
 

 

 

 

 

The following article is the final version submitted to IEEE after peer review; hosted by PTB; 

DOI: 10.7795/EMPIR.17IND06.CA.20190410A. It is provided for personal use only. 

 

 

 

Delayed Authentication and Delayed Measurement 

Application in One-Way Synchronization 

K. Teichel, D. Sibold, G. Hildermeier 

 

 

 

Acknowledgement: Parts of the presented work are used in the project 17IND06 (FutureGrid 

II) which has received funding from the EMPIR programme co-financed by the Participating 

States and from the European Union’s Horizon 2020 research and innovation programme. 

 

 

 

© 2018 IEEE. This is the author’s version of an article that has been published by IEEE. 
Personal use of this material is permitted. Permission from IEEE must be obtained for all other 

uses, in any current or future media, including reprinting/republishing this material for 

advertising or promotional purposes, creating new collective works, for resale or redistribution 

to servers or lists, or reuse of any copyrighted component of this work in other works. 

 

 

Full Citation of the original article published by IEEE: 

K. Teichel, D. Sibold and G. Hildermeier, "Delayed Authentication and Delayed Measurement 

Application in One-Way Synchronization," 2018 IEEE International Symposium on Precision 

Clock Synchronization for Measurement, Control, and Communication (ISPCS), Geneva, 

2018, pp. 1-6. 

doi: 10.1109/ISPCS.2018.8543083 

 

Available at: 

https://doi.org/10.1109/ISPCS.2018.8543083 

https://doi.org/10.1109/ISPCS.2018.8543083


Delayed Authentication and Delayed Measurement

Application in One-Way Synchronization

Kristof Teichel and Dieter Sibold

Physikalisch-Technische Bundesanstalt

Braunschweig, Germany

Email: kristof.teichel@ptb.de / dieter.sibold@ptb.de

Gregor Hildermeier

Technische Universität Braunschweig

Braunschweig, Germany

Abstract—We have performed an analysis of an attack vector
regarding one-way time synchronization protocols protected by
TESLA-like mechanisms. In this paper, we present our testbed
implementation that allows simulation of such protocols to
take place, and we give an overview of the results regarding
vulnerability of existing protocols, potential countermeasures,
and relevance to specifications currently in development. We omit
much of the cryptography-related details of our security analysis
in favor of specifics regarding the effects and pitfalls related to the
delayed authentication used by all TESLA-like protection mecha-
nisms. We place particular emphasis on implications concerning
the security and time performance of immediate versus delayed
measurement application where this occured in our evaluation.

I. INTRODUCTION

With the importance of cybersecurity increasing in recent

years, demand for authenticity in time synchronization pro-

tocols has grown. However, providing authenticity in a time

synchronization context has proven to be difficult. On the

one hand, the number of slaves can be vast, which rules

out authenticity measures using conventional symmetric-key

cryptography. On the other hand, asymmetric cryptography

cannot always be applied, especially on devices with low

computational power or via connections with limited band-

width. To meet this challenge, a mechanism that uses simple

symmetric cryptography to authenticate data in large networks

has been adopted for time synchronization. The mechanism

is called Timed Efficient Stream Loss-tolerant Authentication

(TESLA) [1], [2] and makes use of delayed authentication.

At least two published protocols already make use of

the TESLA mechanism to secure time-related messages: the

“Secure and Resilient Time Synchronization protocol” (Tiny-

SeRSync) [3] and the “Agile Secure Time Synchronization

protocol” (ASTS) [4], both of which are meant for wireless

sensor networks. Furthermore, the time community is revie-

wing the application of TESLA for ongoing specification work

(see Section V for a list of relevant specifications).

However, a potential attack vector has been discovered

where, under certain circumstances, the authenticity provided

by TESLA used for time synchronization via broadcast can

be compromised entirely [5]. We carried out an evaluation

of this attack with the help of an independently developed

testbed implementation that let us simulate the behavior of

TESLA-protected one-way time synchronization protocols and

the behavior of attackers working to break those protocols.

