
pub fn nearest_neighbor(ctx: PathCreateContext)

-> Path {
 let PathCreateContext {

 action, dim, points: values, norm

 } = ctx;
 let mut visited = HashSet::new();

 let mut path = Path::try_new(

 vec![values[0].clone()],

 dim).expect("invalid dimension");

 while path.len() != values.len() {

 let last = &path[path.len() - 1];

 visited.insert(last.clone());

 let min = values

 .iter()

 .filter(|&point|

 !visited.contains(point))

 .min_by_key(|point|

 point.comparable_dist(

 last, norm

)

)

 .unwrap();

 path.push(min.clone());

 action.send(

 PathCreation::from_path(

 path.clone()

).progress(path.len() as f32

 / values.len() as f32),

);
 }
 path
}

Die perfekte
Reihenfolge
Sortierung mehrdimensionaler Objekte als
graphentheoretisches und algorithmisches Problem

Bücher nach der Farbe des Buchrückens zu sortieren und den
kürzesten Weg zu finden, der verschiedene Orte verbindet,
haben eines gemeinsam: mehrdimensionale Sortierung. Die
Arbeit zeigt, dass die eindimensionale Sortierung ein Spezialfall
n-dimensionaler Sortierung ist, äquivalent zum NP-schweren
Problem des kürzesten Hamilton-Pfads. Eine interaktive
Webanwendung veranschaulicht den Beweis und erlaubt es,
verschiedene mehrdimensionale Objekte mit unterschiedlichen
Algorithmen selbst zu sortieren.

Leo Blume (*2008)
Gymnasium Essen-Werden

Eingang der Arbeit:
10.9.2024

Arbeit angenommen:
2.2.2025

DIE JUNGFORSCHERIN

©
 S

ti
ft

u
n

g
 J

u
g

en
d

 f
o

rs
ch

t
e.

V
.

Mathematik &
Informatik

Paper 03 / 2025 doi: 10.7795/320.202503

Jungforscher*Innen publizieren
online |   peer reviewedpeer reviewed   |  original

Verlag:
Physikalisch-
Technische
Bundesanstalt

doi: 10.7795/320.202503

Die perfekte
Reihenfolge
Sortierung mehrdimensionaler Objekte als
graphentheoretisches und algorithmisches Problem

1.	 Einleitung, Fragestellung
und Vorgehensweise

Wie kann man Bücher nach Farben sortieren? Diese Frage
stellte ich mir an einem regnerischen Spätsommertag, wäh-
rend ich mein Zimmer aufräumte und feststellte, dass meine
Mathematikbücher kaum nach einer anderen Kategorie ein-
zuteilen waren.

Die eindimensionale Sortierung, die auf einem Vergleich von
Elementen basiert, funktioniert nicht – die Frage, ob Oliv-
grün größer als Karmesinrot ist, ergibt keinen Sinn. Zu-
nächst versuchte ich, die Farben numerisch einzuteilen: nach
ihrer Helligkeit oder ihrem Buntton. Beide Methoden erziel-
ten nicht das gewünschte Ergebnis: So könnte im ersten Fall
ein Rot direkt zwischen zwei subtil unterschiedlichen Grün-
tönen stehen, während im zweiten Fall ein Pastellblau zwi-
schen Laubgrün und Bordeauxviolett (zwei sehr dunkle Far-
ben) eingeordnet wurde.

Mit dem Ziel, das Regal dennoch farblich ästhetisch zu sortie-
ren, was (für mich) bedeutet, Farbkontraste zwischen neben-
einanderstehenden Büchern zu minimieren, war die Idee für
ein Projekt geboren – die vergleichsbasierte, d.h. eindimensi-

onale Sortierung auf mehrdimensionale
Objekte wie Farben zu erweitern und zu
generalisieren. In diesem Projekt gehe
ich den Fragestellungen nach, inwiefern
mehrdimensionale Sortierung möglich
und effizient lösbar ist, welche Rolle da-
bei die Graphentheorie spielt und wel-
che Anwendungen sie neben dem (unter
dem Gesichtspunkt der Kontrastmini-
mierung) ästhetischsten Bücherregal
hat (siehe Abb. 1).

Dabei gehe ich zu Beginn meiner Arbeit
zunächst auf die theoretischen Grund-
lagen der mehrdimensionalen Sortie-
rung ein (Kap. 2.1), beweise, dass es
sich bei der angestrebten um eine Ge-
neralisierung der bekannten eindimen-
sionalen Sortierung handelt (Kap. 2.2)
und erläutere die äquivalente graphen-
theoretische Darstellung des Problems
(Kap. 3). Nach der Präsentation der al-
gorithmischen Komplexität (Kap. 4.1)
und der implementierten Algorithmen
stelle ich im Anschluss meine Entwick-
lung einer interaktiven Webanwen-
dung vor (Kap. 5), in der man selbst
verschiedene n-dimensionale Objekte
sortieren kann – von abstrakten Vekto-
ren (Kap. 5.4) über geografische Punk-
te (Kap. 5.5) bis hin zu visuellen Far-

ben (Kap. 5.6). Diese Webanwendung visualisiert zudem die
Funktionsweise der implementierten Algorithmen anschau-
lich und ermöglicht die praktische Sortierung auch größerer
Datenmengen.

2.	 Beweisführung

In diesem Abschnitt soll bewiesen werden, dass es sich bei der
im Folgenden definierten Kettensortierung um eine Genera-
lisierung der vergleichsbasierten Sortierung auf mehrere Di-
mensionen handelt. Dabei werden zunächst auf der Zerme-
lo-Fraenkel-Mengenlehre ([39],[92]) beruhende Definitionen
formuliert und im zweiten Teil wird mittels vollständiger In-
duktion [72] ein Beweis aufgestellt. Dieser Beweis liefert die
Grundlage für die anschließende Ausarbeitung, da sich die
anschließend ausgearbeiteten Verfahren ohne ihn nicht als n-
dimensionale Sortierung, sondern nur als beliebigen andere
Algorithmus auf Listen von Vektoren bezeichnen könnten.

