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Abstract 

By evaluating the volume data in the proximity of a surface point, a Local Quality Value (LQV) is 
calculated for each surface point of a Computed Tomography (CT) measurement. This allows an 
automatic and reliable identification of areas containing surface points with reduced accuracy. A 
colour-coded visualisation of the LQV allows a highlighted display of untrustworthy measurement 
data. This method is capable of identifying a broad range of artefacts (including beam hardening, noise 
and rounded off edges) and of points of reduced accuracy due to the fixture of the part on the 
rotational stage. 
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1 Introduction 

The use of X-ray Computed Tomography (CT) in dimensional metrology offers some advantages 
compared to traditional coordinate measuring machines (CMMs), for instance the acquisition of the 
whole workpiece (including inner geometries) with a high point density in one dataset [1]. To perform 
a dimensional measurement using Computed Tomography, basically four steps are necessary [1, 2, 3]. 
In the first step, 2-D projections (radiographs) of the object to be measured from different angels are 
acquired. Using this data, a volume dataset consisting of voxels (volume pixel) is reconstructed. In this 
dataset, the background is usually represented by low grey values while the material of the object is 
represented by high grey values. In the volume data, the surface of the part is represented by a 
transition from low to high grey values. Due to different effects that decrease the resolution of CT, this 
transition is blurred to a certain degree. Elaborate algorithms are applied to the volume data to 
determine the position of the surface point within the blurred transition (see Figure 1). After 
calculating a surface dataset for the whole part in this way, in the last step standard geometries can be 
associated to the surface data to carry out the dimensional measurement. 

 

 
Figure 1: Zoom of a cross section of the volume data, the grey line represents the extracted surface. 

The edge is rounded off in the volume dataset, resulting in the same effect in the surface dataset.   
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It is possible to determine the position of the single surface points with sub-voxel accuracy, but high 
quality volume data is required for this. Data artefacts (errors in the volume data that have no physical 
representation in the measured object) may lead to significant errors when determining the position of 
a surface point and therefore induce deviations in the final measurement results. Artefacts may be 
caused by different quantities and their severity may vary locally [4, 5, 6]. An incomplete selection of 
artefacts will be described in the following: 

- While the model of the reconstruction assumes a monochromatic spectrum of the X-rays, the 
polychromatic composition of the spectrum induces erroneous calculated grey values in the 
volume data, as the attenuation strongly depends on the energy of the X-ray photons. While 
penetrating the material, the X-ray radiation is hardened (beam hardening). Typical 
consequences are overestimated grey values at the outer edge of the object (cupping) and 
streak artefacts in the volume data (see Figure 2). 

- Due to photon statistics and the properties of the detector, noise is always present in volume 
data. Especially for longer penetration lengths, the level of noise increases (see Figure 2). 

- Besides to leading to blurred transitions from low to high grey values, limitations of the 
structural resolution also cause rounded off edges in the volume data. While the surface 
extraction algorithms are able of determining the position of the surface points with high 
accuracy in regions of low curvature, they cannot compensate for these effects at sharp edges 
[7, 8, 9] (see Figure 1). 

- To mount the object on the rotational stage, usually materials of low density and atomic 
number are used, as they are nearly invisible for X-rays. However, in the regions where they 
are in contact with the measured object, they still induce small variations of the grey values in 
the volume data and lead to deviations when extracting the surface points. 

 

 
Figure 2: Cross sections of an hole plate (aluminium; left) and step cylinder (acrylic glass; right). 

Cupping and streak artefacts are induced by beam hardening. Due to longer penetration lengths for 

the lower steps of the cylinder, the level of noise is increased in this area. 