With our implementation, we tested dependencies between

protocol parameters to find out in which scenarios the attack

is or is not successful. Furthermore, we deduced a set of coun-

termeasures to mitigate the attack; these contermeasures can

be included in future specifications of time synchronization

protocols involving one-way (e.g. multicast) communication.

In this paper, we present a brief overview of the results of

our security analysis: we report on vulnerabilities of the exis-

ting protocols we were able to evaluate with our simulations.

Furthermore, we list protocols currently in development for

which our analysis might become relevant because they are

likely to employ TESLA-like mechanisms. The cryptography-

related details of our security analysis can be found in a

separate publication [6] and in the master’s thesis that encom-

passed this work [7]. We therefore omit them here in favor

of our findings on immediate versus delayed measurement

application. Having only delayed authentication available (an

essential characteristic of TESLA-like mechanisms) raises the

delicate issue of how to apply the time measurements obtained

– immediately, when they are still unauthenticated, or after the

potentially long delay that it takes to confirm their authenti-

city? This question is interesting in two different respects: it

affects how fast the attack can be successful, and it influences

the performance of the secured time synchronization protocol.

This paper is structured as follows: Section II provides an

introduction to the TESLA protocol as well as the attack

vector that we base our simulation and analysis on. The testbed

implementation that we employed is introduced and outlined

in Section III. In Section IV, we present the results of our

evaluation. This comprises the overview of our analysis regar-

ding protocol vulnerability and countermeasures, as well as

our findings related to immediate versus delayed measurement

application. Section V presents relevant ongoing specification

work, and Section VI concludes the paper.

II. PRELIMINARIES

This section provides an introduction to how the TESLA

protocol works, as well as a schematic description of how the

central attack vector is constructed.

A. TESLA Overview

The TESLA protocol [1] was originally designed to authen-

ticate media streams. It was created to mitigate the typical pro-



blems entailed by symmetric and asymmetric cryptography:

key distribution (regarding the former) and considerable re-

quired computing power (regarding the latter). Using TESLA,

the slave can authenticate any packet sent by the master, as

long as it arrives within a certain timeframe. Time plays an

essential role, as explained in more detail below.

1) Basic Concept: The TESLA protocol applies symmetric-

key cryptography, but creates asymmetry by making use of

time progression: packets are signed and sent, but the key used

to sign them is disclosed at a later point in time, after a time d,

the so-called disclosure lag. A received packet is buffered and,

as soon as the key is disclosed, it can be authenticated. As long

as the slave is certain that the key was not disclosed before the

packet was received (a condition called the timeliness of the

packet), the authenticity of the signature is guaranteed. Using

this procedure, symmetric-key cryptography can be used in a

broadcast setting, thus avoiding the problems of asymmetric

cryptography. To achieve this, the TESLA protocol requires

an initial time synchronization in which a rough upper bound

δmax of the clock offset is determined. In order for TESLA to

work, two main concepts are deployed:

a) Commitment with a Key Chain: The concept of the

key chain makes it possible to commit to a key before using

it, and also enables packet loss toleration. To generate a key

chain, the master applies a one-way pseudo-random function

F to a secret Kn to compute a key value Kn−1 = F (Kn). It

repeats this to obtain Kn−i = F i(Kn)) up to K−1, which is

called the key chain commit, while the next key K0 is the first

one to be used. This creates a chain of keys, with each key

being verifiable only by its predecessors. The master applies

F ′, another pseudo-random function, to a key value Ki to

generate a key K ′

i. This key K ′

i is used to create the MAC for

a packet. Before sending any packets, the master commits to

the entire chain by publishing K−1, F , and F ′ securely.

b) Using Time Intervals: The master defines the starting

time T0 and the length T∆ of a time interval Ii, i = 0, . . . , n.

Each interval Ii will be associated with the key value Ki.

Every packet sent in interval Ii is signed with the same interval

key. In interval Ii+d, the key of Ii is then disclosed. At any

point in time t, a network participant can compute the interval

index i from its clock value. A depiction of the concept of

intervals is presented in Fig. 1. In the example shown, a packet

is authenticated four intervals later. The packet Pj is signed

with the key K ′

i, since it was sent in the interval Ii. The key

for Ii is disclosed in Ii+4.