2.1	 Definitionen

Eine Liste der Länge ​n  ∈  ℕ​ ist zum Zwecke dieser Arbeit
eine injektive Abbildung ​l,​ die als Eingabe eine natürliche
Zahl ​i​ (den Index) im Definitionsbereich ​​​{​​1, ..., n​}​​,​​ folglich als ​

Informatik | Seite 2

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-01.jpg

JUNGE wissenschaft 15 / 18 | Seite 3JUNGE wissenschaft 03 / 25 | Seite 3

doi: 10.7795/320.202503

a) b)

Abb. 1: Meine Mathematikbücher: links lexikographisch nach Nachname der Autor*innen,
rechts nach perzeptueller Farbe mittels Simulated Annealing (Kap. 4.4.5) sortiert

𝔻​ bezeichnet, erhält und ein Element der Eingabemenge U
zurückgibt. Der Wert von ​l​ an der Stelle i wird als ​​l​ i​​​ notiert.
Der Teilabschnitt von ​p bis q​, ​p, q  ∈  𝔻, p  ≤  q​ beschreibt die
 ​​​(​​q − p + 1​)​​​​-lange Liste ​​[​l​ p​​, ​l​ p+1​​, ....​l​ q−1​​, ​l​ q​​]​​und wird als ​​l​ p:q​​​ notiert.
Die Bildmenge Y meint die ungeordnete Menge aller in ​l​ vor-
kommenden Elemente, durch Injektivität gilt ​​|Y|​  =  ​|l|​​.

Das Vertauschen „Swap“ meint:Swap
meint:

Swap(𝑙𝑙,𝑚𝑚, 𝑛𝑛)𝑖𝑖 ≔ {
𝑙𝑙𝑛𝑛 falls 𝑖𝑖=𝑚𝑚
𝑙𝑙𝑚𝑚 falls 𝑖𝑖=𝑛𝑛
𝑙𝑙𝑖𝑖 sonst

Die Menge der Permutationen

Perm
einer Liste

𝑙𝑙
wird definiert als:

Perm(𝑙𝑙) ≔ {𝑙𝑙′ | 𝑙𝑙′𝑖𝑖 = 𝑙𝑙𝜎𝜎(𝑖𝑖), 𝜎𝜎 : 𝔻𝔻 → 𝔻𝔻 bijektiv} (1)

Eine Liste

𝑙𝑙
, deren Zielmenge Teil einer strikten Totalordnung

(𝕋𝕋,>)
mit Ordnungsrelation

(>)
ist, heißt genau dann sortiert, wenn gilt:

∀𝑖𝑖 ∈ 𝔻𝔻 ∖ {𝑛𝑛} : 𝑙𝑙𝑖𝑖+1 > 𝑙𝑙𝑖𝑖 (2)
Die Kettenlänge

𝑑𝑑𝕃𝕃(𝑙𝑙)
einer Liste

𝑙𝑙
, deren Zielmenge Teil eines metrischen Raums

(𝕋𝕋, 𝑑𝑑)
mit Distanzfunktion

𝑑𝑑
ist, wird definiert durch:

𝑑𝑑𝕃𝕃(𝑙𝑙) ≔ ∑
𝑛𝑛−1

𝑖𝑖=1
𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖+1) (3)

Eine solche Liste wird als kettensortiert bezeichnet, wenn gilt:

𝑑𝑑𝕃𝕃(𝑙𝑙) = min
𝑙𝑙′∈ Perm(𝑙𝑙)

𝑑𝑑𝕃𝕃(𝑙𝑙′) (4)

2.2. Beweis: Jede sortierte Liste ist kettensortiert
Neben der abbildenden Definition der Liste kann eine Liste reeller Zahlen (also

𝑈𝑈 ⊆ ℝ
) äquivalent auch induktiv definiert werden. Hierbei repräsentiere

2

Die Menge der Permutationen „Perm“ einer
Liste ​l​ wird definiert als:

Swap
meint:

Swap(𝑙𝑙,𝑚𝑚, 𝑛𝑛)𝑖𝑖 ≔ {
𝑙𝑙𝑛𝑛 falls 𝑖𝑖=𝑚𝑚
𝑙𝑙𝑚𝑚 falls 𝑖𝑖=𝑛𝑛
𝑙𝑙𝑖𝑖 sonst

Die Menge der Permutationen

Perm
einer Liste

𝑙𝑙
wird definiert als:

Perm(𝑙𝑙) ≔ {𝑙𝑙′ | 𝑙𝑙′𝑖𝑖 = 𝑙𝑙𝜎𝜎(𝑖𝑖), 𝜎𝜎 : 𝔻𝔻 → 𝔻𝔻 bijektiv} (1)

Eine Liste

𝑙𝑙
, deren Zielmenge Teil einer strikten Totalordnung

(𝕋𝕋,>)
mit Ordnungsrelation

(>)
ist, heißt genau dann sortiert, wenn gilt:

∀𝑖𝑖 ∈ 𝔻𝔻 ∖ {𝑛𝑛} : 𝑙𝑙𝑖𝑖+1 > 𝑙𝑙𝑖𝑖 (2)
Die Kettenlänge

𝑑𝑑𝕃𝕃(𝑙𝑙)
einer Liste

𝑙𝑙
, deren Zielmenge Teil eines metrischen Raums

(𝕋𝕋, 𝑑𝑑)
mit Distanzfunktion

𝑑𝑑
ist, wird definiert durch:

𝑑𝑑𝕃𝕃(𝑙𝑙) ≔ ∑
𝑛𝑛−1

𝑖𝑖=1
𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖+1) (3)

Eine solche Liste wird als kettensortiert bezeichnet, wenn gilt:

𝑑𝑑𝕃𝕃(𝑙𝑙) = min
𝑙𝑙′∈ Perm(𝑙𝑙)

𝑑𝑑𝕃𝕃(𝑙𝑙′) (4)

2.2. Beweis: Jede sortierte Liste ist kettensortiert
Neben der abbildenden Definition der Liste kann eine Liste reeller Zahlen (also

𝑈𝑈 ⊆ ℝ
) äquivalent auch induktiv definiert werden. Hierbei repräsentiere

2

	 (1)

Eine Liste ​l​, deren Zielmenge Teil einer strikten Totalord-
nung ​​​(​​T, >​)​​​​ mit Ordnungsrelation (>) ist, heißt genau dann
sortiert, wenn gilt:

Swap
meint:

Swap(𝑙𝑙,𝑚𝑚, 𝑛𝑛)𝑖𝑖 ≔ {
𝑙𝑙𝑛𝑛 falls 𝑖𝑖=𝑚𝑚
𝑙𝑙𝑚𝑚 falls 𝑖𝑖=𝑛𝑛
𝑙𝑙𝑖𝑖 sonst

Die Menge der Permutationen

Perm
einer Liste

𝑙𝑙
wird definiert als:

Perm(𝑙𝑙) ≔ {𝑙𝑙′ | 𝑙𝑙′𝑖𝑖 = 𝑙𝑙𝜎𝜎(𝑖𝑖), 𝜎𝜎 : 𝔻𝔻 → 𝔻𝔻 bijektiv} (1)

Eine Liste

𝑙𝑙
, deren Zielmenge Teil einer strikten Totalordnung

(𝕋𝕋,>)
mit Ordnungsrelation

(>)
ist, heißt genau dann sortiert, wenn gilt:

∀𝑖𝑖 ∈ 𝔻𝔻 ∖ {𝑛𝑛} : 𝑙𝑙𝑖𝑖+1 > 𝑙𝑙𝑖𝑖 (2)
Die Kettenlänge

𝑑𝑑𝕃𝕃(𝑙𝑙)
einer Liste

𝑙𝑙
, deren Zielmenge Teil eines metrischen Raums

(𝕋𝕋, 𝑑𝑑)
mit Distanzfunktion

𝑑𝑑
ist, wird definiert durch:

𝑑𝑑𝕃𝕃(𝑙𝑙) ≔ ∑
𝑛𝑛−1

𝑖𝑖=1
𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖+1) (3)

Eine solche Liste wird als kettensortiert bezeichnet, wenn gilt:

𝑑𝑑𝕃𝕃(𝑙𝑙) = min
𝑙𝑙′∈ Perm(𝑙𝑙)

𝑑𝑑𝕃𝕃(𝑙𝑙′) (4)

2.2. Beweis: Jede sortierte Liste ist kettensortiert
Neben der abbildenden Definition der Liste kann eine Liste reeller Zahlen (also

𝑈𝑈 ⊆ ℝ
) äquivalent auch induktiv definiert werden. Hierbei repräsentiere

2

	 (2)

Die Kettenlänge ​​​d​ 𝕃​​​(​​l​)​​​​ einer Liste ​l​, deren Zielmenge Teil
eines metrischen Raums ​​​(​​T, d​)​​​​ mit Distanzfunktion ​d​ ist,
wird definiert durch:

Swap
meint:

Swap(𝑙𝑙,𝑚𝑚, 𝑛𝑛)𝑖𝑖 ≔ {
𝑙𝑙𝑛𝑛 falls 𝑖𝑖=𝑚𝑚
𝑙𝑙𝑚𝑚 falls 𝑖𝑖=𝑛𝑛
𝑙𝑙𝑖𝑖 sonst

Die Menge der Permutationen

Perm
einer Liste

𝑙𝑙
wird definiert als:

Perm(𝑙𝑙) ≔ {𝑙𝑙′ | 𝑙𝑙′𝑖𝑖 = 𝑙𝑙𝜎𝜎(𝑖𝑖), 𝜎𝜎 : 𝔻𝔻 → 𝔻𝔻 bijektiv} (1)

Eine Liste

𝑙𝑙
, deren Zielmenge Teil einer strikten Totalordnung

(𝕋𝕋,>)
mit Ordnungsrelation

(>)
ist, heißt genau dann sortiert, wenn gilt:

∀𝑖𝑖 ∈ 𝔻𝔻 ∖ {𝑛𝑛} : 𝑙𝑙𝑖𝑖+1 > 𝑙𝑙𝑖𝑖 (2)
Die Kettenlänge

𝑑𝑑𝕃𝕃(𝑙𝑙)
einer Liste

𝑙𝑙
, deren Zielmenge Teil eines metrischen Raums

(𝕋𝕋, 𝑑𝑑)
mit Distanzfunktion

𝑑𝑑
ist, wird definiert durch:

𝑑𝑑𝕃𝕃(𝑙𝑙) ≔ ∑
𝑛𝑛−1

𝑖𝑖=1
𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖+1) (3)

Eine solche Liste wird als kettensortiert bezeichnet, wenn gilt:

𝑑𝑑𝕃𝕃(𝑙𝑙) = min
𝑙𝑙′∈ Perm(𝑙𝑙)

𝑑𝑑𝕃𝕃(𝑙𝑙′) (4)

2.2. Beweis: Jede sortierte Liste ist kettensortiert
Neben der abbildenden Definition der Liste kann eine Liste reeller Zahlen (also

𝑈𝑈 ⊆ ℝ
) äquivalent auch induktiv definiert werden. Hierbei repräsentiere

2

	 (3)

Eine solche Liste wird als kettensortiert bezeichnet, wenn gilt:

Swap
meint:

Swap(𝑙𝑙,𝑚𝑚, 𝑛𝑛)𝑖𝑖 ≔ {
𝑙𝑙𝑛𝑛 falls 𝑖𝑖=𝑚𝑚
𝑙𝑙𝑚𝑚 falls 𝑖𝑖=𝑛𝑛
𝑙𝑙𝑖𝑖 sonst

Die Menge der Permutationen

Perm
einer Liste

𝑙𝑙
wird definiert als:

Perm(𝑙𝑙) ≔ {𝑙𝑙′ | 𝑙𝑙′𝑖𝑖 = 𝑙𝑙𝜎𝜎(𝑖𝑖), 𝜎𝜎 : 𝔻𝔻 → 𝔻𝔻 bijektiv} (1)

Eine Liste

𝑙𝑙
, deren Zielmenge Teil einer strikten Totalordnung

(𝕋𝕋,>)
mit Ordnungsrelation

(>)
ist, heißt genau dann sortiert, wenn gilt:

∀𝑖𝑖 ∈ 𝔻𝔻 ∖ {𝑛𝑛} : 𝑙𝑙𝑖𝑖+1 > 𝑙𝑙𝑖𝑖 (2)
Die Kettenlänge

𝑑𝑑𝕃𝕃(𝑙𝑙)
einer Liste

𝑙𝑙
, deren Zielmenge Teil eines metrischen Raums

(𝕋𝕋, 𝑑𝑑)
mit Distanzfunktion

𝑑𝑑
ist, wird definiert durch:

𝑑𝑑𝕃𝕃(𝑙𝑙) ≔ ∑
𝑛𝑛−1

𝑖𝑖=1
𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖+1) (3)