 

It is well known that data artefacts may lead to measurement deviations, especially if larger objects of 
dense materials have to be penetrated by the X-rays [10]. Furthermore, the choice of acquisition 
parameters by the operator has a large influence on the impact of artefacts on the measurement results 
[11]. Several methods have been investigated to optimise the acquisition parameters in order to 
minimise measurement deviations and the amount of artefacts in the volume data, for instance using a 
knowledge-based system [12] or a neural network [13]. Another approach is to replace measurement 
points, which are heavily affected by artefacts, with data from other sensors [14]. 
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To carry out these methods, an evaluation criterion is helpful to assess the quality of a dataset. For 
medical CT, properties like contrast, homogeneity, noise and the modular transfer function (MTF) are 
well known [2]. For industrial CT, a method investigated by Reiter et al. uses the fact, that in many 
cases an object of constant X-ray absorption is scanned [15]. Therefore, two distinct grey value levels 
(for background and object) are to be expected in the volume data. By evaluating the grey value 
histogram, a quality value for the whole volume dataset is deduced. In an approach by Schielein et al., 
the Shannon entropy of the grey values of a volume dataset is used to calculate a quality value for the 
whole measurement [16]. Amirkhanov et al. investigated a projection based metal-artefact reduction 
method [17]. As the correction is based on interpolation, it introduces uncertainty to the volume data 
to a certain extend. To visualize this, voxels that are modified by the correction are highlighted in an 
uncertainty map. In [18], a Bayesian classification is carried out for each voxel to decide, to which 
extend it belongs to a material present in the dataset. Using this information, the ‘material interface 
probability’ is deducted. 

2 Assessment of the Local Quality Value of surface points 

Aim of the presented method is to assign a Local Quality Value (LQV) to each point of an extracted 
surface dataset. The method can be applied to surface datasets determined by arbitrary algorithms. To 
calculate the LQV, the volume data in the proximity of each surface point is analyzed. For an ideal 
volume dataset, a sharp, high-contrast, symmetric and noise-free transition from low to high grey 
values perpendicular to the surface is expected. Any deviation from this ideal behaviour (for instance 
induced by data artefacts) complicates the extraction of the surface point and decreases its quality. 

 

 
Figure 3: Zoom of a cross section of the volume data. The red ‘x’ marks an extracted surface point. 

The grey values are extracted from a line perpendicular to the surface and an area along the surface, 

marked in white. 

 

To evaluate the volume data in the proximity of the surface point, grey values along a line 
perpendicular to and in an area along the surface (see Figure 3) are extracted. In Figure 4, the basic 
principle of the determination of the LQV is portrayed on an exemplary CT scan of two touching steel 
spheres (diameters of 5 mm and 6 mm). As the scan was carried out with a tube voltage of 130 kV (a 
comparatively small value for CT scans of objects made of steel), severe beam hardening artefacts are 
present in the volume dataset. On the sides of the object, streaks are visible, although no material is 
present in these areas and the grey value is therefore supposed to be zero. At the contact point of the 
spheres, the grey values of the voxels are underestimated and a small gap is visible in the volume data. 
When a typical surface determination algorithm is applied on the dataset, these artefacts cause 
deviations in the resulting surface dataset. As in the volume dataset, a small gap is visible between the 
spheres. On the other hand, the streaks on the side of the spheres induce an incorrectly determined 
surface outside of the spheres (see Figure 4, top).  
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Figure 4: Basic principle of the determination of the LQV portrayed on a CT scan of two touching 

steel spheres (diameters 5 and 6 mm). The LQV is assessed by evaluating the sharpness and symmetry 

of the transition from low to high grey values on a line perpendicular to the surface. Areas with 

incorrect surface determination (C) are reliably identified as low-quality surface points and marked 

as red. Surface points with a high LQV (A) are represented as green. 
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When evaluating these grey values of the volume in an area with correct surface determination (A), it 
is visible that the transition from low to high grey values is symmetrical and of high contrast (although 
the cupping effect is still visible). For surface points in areas that are moderately affected by artefacts 
(B), the transition is still rather symmetrical and sharp, but the contrast is reduced. However, for 
incorrect determined surface points (C), it is clearly visible that the transition is unsharp and 
unsymmetrical. Elaborate algorithms are used to assess the quality of each surface point by evaluating 
the sharpness and the symmetry of the transition from low to high grey values. With increasing 
symmetry, the quality of a surface point is assessed as higher. The same applies to the sharpness, as 
for sharp transitions a high local quality is assumed. The results can be visualized by a colour-coded 
3-D representation of the surface dataset (see Figure 4, bottom). Surface points of high quality are 
coloured green, while points of moderate quality points are coloured yellow. Low-quality points, 
where significant errors of the surface extraction are expected, are marked as red. It is visible that this 
automated method reliably identifies the regions where the surface data cannot be trusted. 