B. Attacking TESLA-secured Time Synchronisation Protocols

The attack described in this section was first formulated

in [5]. It forms the basis for the behavior of the adversary in

our implementation. The attack is possible when the TESLA

protocol is used to authenticate time distribution in a one-

way synchronization setting. Since the protocol itself is time-

dependent, but in this application also directly influences

the degree of clock synchronization, the packet authenticity

provided can be compromised.

1) Attacker Model: A powerful attacker is assumed to be an

invader that operates under the Dolev-Yao attack model [8].

It is therefore capable of impersonating any member of the

network as long as there is no extra authentication mechanism

in place. Additionally, it is assumed to be capable of delaying

any packet. This has a special significance in the context of

time synchronization protocols and also in the attack that is

explained below. However, it is not able to break cryptographic

ciphers or reverse one-way hash functions; furthermore, non-

ces and secret keys cannot be guessed.
2) Attack Synopsis: The attack has two phases; Phase One

has multiple steps:

• The attacker consistently delays each packet broadcasted

by the master by d1.

• As soon as the slave uses the time data in the first delayed

packet to adjust its clock (usually when it verifies the

packet after its disclosure lag), the introduced delay d1
will start to take effect.

• This desynchronization increases the time by which the

slave will accept a delayed packet as timely, thus enabling

the attacker to delay packets by d1 + d2.

• The attacker continues to increase the delay as according

to the step above.

Eventually, the clocks will desynchronize by more than (d−

1)T∆, where d signifies the disclosure lag. Phase One of the

attack is then complete.

After the end of Phase One, the adversary can perform

Phase Two of the attack. It is then possible to intercept any

packet from the master, wait until its respective key has been

disclosed and replace it with a bogus packet, for which the

attacker can generate a correct MAC. The slave’s clock is so

far behind that it accepts the packet as timely. By this point, the

adversary can fully impersonate the master; thus, the security

gain of the TESLA protocol is negated.
3) Example Attack: To further illustrate the attack, it is

demonstrated again below with specific values d = 2 and

T∆ = 6 s. Note that the real-world values for TESLA,

especially lengths of intervals, can vary greatly depending on

the protected protocol and the frequency with which it sends

messages. The master and the slave perform the secured initial

exchange of information that includes the values mentioned

above and the initial key chain commit K−1. The master then

starts to periodically broadcast the value of its clock at the

beginning of each interval Ii at the time si.
a) Phase One: This attack phase is depicted in Fig. 2.

• The attacker delays P0 by d1 = 4 s. The slave checks the

timeliness condition and accepts P0 as timely.

• Packets P1 and P2 are delayed in the same way as

P0. When the slave receives P2, it extracts the included

key value K0. The slave (successfully) authenticates P0,

concludes that its clock is fast by four seconds, and

adjusts it accordingly.

• The attacker can now delay the subsequent packets,

starting with P3, by d1 + d2 = 8 s.
• In our example, the increase in step 3 only has to be

executed once, since 8 s > T∆.



t
Ki Ki+1 Ki+3Ki+2 Ki+4 Ki+5 Ki+6 Ki+7

IPj+3Pj Pj+4 Pj+5Pj+2Pj+1 Pj+6

Ki Ki+1 Ki+2 Ki+3

Fig. 1. Depiction of how TESLA authenticates packets with keys carried by subsequent packets.

The slave’s clock synchronization error is already large

enough after it receives P5, which enables it to process P3,

after which it adjusts its clock as though it were fast by

another 4 seconds. The slave’s clock now reads 31 s, while

the master’s clock at the same time reads 39 s. The offset

between the two clocks has surpassed the value (d − 1)T∆;

hence, the desynchronization is sufficient and Phase One is

therefore complete.

b) Phase Two: can now begin, since there is an offset of

more than one interval between the two clocks. The attacker

blocks P6 and the following packets from ever reaching the

slave. He waits until the master discloses K6 in interval I8
(which is sent at t = 48 s), extracts K6 and derives K ′

6. It can

now forge a packet Q6 with any chosen bogus time, use K ′

6 to

create a valid MAC and forward it to the slave. In this case, it

has a time window of T∆/3 to deliver the packet. In another

forged packet Q8 he includes the original and correct key value

K6. The slave will use this key to (successfully) authenticate

the bogus packet Q6, since the key value is a valid link in the

key chain. The slave now uses the bogus time data in Q6 to

adjust its clock, and the attack is therefore successful.