Eine solche Liste wird als kettensortiert bezeichnet, wenn gilt:

𝑑𝑑𝕃𝕃(𝑙𝑙) = min
𝑙𝑙′∈ Perm(𝑙𝑙)

𝑑𝑑𝕃𝕃(𝑙𝑙′) (4)

2.2. Beweis: Jede sortierte Liste ist kettensortiert
Neben der abbildenden Definition der Liste kann eine Liste reeller Zahlen (also

𝑈𝑈 ⊆ ℝ
) äquivalent auch induktiv definiert werden. Hierbei repräsentiere

2

	 (4)

2.2	 Beweis: Jede sortierte
Liste ist kettensortiert

Neben der abbildenden Definition der Liste kann eine Liste
reeller Zahlen (also ​U  ⊆  ℝ​) äquivalent auch induktiv defi-

niert werden. Hierbei repräsentiere 𝕃 die Menge aller solcher
Listen, ​ε​ die leere Liste mit Länge 0. ​⨁​ bezeichne die struktu-
relle Konkatenation zweier Listen bzw. einer Liste und einem
Element, welches als einelementige Liste interpretiert wird.
Die Definition erfolgt wie folgt:

	 (5)

𝕃𝕃
die Menge aller solcher Listen,

𝜀𝜀
die leere Liste mit Länge 0.

⊕
bezeichne die strukturelle Konkatenation zweier Listen bzw. einer Liste und einem Element, welches als einelementige Liste interpretiert wird. Die Definition erfolgt wie folgt:

𝜀𝜀 ∈ 𝕃𝕃 (5)

𝑙𝑙 ∈ 𝕃𝕃 ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖

⇒ ∀𝑙𝑙𝑒𝑒 ∈ Ins(𝑙𝑙, 𝑒𝑒) : 𝑙𝑙𝑒𝑒 ∈ 𝕃𝕃
(6)

Dabei wird die Einfügemenge

Ins
definiert als:

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙𝑒𝑒 | 𝑛𝑛 = |𝑙𝑙|, 𝑖𝑖 ∈ [1, 𝑛𝑛 + 1], 𝑙𝑙𝑒𝑒 = 𝑙𝑙1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙𝑖𝑖:𝑛𝑛} (7)
Es gibt keine weiteren Listen.

Die Menge der sortierten Listen

𝕃𝕃sort
bezeichnet dabei:

𝜀𝜀 ∈ 𝕃𝕃sort (8)

𝑙𝑙 ∈ 𝕃𝕃sort ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖 ⇔ 𝑙𝑙 ⊕ 𝑒𝑒 ∈ 𝕃𝕃sort (9)
(

𝑒𝑒 > 𝑙𝑙𝑛𝑛
wäre an dieser Stelle äquivalent, jedoch wird hier, um die Definitionen analog zu halten, die längere Variante gewählt.)

Dabei gilt:

𝕃𝕃sort ⊂ 𝕃𝕃
, da es sich bei der Konstruktion von

𝕃𝕃sort
um einen Spezialfall der von

𝕃𝕃
handelt, bei der

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙 ⊕ 𝑒𝑒}
.

Nebensatz. Jede Liste mit total geordneter Zielmenge nach Abschnitt 2.1 ist Element von

𝕃𝕃
.

Beweis. Man betrachte eine abbildende Liste

𝑙𝑙
. Aus dieser konstruiere man nun die

3

	 (6)

Dabei wird die Einfügemenge „Ins“ definiert als:

𝕃𝕃
die Menge aller solcher Listen,

𝜀𝜀
die leere Liste mit Länge 0.

⊕
bezeichne die strukturelle Konkatenation zweier Listen bzw. einer Liste und einem Element, welches als einelementige Liste interpretiert wird. Die Definition erfolgt wie folgt:

𝜀𝜀 ∈ 𝕃𝕃 (5)

𝑙𝑙 ∈ 𝕃𝕃 ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖

⇒ ∀𝑙𝑙𝑒𝑒 ∈ Ins(𝑙𝑙, 𝑒𝑒) : 𝑙𝑙𝑒𝑒 ∈ 𝕃𝕃
(6)

Dabei wird die Einfügemenge

Ins
definiert als:

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙𝑒𝑒 | 𝑛𝑛 = |𝑙𝑙|, 𝑖𝑖 ∈ [1, 𝑛𝑛 + 1], 𝑙𝑙𝑒𝑒 = 𝑙𝑙1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙𝑖𝑖:𝑛𝑛} (7)
Es gibt keine weiteren Listen.

Die Menge der sortierten Listen

𝕃𝕃sort
bezeichnet dabei:

𝜀𝜀 ∈ 𝕃𝕃sort (8)

𝑙𝑙 ∈ 𝕃𝕃sort ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖 ⇔ 𝑙𝑙 ⊕ 𝑒𝑒 ∈ 𝕃𝕃sort (9)
(

𝑒𝑒 > 𝑙𝑙𝑛𝑛
wäre an dieser Stelle äquivalent, jedoch wird hier, um die Definitionen analog zu halten, die längere Variante gewählt.)

Dabei gilt:

𝕃𝕃sort ⊂ 𝕃𝕃
, da es sich bei der Konstruktion von

𝕃𝕃sort
um einen Spezialfall der von

𝕃𝕃
handelt, bei der

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙 ⊕ 𝑒𝑒}
.

Nebensatz. Jede Liste mit total geordneter Zielmenge nach Abschnitt 2.1 ist Element von

𝕃𝕃
.

Beweis. Man betrachte eine abbildende Liste

𝑙𝑙
. Aus dieser konstruiere man nun die

3

𝕃𝕃
die Menge aller solcher Listen,

𝜀𝜀
die leere Liste mit Länge 0.

⊕
bezeichne die strukturelle Konkatenation zweier Listen bzw. einer Liste und einem Element, welches als einelementige Liste interpretiert wird. Die Definition erfolgt wie folgt:

𝜀𝜀 ∈ 𝕃𝕃 (5)

𝑙𝑙 ∈ 𝕃𝕃 ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖

⇒ ∀𝑙𝑙𝑒𝑒 ∈ Ins(𝑙𝑙, 𝑒𝑒) : 𝑙𝑙𝑒𝑒 ∈ 𝕃𝕃
(6)

Dabei wird die Einfügemenge

Ins
definiert als:

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙𝑒𝑒 | 𝑛𝑛 = |𝑙𝑙|, 𝑖𝑖 ∈ [1, 𝑛𝑛 + 1], 𝑙𝑙𝑒𝑒 = 𝑙𝑙1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙𝑖𝑖:𝑛𝑛} (7)
Es gibt keine weiteren Listen.