For the calculation of the LQV for a CT-Scan of a hollow step cylinder (made of acrylic glass), an 
alternative approach is used. As depicted in Figure 3, the grey values from an area perpendicular to the 
normal vector of the surface are evaluated. For an ideal volume dataset, all the grey values in this area 
are constant, as this area is positioned right at the surface of the scanned object. Data artefacts like 
noise and streaks decrease the homogeneity of the extracted grey values. Additionally, in the 
proximity of edges, the homogeneity is low, as the area perpendicular to the normal vector does not 
correspond to the surface of the object in these cases. In Figure 5, it is visible that surface points near 
edges are identified as low quality. As edges are always rounded off in CT measurements, significant 
deviations in the surface dataset are expected in these regions. Additionally, the increased level of 
noise for the larger steps of the step cylinder (due to longer penetration lengths of the X-rays) results 
in a lower average LQV in these areas.  

 

 
Figure 5: Colour-coded representation of the LQV for a CT-scan of a hollow step cylinder (acrylic 

glass; height 45 mm, maximum diameter 42 mm). The LQV is assessed by evaluating the homogeneity 

of the grey values along the surface. Low quality surface points are identified at edges and for longer 

penetration lengths. 

 

In another CT scan, an aluminium cylinder was investigated. To emulate the effect of a fixture, several 
layers of adhesive tape were attached to the cylinder. In Figure 6, the colour-coded representation of 
the LQV of the CT-scan is depicted. The LQV is calculated by evaluating the homogeneity of the grey 
values along the surface and the symmetry perpendicular to the surface. Again, a low LQV is assigned 
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to surface points in the proximity of edges. It is also visible that the surface points, which are affected 
by the adhesive tape, are marked as of low quality. The colour-coded representation makes it possible 
to distinguish between the three layers of tape that were attached to the top side of the cylinder. 
 

 
Figure 6: Colour-coded representation of the LQV for a CT-scan of a cylinder (aluminium; height 

12 mm, diameter 18 mm) with several layers of adhesive tape attached. The LQV is assessed by 

evaluating the homogeneity of the grey values along the surface and the sharpness of the transition 

from low to high grey values on a line perpendicular to the surface 

 

3 Conclusion and outlook 

Three approaches to assess the Local Quality Value (LQV) of a surface point by evaluating the grey 
values in the proximity of the point are presented: 

 Evaluation of the sharpness of the transition from low to high grey values on a line 
perpendicular to the surface. For high quality surface points, a sharp transition is expected. 
This makes it possible to identify blurry data and data artefacts like streaks. 

 Evaluation of the symmetry of the transition from low to high grey values on a line 
perpendicular to the surface. For high quality surface points, a symmetrical transition is 
expected. This makes it possible to identify data artefacts and regions affected by the fixture. 

 Evaluation of the homogeneity of the grey values in an area perpendicular to the normal vector 
of the surface point. For high quality surface points, a constant grey value is expected. This 
makes it possible to identify noise and rounded edges. 

Using three exemplary CT scans, it is shown that these are promising approaches for an automated 
identification of areas, in which large deviations are to be expected in the surface data. In the examples 
investigated, these deviations are caused by beam hardening, large penetration lengths, rounded off 
edges and the fixture of the object on the rotational stage. In principle, local deviations due to other 
error sources are also identifiable. 

The method works with surface datasets extracted by arbitrary surface determination algorithms. As 
only the volume and surface datasets are required to calculate the LQV, no additional information like 
acquisition parameters of the CT system or a CAD model is needed. The colour-coded representation 
of the LQV allows a clear and comprehensive depiction of areas, where the measurement data cannot 
be trusted, a valuable tool for operating a CT system and interpreting the measurement results.  
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As the methods allows it to identify artefacts automatically and reliably, it can be used to increase the 
accuracy of dimensional measurements by lower weighting or deletion of uncertain surface points 
when associating geometries with the surface data. In other application, the LQV can be used as 
evaluation criterion for measurement task specific optimization of acquisition parameters and as input 
for the estimation of single point uncertainty. 
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