III. OUR TESTBED IMPLEMENTATION

We have created a new implementation of a highly configu-

rable TESLA-protected one-way synchronization protocol. Its

main purpose is to simulate the behavior of specific specimen

of such protocols. An overview of the implementation is given

here; more detail can be found in [7].

The implementation was created using the C++11 program-

ming language. The Boost and Boost.Asio libraries were used

to create efficient, easily readable and extendible code.

A. Model of the Participants

There are three standalone programs that interact with each

other. The first is the time master. On request, it provides all

parameters needed for TESLA, such as the schedule and the

key chain commit. After initialization, it starts two periodic

timers; one sends out synchronization packets, the other sends

out keys according to the disclosure lag.

The second is a time receiver, also called a slave, which

attempts to synchronize its clock. It is initialized by using a

request-response scheme to receive the necessary parameters.

In the second step, the loose synchronization required by the

TESLA protocol is established via multiple rounds of two-way

time exchanges, which also measure δmax. After the setup,

the slave changes to a constant listening mode, waiting for

incoming packets. From then on, the clock is only adjusted

through time synchronization messages received via broadcast.

Below, we introduce a third participant who serves as the

network simulator and also as a powerful “man in the middle”.

It is capable of all the behavior necessary to carry out the

attack, such as withholding packets and forging packets that

fit seamlessly into the original packet stream.

B. The Clock

Instead of simulating a clock on the user level, we decided to

use two actual, separate system clocks in the implementation

in order to model real-world synchronization conditions as

closely as possible. The downside to this is the lack of a

precise way of measuring the exact time difference between

the two clocks.

We considered two different ways to adjust a clock. The first

is simply to increase the current clock value by a measured

offset. The alternative is to slow down or speed up the clock

for a gradual adjustment. In the context of the TESLA protocol

(particularly the aspect of delayed authentication), we needed

to consider several shortcomings associated with performing

gradual adjustments. The effect of an adjustment is not yet

reflected when the next packet arrives, but when packets arrive

a few intervals later (after the disclosure lag). Because of the

disclosure lag, there is a time lag between the detection and the

correction of a measured offset. Offsets will therefore be mea-

sured repeatedly. Additionally, there is the question of exactly

how much the clock should be sped up or slowed down by to

compensate for a detected offset. Using simple constant values

can have undesirable effects – namely, overcompensation (due

to the correction delay mentioned above) or unnecessarily long

compensation times. Our solution to this was to speed up or

slow down the clock to such an extent that it is expected to

be adjusted to the given offset after d+ 1 intervals.

IV. EVALUATION RESULTS

In this section, we present the results we obtained with

our testbed implementation. We include brief overviews of



 

I1I0 I2 I3 I4 I5 I6 ...

P0 P1 P2

P3

P4

P5

d1 d1 d1

2 * d1

I1 I2I0

I2 I3 I4 I5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ...0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 31 32 ...0

...

P6
+K0

+K3

2 * d1

2 * d1

Fig. 2. Illustration of the attack on an example network.

our results on protocol vulnerability, possible countermeasures

and potential future time synchronization specifications that

might be affected. We then present our findings on delayed

versus immediate application of received packets, as well as

a proposal for how to combine the two techniques.

A. Vulnerabilty of Existing Protocols

Our analysis concludes that both of the examined protocols

are vulnerable. For ASTS, the attack can be executed very si-

milarly to what is described in [5]. No matter what parameters

are chosen, the attacker is able to succeed eventually, even if

it might take a long time. With TinySeRSync, the situation

is more intricate. We were unable to approach this situation

with the scheme from [5], instead learning about techniques

that could provide a valid defense. However, the robustness

to the attack was due to changes to the TESLA scheme that

make the protocol vulnerable to other, much simpler attack

techniques that also involved packet delay tactics. More detail

on our security analysis can be found in [6] and [7].