Die Menge der sortierten Listen

𝕃𝕃sort
bezeichnet dabei:

𝜀𝜀 ∈ 𝕃𝕃sort (8)

𝑙𝑙 ∈ 𝕃𝕃sort ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖 ⇔ 𝑙𝑙 ⊕ 𝑒𝑒 ∈ 𝕃𝕃sort (9)
(

𝑒𝑒 > 𝑙𝑙𝑛𝑛
wäre an dieser Stelle äquivalent, jedoch wird hier, um die Definitionen analog zu halten, die längere Variante gewählt.)

Dabei gilt:

𝕃𝕃sort ⊂ 𝕃𝕃
, da es sich bei der Konstruktion von

𝕃𝕃sort
um einen Spezialfall der von

𝕃𝕃
handelt, bei der

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙 ⊕ 𝑒𝑒}
.

Nebensatz. Jede Liste mit total geordneter Zielmenge nach Abschnitt 2.1 ist Element von

𝕃𝕃
.

Beweis. Man betrachte eine abbildende Liste

𝑙𝑙
. Aus dieser konstruiere man nun die

3

	 (7)

Es gibt keine weiteren Listen.

Die Menge der sortierten Listen 𝕃sort bezeichnet dabei:

𝕃𝕃
die Menge aller solcher Listen,

𝜀𝜀
die leere Liste mit Länge 0.

⊕
bezeichne die strukturelle Konkatenation zweier Listen bzw. einer Liste und einem Element, welches als einelementige Liste interpretiert wird. Die Definition erfolgt wie folgt:

𝜀𝜀 ∈ 𝕃𝕃 (5)

𝑙𝑙 ∈ 𝕃𝕃 ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖

⇒ ∀𝑙𝑙𝑒𝑒 ∈ Ins(𝑙𝑙, 𝑒𝑒) : 𝑙𝑙𝑒𝑒 ∈ 𝕃𝕃
(6)

Dabei wird die Einfügemenge

Ins
definiert als:

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙𝑒𝑒 | 𝑛𝑛 = |𝑙𝑙|, 𝑖𝑖 ∈ [1, 𝑛𝑛 + 1], 𝑙𝑙𝑒𝑒 = 𝑙𝑙1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙𝑖𝑖:𝑛𝑛} (7)
Es gibt keine weiteren Listen.

Die Menge der sortierten Listen

𝕃𝕃sort
bezeichnet dabei:

𝜀𝜀 ∈ 𝕃𝕃sort (8)

𝑙𝑙 ∈ 𝕃𝕃sort ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖 ⇔ 𝑙𝑙 ⊕ 𝑒𝑒 ∈ 𝕃𝕃sort (9)
(

𝑒𝑒 > 𝑙𝑙𝑛𝑛
wäre an dieser Stelle äquivalent, jedoch wird hier, um die Definitionen analog zu halten, die längere Variante gewählt.)

Dabei gilt:

𝕃𝕃sort ⊂ 𝕃𝕃
, da es sich bei der Konstruktion von

𝕃𝕃sort
um einen Spezialfall der von

𝕃𝕃
handelt, bei der

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙 ⊕ 𝑒𝑒}
.

Nebensatz. Jede Liste mit total geordneter Zielmenge nach Abschnitt 2.1 ist Element von

𝕃𝕃
.

Beweis. Man betrachte eine abbildende Liste

𝑙𝑙
. Aus dieser konstruiere man nun die

3

	 (8)

𝕃𝕃
die Menge aller solcher Listen,

𝜀𝜀
die leere Liste mit Länge 0.

⊕
bezeichne die strukturelle Konkatenation zweier Listen bzw. einer Liste und einem Element, welches als einelementige Liste interpretiert wird. Die Definition erfolgt wie folgt:

𝜀𝜀 ∈ 𝕃𝕃 (5)

𝑙𝑙 ∈ 𝕃𝕃 ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖

⇒ ∀𝑙𝑙𝑒𝑒 ∈ Ins(𝑙𝑙, 𝑒𝑒) : 𝑙𝑙𝑒𝑒 ∈ 𝕃𝕃
(6)

Dabei wird die Einfügemenge

Ins
definiert als:

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙𝑒𝑒 | 𝑛𝑛 = |𝑙𝑙|, 𝑖𝑖 ∈ [1, 𝑛𝑛 + 1], 𝑙𝑙𝑒𝑒 = 𝑙𝑙1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙𝑖𝑖:𝑛𝑛} (7)
Es gibt keine weiteren Listen.

Die Menge der sortierten Listen

𝕃𝕃sort
bezeichnet dabei:

𝜀𝜀 ∈ 𝕃𝕃sort (8)

𝑙𝑙 ∈ 𝕃𝕃sort ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖 ⇔ 𝑙𝑙 ⊕ 𝑒𝑒 ∈ 𝕃𝕃sort (9)
(

𝑒𝑒 > 𝑙𝑙𝑛𝑛
wäre an dieser Stelle äquivalent, jedoch wird hier, um die Definitionen analog zu halten, die längere Variante gewählt.)

Dabei gilt:

𝕃𝕃sort ⊂ 𝕃𝕃
, da es sich bei der Konstruktion von

𝕃𝕃sort
um einen Spezialfall der von

𝕃𝕃
handelt, bei der

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙 ⊕ 𝑒𝑒}
.

Nebensatz. Jede Liste mit total geordneter Zielmenge nach Abschnitt 2.1 ist Element von

𝕃𝕃
.

Beweis. Man betrachte eine abbildende Liste

𝑙𝑙
. Aus dieser konstruiere man nun die

3

𝕃𝕃
die Menge aller solcher Listen,

𝜀𝜀
die leere Liste mit Länge 0.

