitch, yaw) set by goniometer stages.
Other: The project 19ENV02 RemoteALPHA has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.
Remark: description of the individual files:
- block: Scanning measurements / images
research object: Imaging of alpha-emitting sources using radioluminescence
method: The UV images of alpha sources are taken in the dark with the optical scanning system from the distance of 2 m. The color image, onto which the UV image is superimposed, is taken separately in the well-lit environment with the Intel RealSense D435 depth camera. The acquisition system consisting of a lens-based UV detector and two goniometric stages controlling the pitch and the yaw of the detector. The acquisition system consists of a 240 mm UV fused silica lens, optical filter assembly, photomultiplier tube, pulse counter, and readout computer. The filter and photomultiplier type are selected depending on the measured UV band (UV-A or UV-C) with the component choice specified in the header of each measurement file. The UV photon count rate (in 1/s) is logged with the Hamamatsu C8855 counter in millisecond intervals. Two Newport goniometric stages (M-BGM160PE - pitch, RVS80CC - yaw) are controlled with Newport SMC100 controllers. Finally, two data streams - count rate and detector orientation - are synchronized to produce the UV image where each pixel is characterized by a (pitch, yaw, count rate) vector.
format: .dat, .jpg

- block: Radioluminescence spectra
research object: UV-band spectra of alpha radioluminescence in various gases
method: The measurand is quantified using the narrow alpha beam stopping in a gas-filled quartz cuvette. The cuvette has the outer diameter of 25 mm and is sealed with an aluminum foil at the beam entrance. The alpha-particle beam has the mean exit energy of 5.1 MeV and the diameter of 100 um. The spectra are taken with the Instrument Systems CAS140D spectroradiometer positioned perpendicular to the beam axis at the Bragg peak height 1 mm from the cuvette surface. The spectral radiance (in uW/(m2 nm)) is reported for acquisition periods (in s) and beam intensities (in 1/s) specified in the header of each measurement.
format: .csv
Funding: European Commission (EC), ISNI: 0000 0001 2162 673X, Grant Title: Remote and real-time detection of alpha-emmitting radionuclides in the environment, Grant Number: EMPIR 19ENV02 RemoteALPHA