B. Countermeasures and Best Practice

With a few changes to the timeliness condition and the

protocol flow, we were able to successfully mitigate the

attack described above. However, the changes required are

significant: complete mitigation comes at the expense of there

being an extra step in the protocol, and the fact that this step

must involve two-way communication. More details on the

countermeasures presented can be found in [7].

1) Quantification of Minimum Required Intervals: Our

experiments with attack runs on our implementation have

enabled us to deduce an equation for the earliest interval Isuc
by which the attack’s first phase can have succeeded:

Isuc =
⌈T∆(d− 1) + δmax + δe

δatk

⌉

(d+ 1) + 2d, (1)

where δatk is the maximum amount of additional delay that the

attacker can insert per interval, and δe is the natural endpoint

delay between the given slave and master. This represents a

refinement over the quantification in [5] due to the ability of

our experiments to account for real-world parameters.
2) Make the Attack Take Longer: The first general measure

is to increase the time required for execution of the attack. In

general, this can be achieved by making it harder, e. g. via

time source diversity. This can be achieved by combining the

following tactics:

• The maximum delay δatk that can be introduced should

be minimized. For example, one can simply set a limit

to the amount of measured offset that is accepted.

• The interval length should be maximized under the con-

ditions that the synchronization should still work, and

that the maximum δatk should not be increased. One

option is to introduce dead time into the intervals where

no communication can take place. This would not make

sense for most application areas of the TESLA protocol,

but it does make sense for time synchronization.

• The timeliness condition should be independent from d.

3) Introduce a Periodical Reset to Time Synchronization:

The second general measure is to introduce a reset to the

time synchronization. The protocol must resynchronize via

an alternate technique before the time by which the attack

can have succeeded. This could be tied to the end of the

key chain. Note that, to be effective, a reset must entail

synchronization via alternative (two-way) communication. A

reset as described here can and should still be realized via

gradual clock adjustment.
4) Combined Approach: To achieve the goal of completely

preventing the attack, the measures described above work

only in combination. The first measure gives a guarantee

that the protocol is secure up to a given point in time.

The second measure ensures that the protocol (including the

security guarantee above) is reset before that point in time is

reached. Our experiments have suggested that, if one of the

measures is not taken, or is not taken correctly, the attack can

always succeed eventually. The converse is also true: in our

experiments, if both measures are taken correctly, the attack

will never be executed successfully.



C. Clock Adjustment Algorithm

In this Section, we test strategies for clock adjustment to

examine the effects and interdepndencies of gradual clock

adjustment together with a disclosure delay. Note that we

always use gradual adjustment over stepping the clock. The

two approaches differ in when measurements are used to start

such a gradual adjustment.

1) Dynamic Delayed Adjustment: The “SlewClock Algo-

rithm” was designed to find a value of how much the clock

should be sped up or slowed down by to allow offsets of any

size to be corrected within a reasonable time (i. e., the clock

should be adjusted by a measured offset after d+1 intervals).

The algorithm calculates this value dynamically, depending on

the given offset δmeas, to adjust it to the interval length T∆ and

the disclosure delay d. The adjustment required per second tadj

is calculated as follows:

tadj =
δmeas

(d+ 1)T∆

. (2)

The way in which the adjustment by tadj is further realized

depends on the setup of the device and the operating system.

We set up two sets of experiments, both with an interval

length of one second and a disclosure lag of 2. Time synchro-

nization packets are sent once per interval. The network intro-

duces a delay for every packet of 100 ms in one experiment,

and of 500 ms in the other. The offset the slave calculates for

each incoming packet is measured. The results show how the

clock gradually adjusts to the offset, but then desynchronizes

again, which is called the swinging effect.

In both experiments, the results are the same: the swing

falls below 1 ms after 35 packets. The measurements of the

experiments with delay 100 ms are plotted in Fig. 3 (left).