⊕
bezeichne die strukturelle Konkatenation zweier Listen bzw. einer Liste und einem Element, welches als einelementige Liste interpretiert wird. Die Definition erfolgt wie folgt:

𝜀𝜀 ∈ 𝕃𝕃 (5)

𝑙𝑙 ∈ 𝕃𝕃 ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖

⇒ ∀𝑙𝑙𝑒𝑒 ∈ Ins(𝑙𝑙, 𝑒𝑒) : 𝑙𝑙𝑒𝑒 ∈ 𝕃𝕃
(6)

Dabei wird die Einfügemenge

Ins
definiert als:

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙𝑒𝑒 | 𝑛𝑛 = |𝑙𝑙|, 𝑖𝑖 ∈ [1, 𝑛𝑛 + 1], 𝑙𝑙𝑒𝑒 = 𝑙𝑙1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙𝑖𝑖:𝑛𝑛} (7)
Es gibt keine weiteren Listen.

Die Menge der sortierten Listen

𝕃𝕃sort
bezeichnet dabei:

𝜀𝜀 ∈ 𝕃𝕃sort (8)

𝑙𝑙 ∈ 𝕃𝕃sort ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖 ⇔ 𝑙𝑙 ⊕ 𝑒𝑒 ∈ 𝕃𝕃sort (9)
(

𝑒𝑒 > 𝑙𝑙𝑛𝑛
wäre an dieser Stelle äquivalent, jedoch wird hier, um die Definitionen analog zu halten, die längere Variante gewählt.)

Dabei gilt:

𝕃𝕃sort ⊂ 𝕃𝕃
, da es sich bei der Konstruktion von

𝕃𝕃sort
um einen Spezialfall der von

𝕃𝕃
handelt, bei der

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙 ⊕ 𝑒𝑒}
.

Nebensatz. Jede Liste mit total geordneter Zielmenge nach Abschnitt 2.1 ist Element von

𝕃𝕃
.

Beweis. Man betrachte eine abbildende Liste

𝑙𝑙
. Aus dieser konstruiere man nun die

3

	 (9)

​​​(​​e  >  ​l​ n​​​​ wäre an dieser Stelle äquivalent, jedoch wird hier, um
die Definitionen analog zu halten, die längere Variante ge-
wählt.)

Dabei gilt: 𝕃sort ​⊂ 𝕃​, da es sich bei der Konstruktion von 𝕃sort

um einen Spezialfall von 𝕃 handelt, bei der ​​Ins​(​​l, e​)​​ : = ​{l ⨁ e}​.​​

Nebensatz. Jede Liste mit total geordneter Zielmenge nach
Kap. 2.1 ist Element von 𝕃.

Beweis. Man betrachte eine abbildende Liste ​l​. Aus dieser
konstruiere man nun die ​L​-Liste, ​w​ genannt, iterativ. So be-
ginne man mit der leeren Liste ​ε​ (nach (5) ​∈​ 𝕃) und betrach-
te stets das kleinste nicht betrachtete Element ​e​ zusammen
mit seinem Index ​i​. Existiert in ​l​ ein ​j  <  i,​ sodass ​​l​ j​​  <  ​l​ i​​​, so
ist ​​l​ j​​​ bereits in ​w​ und ​e​ wird am darauffolgenden Index ein-

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-01.jpg

doi: 10.7795/320.202503

gesetzt, ansonsten am Index ​0​. Da stets ​∀ i  ∈  ​𝔻​ w​​ :  e  >  ​w​ i​​​
(sofern ​w​ noch nicht ​i​ enthält) und ​e​ an einer Stelle eingefügt
(Ins) wird, ist (6) erfüllt und ​w​ eine Liste; da durch eindeutige
Zuordnung alle Elemente enthalten sind und die Reihenfolge
beibehalten wurde, teilen ​w​ und ​l​ alle Eigenschaften und sind
damit identisch. █

Somit ist die Konstruierbarkeit aus (5) und (6) als Eigenschaft
aller Listen festzuhalten.

Satz. Jede sortierte Liste reeller Zahlen ist unter der Betrags-
metrik kettensortiert.

Beweis. Die Definition anwendend, bedeutet dies:

𝑤𝑤
eine Liste; da durch eindeutige Zuordnung alle Elemente enthalten sind und die Reihenfolge beibehalten wurde, teilen

𝑤𝑤
und

𝑙𝑙
alle Eigenschaften und sind damit identisch.

∎
Somit ist die Konstruierbarkeit aus (5) und (6) als Eigenschaft aller Listen festzuhalten.

Satz. Jede sortierte Liste reeller Zahlen ist unter der Betragsmetrik kettensortiert.

Beweis. Die Definition anwendend, bedeutet dies:

∀𝑙𝑙 ∈ 𝕃𝕃sort : 𝑑𝑑𝕃𝕃(𝑙𝑙) = min
𝑙𝑙′∈ Perm(𝑙𝑙)

𝑑𝑑𝕃𝕃(𝑙𝑙′) (10)

Da das Minimum einer Menge das Element bedeutet, für das kein kleineres Element existiert, ist eine gleichwertige Formulierung, dass für keine sortierte Liste eine Permutation dieser Liste existiert, die eine kleinere Kettenlänge hat. Dabei ist die Metrik

𝑑𝑑(𝑎𝑎, 𝑏𝑏) = |𝑎𝑎 − 𝑏𝑏|
.

Induktionsbeginn:

• Länge 0: Die einzige Liste der Länge 0 ist

𝜀𝜀
, somit ist der Definitionsbereich

{}
. Nach (8) ist

𝜀𝜀 ∈ 𝕃𝕃sort
. Somit kann keine Funktion eine Änderung der Elemente vornehmen (da keine solchen existieren), und jede sortierte Liste der Länge 0 ist sortiert und kettensortiert.

• Länge 1: Eine sortierte Liste

𝑙𝑙
der Länge 1 besteht aus einem Element, also

𝑙𝑙 = 𝑙𝑙1
. Der Definitionsbereich ist

{1}
, die einzige Permutationsfunktion

𝜎𝜎
ist

{(1, 1)}
(Der Kürze halber werden Funktionen in diesem Abschnitt ihrer Definition zufolge als Mengen notiert.) Da

∀𝑖𝑖 : 𝜎𝜎(𝑖𝑖) = 𝑖𝑖
(Identität), wird keine Änderung der Elemente vorgenommen. Somit existiert keine Liste mit kürzerer Kettenlänge und jede sortierte Liste der Länge 1 ist kettensortiert.

• Länge 2: Jede sortierte Liste

𝑙𝑙
der Länge 2 erfüllt

𝑙𝑙 = 𝑙𝑙1 ⊕ 𝑙𝑙2
, wobei

5

 	 (10)

Da das Minimum einer Menge das Element bedeutet, für das
kein kleineres Element existiert, ist eine gleichwertige Formu-
lierung, dass für keine sortierte Liste eine Permutation dieser
Liste existiert, die eine kleinere Kettenlänge hat. Dabei ist die
Metrik ​​d​(​​a, b​)​​  =  ​|a − b|​​​.

Induktionsbeginn:
Länge 0: Die einzige Liste der Länge 0 ist ​ε​, somit ist der De-
finitionsbereich ​​​{​​​}​​​​. Nach (8) ist ​ε  ∈​ 𝕃sort. Somit kann keine
Funktion eine Änderung der Elemente vornehmen (da kei-
ne solchen existieren), und jede sortierte Liste der Länge 0 ist
sortiert und kettensortiert.

Länge 1: Eine sortierte Liste ​l​ der Länge 1 besteht aus einem
Element, also ​l  =  ​l​ 1​​​. Der Definitionsbereich ist ​​​{​​1​}​​,​​die einzige
Permutationsfunktion ​σ​ ist ​​​{​​​(​​1,1​)​​​}​​​​. (Der Kürze halber werden
Funktionen in diesem Abschnitt ihrer Definition zufolge als
Mengen notiert.) Da ​​∀ i : σ​(​​i​)​​  =  i​​ (Identität), wird keine Ände-
rung der Elemente vorgenommen. Somit existiert keine Liste
mit kürzerer Kettenlänge und jede sortierte Liste der Länge 1
ist kettensortiert.

Länge 2: Jede sortierte Liste ​l​ der Länge 2 erfüllt
 ​l  =  ​l​ 1​​ ⨁ ​l​ 2​​​, wobei ​​l​ 2​​  >  ​l​ 1​​.​ Die möglichen Permutationsfunk-
tionen sind​​​{​​​{​​​(​​1,1​)​​, ​(​​2,2​)​​​}​​, ​{​​​(​​1,2​)​​, ​(​​2,1​)​​​}​​​}​​​​. Beide ändern die Ket-
tendistanz nicht, da die erste hier aufgeführte die Identität
ist und die zweite die Liste umkehrt, was durch Kommuta-
tivität der Addition sowie Symmetrie der Metrik die Ketten-
distanz nicht ändert. Also ist auch jede sortierte Liste der
Länge 2 kettensortiert.

Induktionsschritt:
​l​ sei eine sortierte und kettensortierte Liste der Länge ​
n  ∈  ℕ, n  >  2.​ Gemäß der induktiven Definition einer Lis-
te wird nun ein neues Element ​e  ∈  U,  e  >  ​l​ n​​​ an einer belie-
bigen Position ​i​ in die Liste, welche fortan ​​l​​ e​​ genannt werde,
eingefügt. Definitionsgemäß bleibt die Liste nur dann sor-

tiert, wenn ​i  =  n + 1​, andernfalls wäre ​​l​ i+1​​  <  ​l​ i​​​ und die Lis-
te unsortiert. Es wird nun bewiesen, dass beim Anfügen eines
neuen Elements an genau dieser Stelle die Liste kettensortiert
bleibt.

Zunächst wird die Kettenlänge betrachtet, die sich ergibt, falls ​
i  =  n + 1​. In diesem Fall gilt:

𝑙𝑙2 > 𝑙𝑙1
. Die möglichen Permutationsfunktionen sind

{{(1, 1), (2, 2)}, {(1, 2), (2, 1)}}
. Beide ändern die Kettendistanz nicht, da die erste hier aufgeführte die Identität ist und die zweite die Liste umkehrt, was durch Kommutativität der Addition sowie Symmetrie der Metrik die Kettendistanz nicht ändert. Also ist auch jede sortierte Liste der Länge 2 kettensortiert.

Induktionsschritt:

𝑙𝑙
sei eine sortierte und kettensortierte Liste der Länge

𝑛𝑛 ∈ ℕ, 𝑛𝑛 ≥ 2
. Gemäß der induktiven Definition einer Liste wird nun ein neues Element

𝑒𝑒 ∈ 𝑈𝑈, 𝑒𝑒 > 𝑙𝑙𝑛𝑛
an einer beliebigen Position

𝑖𝑖
in die Liste, welche fortan

𝑙𝑙𝑒𝑒
genannt werde, eingefügt. Definitionsgemäß bleibt die Liste nur dann sortiert, wenn

𝑖𝑖 = 𝑛𝑛 + 1
– andernfalls wäre

𝑙𝑙𝑖𝑖+1 < 𝑙𝑙𝑖𝑖
und die Liste unsortiert. Es wird nun bewiesen, dass beim Anfügen eines neuen Elements an genau dieser Stelle die Liste kettensortiert bleibt.

Zunächst wird die Kettenlänge betrachtet, die sich ergibt, falls

𝑖𝑖 = 𝑛𝑛 + 1
. In diesem Fall gilt:

𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙) + 𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒)
. Die Differenz zwischen bisheriger und neuer Kettenlänge wird als

𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒) − 𝑑𝑑𝕃𝕃(𝑙𝑙) = 𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒)
als

Δopt
bezeichnet.

𝐾𝐾
sei nun die Menge aller Distanzen zwischen

𝑒𝑒
und einem Element

𝑙𝑙𝑖𝑖
an Index

𝑖𝑖
der Liste.

𝑒𝑒 > 𝑙𝑙𝑖𝑖
ist (wie auch

6

Die Differenz zwischen bisheriger und neuer Kettenlänge

𝑙𝑙2 > 𝑙𝑙1
. Die möglichen Permutationsfunktionen sind

{{(1, 1), (2, 2)}, {(1, 2), (2, 1)}}
. Beide ändern die Kettendistanz nicht, da die erste hier aufgeführte die Identität ist und die zweite die Liste umkehrt, was durch Kommutativität der Addition sowie Symmetrie der Metrik die Kettendistanz nicht ändert. Also ist auch jede sortierte Liste der Länge 2 kettensortiert.