However, there is a limit in our implementation to how

much the clock can be sped up or slowed down by. The

underlying system call adjtimex() does not accept a change

of more than 10 %, which is about 6 s per minute. When

there is a need to adjust to very large offsets, the slew clock

algorithm is thus not suitable; in these cases, the clock should

be stepped (i. e. simply set to the new value instead of gradual

adjustment). Ideally in a time synchronization protocol with

real-world parameters, a mix of slewing and stepping should

be implemented.

Regarding the attack described, a slave that uses the slew-

clock algorithm to adjust to offsets is still vulnerable. The

key difference is that the MITM has to be configured more

precisely and more carefully, since it is harder to estimate

the slave’s clock. Futhermore, the attack takes considerably

longer, since the MITM has to wait for the slave to adjust to

an introduced offset, which can take as many as 35 intervals,

as stated above.

2) Immediate Adjust: To mitigate the inaccuracy caused

by the swinging effect, the clock could adjust immediately

upon reception of the time synchronization packet. Obviously,

this constitutes problematic, dangerous behavior, since any

information is accepted even if it later turns out to be malici-

ous. This approach can only work if the time synchronization

packets are not encrypted with the corresponding keys but

only signed instead. In our implementation, this is the case;

by setting the configuration to immediate adjustment, the slave

handles received time synchronization packets as soon as it

gets them. The packets are still buffered for later validation;

however, at the time of the validation, the packet has already

been processed. We set up the same experiment described in

the section above, with T∆ = 1 s, d = 2, and introduced an

offset of 100 ms. A plot of the measurements can be found in

Fig. 3 (right). The results show how the clock slowly adjusts

to the offset in an ideal curve. Within 17 packets at the latest,

the clock offset falls below 1 ms.

We conclude from these experiments that the “SlewClock

Algorithm” works very well in order to find a value to

complete the adjustment process within a reasonable time.

Due to the disclosure delay, the swinging effect occurs, which

roughly doubles the intervals needed to completely adjust

to an offset. In all of the experiments, the offset eventually

approached zero with a deviation of 400 µs.

If the approach involving immediate adjustment were to be

deployed in a real-world scenario, one would need to carefully

balance the pros and cons. A simple idea is to use this method

to adjust to offsets until a cryptographic check fails, and at

that time to switch back to the regular TESLA procedure

of delayed adjustment. If a small disclosure lag is chosen,

the damage caused by accepting fraudulent packets may be

manageable. The advantage is obvious: if no cryptographic

alarm is triggered, the time synchronization accuracy will

improve, as shown above. This approach is merely an idea,

and needs to undergo more testing to determine the extent to

which it is applicable in real-world scenarios.

V. RELEVANCE FOR SPECIFICATIONS IN DEVELOPMENT

TinySeRSync and ASTS are not the only time synchroniza-

tion protocols to which our analysis is relevant, even though

they are the only ones we are aware of whose specifications

have already been completed. Overall, the adoption of TESLA-

like security mechanisms in the time synchronization world

has been widespread and is present in several specifications

currently in development.

• The IEEE uses a TESLA-based security scheme in the

upcoming version of the Precision Time Protocol (PTP)

[9].

• The IETF has been discussing TESLA’s use for the

broadcast mode of the Network Time Protocol (NTP) [10]

in the context of the ongoing Network Time Security

specification [11], [12].

• The ESA is incorporating TESLA into the Open Service

Message Authentication scheme [13] of Galileo, the

European global navigation satellite system.

Both PTP and NTP offer innate ways to realize two-way

synchronization for our countermeasures: PTP has delay re-

quest/response messages, NTP has client-server mode.



-100

-80

-60

-40

-20

0

20

40

60

0 10 20 30 40 50 60

100ms delay

C
lo

ck
 o

ff
se

t 
[m

s]

Interval / #Packets

-100

-80

-60

-40

-20

0

20

0 10 20 30 40 50 60

100ms delay

C
lo

ck
 o

ff
se

t 
[m

s]

Interval / #Packets

Fig. 3. Depiction of the swinging effect with delayed adjustment (left) versus immediate adjust (right), and an introduced offset of 100 ms. With the given
setup, the number of packets on the x-axis coincides exactly with the number of intervals and with the number of seconds that have passed.

VI. CONCLUSION AND FUTURE WORK

We have investigated problems entailed by the deployment

of the TESLA protocol, one of which is the attack des-

cribed in [5]. We have built an implementation of a time

synchronization protocol for the Unix operating system that

reflects the security-relevant characteristics of TESLA-secured

one-way time synchronization protocols. Our implementation

is capable of simulating different protocols regarding their

security and synchronization features. We have conducted tests

to prove that the theoretical attack described can also work in

reality. We have found that, without extra security features,

the attack is always possible. However, we have deduced

that the system is secure until Phase One of the attack has

succeeded, and quantified the earliest time by which this can

occur. We have also stated recommendations for setting up a

time synchronization protocol with TESLA-secured one-way

communication.

Any other existing or future time synchronization protocol

or specification using TESLA (in particular all of those listed

in Section V) should be analyzed regarding the applicability

of the attack presented. The implementation created for our

analysis could be used for such an endeavor. Especially

regarding the context of the PTP, a countermeasure relying

on periodic two-way exchanges would fit very well in theory.

Additionally, we presented findings on delayed and imme-

diate application of measured offsets for which only delayed

authentication is available. It would be interesting to further

pursue the idea of switching between the two behaviors

dynamically according to detected threats, and to consider this

idea in any new specification.

ACKNOWLEDGMENTS

The authors would like to thank Stefan Milius for his input

and ideas, as well as his help in enabling our cooperation.

Special thanks are also due to David Goltzsche and Rüdiger

Kapitza for their discussions and support.

REFERENCES

[1] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient authentication
and signing of multicast streams over lossy channels,” in Security and

Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium on.
IEEE, 2000, pp. 56–73.

[2] ——, “The tesla broadcast authentication protocol,” Rsa Cryptobytes,
vol. 5, 2005.

[3] K. Sun, P. Ning, and C. Wang, “Tinysersync: secure and resilient time
synchronization in wireless sensor networks,” in Proceedings of the 13th

ACM conference on Computer and communications security. ACM,
2006, pp. 264–277.

[4] X. Yin, W. Qi, and F. Fu, “Asts: An agile secure time synchronization
protocol for wireless sensor networks,” in Wireless Communications,

Networking and Mobile Computing, 2007. WiCom 2007. International

Conference on. IEEE, 2007, pp. 2808–2811.
[5] K. Teichel, D. Sibold, and S. Milius, “An attack possibility on time

synchronization protocols secured with tesla-like mechanisms,” in In-

formation Systems Security. Springer, 2016, pp. 3–22.
[6] G. Hildermeier, K. Teichel, and D. Sibold, unpublished.
[7] G. Hildermeier, “Attacking tesla-secured time synchronisation proto-

cols,” Master’s Thesis, 09 2017.
[8] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE

Transactions on information theory, vol. 29, no. 2, pp. 198–208, 1983.
[9] “Standard for a precision clock synchronization protocol for networked

measurement and control systems,” IEEE, Standard 1588. [Online].
Available: https://standards.ieee.org/develop/project/1588.html

[10] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[11] D. Sibold, S. Roettger, and K. Teichel, “Network Time Security,”
Internet Engineering Task Force, Internet-Draft draft-ietf-ntp-network-
time-security-nn, Sep. 2016, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-network-time-security

[12] D. Franke, D. Sibold, and K. Teichel, “Network Time Security
for the Network Time Protocol,” Internet Engineering Task Force,
Internet-Draft draft-ietf-ntp-using-nts-for-ntp, 2018, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-ntp-
using-nts-for-ntp

[13] I. Fernandez-Hernandez, V. Rijmen, G. Seco-Granados, J. Simn, I. Rodr-
guez, and J. David Calle, “A navigation message authentication proposal
for the galileo open service,” Navigation - Journal of The Institute of

Navigation, vol. 63, 03 2016.