Induktionsschritt:

𝑙𝑙
sei eine sortierte und kettensortierte Liste der Länge

𝑛𝑛 ∈ ℕ, 𝑛𝑛 ≥ 2
. Gemäß der induktiven Definition einer Liste wird nun ein neues Element

𝑒𝑒 ∈ 𝑈𝑈, 𝑒𝑒 > 𝑙𝑙𝑛𝑛
an einer beliebigen Position

𝑖𝑖
in die Liste, welche fortan

𝑙𝑙𝑒𝑒
genannt werde, eingefügt. Definitionsgemäß bleibt die Liste nur dann sortiert, wenn

𝑖𝑖 = 𝑛𝑛 + 1
– andernfalls wäre

𝑙𝑙𝑖𝑖+1 < 𝑙𝑙𝑖𝑖
und die Liste unsortiert. Es wird nun bewiesen, dass beim Anfügen eines neuen Elements an genau dieser Stelle die Liste kettensortiert bleibt.

Zunächst wird die Kettenlänge betrachtet, die sich ergibt, falls

𝑖𝑖 = 𝑛𝑛 + 1
. In diesem Fall gilt:

𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙) + 𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒)
. Die Differenz zwischen bisheriger und neuer Kettenlänge wird als

𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒) − 𝑑𝑑𝕃𝕃(𝑙𝑙) = 𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒)
als

Δopt
bezeichnet.

𝐾𝐾
sei nun die Menge aller Distanzen zwischen

𝑒𝑒
und einem Element

𝑙𝑙𝑖𝑖
an Index

𝑖𝑖
der Liste.

𝑒𝑒 > 𝑙𝑙𝑖𝑖
ist (wie auch

6

wird als ​​Δ​ opt​​​ bezeichnet.

​K​ sei nun die Menge aller Distanzen zwischen ​e​ und einem
Element ​​l​ i​​​ an Index ​i​ der Liste. ​e  >  ​l​ i​​​ ist (wie auch ​e  >  ​l​ n​​​) ge-
geben. Da ​i  <  n​, folgt (durch Definition von 𝕃sort und Transi-
tivität von), dass ​​l​ i​​  <  ​l​ n​​  <  e​. Deshalb gilt ​​d​(​​ ​l​ n​​, e​)​​  =  e − ​l​ n​​​​ und ​​
d​(​​ ​l​ i​​, e​)​​  =  e − ​l​ i​​​​, somit ​​l​ i​​  <  ​l​ n​​  ⇔  e − ​l​ i​​  >  e − ​l​ n​​​. Da ​i​ beliebig
gewählt wurde, ist die Distanz zwischen jedem Element und ​e​
größer als die zwischen ​​l​ n​​​ und ​e​. Diese Distanz ​​d​(​​ ​l​ n​​, e​)​​  =  ​Δ​ opt​​​​
ist folglich von allen Distanzen, die ​e​ involvieren, minimal.

Nun wird jede Permutation von ​l​ betrachtet und ​​l ′ ​​ genannt.
Da ​l​ kettensortiert ist, gilt:

𝑒𝑒 > 𝑙𝑙𝑛𝑛
) gegeben. Da

𝑖𝑖 < 𝑛𝑛
, folgt (durch Definition von

𝕃𝕃sort
und Transitivität von

<
), dass

𝑙𝑙𝑖𝑖 < 𝑙𝑙𝑛𝑛 < 𝑒𝑒
. Deshalb gilt

𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒) = 𝑒𝑒 − 𝑙𝑙𝑛𝑛
und

𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒) = 𝑒𝑒 − 𝑙𝑙𝑖𝑖
, und somit

𝑙𝑙𝑖𝑖 < 𝑙𝑙𝑛𝑛 ⇔ 𝑒𝑒 − 𝑙𝑙𝑖𝑖 > 𝑒𝑒 − 𝑙𝑙𝑛𝑛
. Da

𝑖𝑖
beliebig gewählt wurde, ist die Distanz zwischen jedem Element und

𝑒𝑒
größer als die zwischen

𝑙𝑙𝑛𝑛
und

𝑒𝑒
. Diese Distanz

𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒) = Δopt
ist folglich von allen Distanzen, die

𝑒𝑒
involvieren, minimal.

Nun wird jede Permutation von

𝑙𝑙
betrachtet und

𝑙𝑙′
genannt. Da

𝑙𝑙
kettensortiert ist, gilt:

𝑑𝑑𝕃𝕃(𝑙𝑙) ≤ 𝑑𝑑𝕃𝕃(𝑙𝑙′)
. Auf Basis dieser Permutation wird eine neue Liste

7

Auf Basis dieser Permutation wird eine neue Liste ​​l ′ ​​e konst-
ruiert, in die das Element ​e​ an einer Stelle ​i​ eingefügt wur-
de, also

𝑙𝑙′𝑒𝑒
konstruiert, in die das Element

𝑒𝑒
an einer Stelle

𝑖𝑖
eingefügt wurde, also

𝑙𝑙′𝑒𝑒 ≔ 𝑙𝑙′1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙′𝑖𝑖:𝑛𝑛
.

Δ ≔ 𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) − 𝑑𝑑𝕃𝕃(𝑙𝑙′) (11)
Es soll gezeigt werden, dass für jede Permutation

𝑙𝑙′
gilt:

Δ ≥ Δopt (12)
sodass durch

𝑑𝑑𝕃𝕃(𝑙𝑙′) ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙)
die Kettendistanz

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + Δ ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙) + Δopt = 𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
ist und somit

𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
tatsächlich die optimale Kettendistanz ist, wodurch

𝑙𝑙𝑒𝑒
kettensortiert wäre.

Es wird eine Fallunterscheidung zwischen solchen Permutationen gemacht, bei denen

𝑒𝑒
am Rand (am Index

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
) zu finden ist, und jenen, bei denen es zwischen zwei anderen Elementen (

𝑖𝑖 ∈ [2, 𝑛𝑛]
) vorliegt.

Fall 1.

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
Da

𝑒𝑒
am Rand eingefügt wird, ist

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒)
für ein beliebiges

8

𝑙𝑙′𝑒𝑒
konstruiert, in die das Element

𝑒𝑒
an einer Stelle

𝑖𝑖
eingefügt wurde, also

𝑙𝑙′𝑒𝑒 ≔ 𝑙𝑙′1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙′𝑖𝑖:𝑛𝑛
.

Δ ≔ 𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) − 𝑑𝑑𝕃𝕃(𝑙𝑙′) (11)
Es soll gezeigt werden, dass für jede Permutation

𝑙𝑙′
gilt:

Δ ≥ Δopt (12)
sodass durch

𝑑𝑑𝕃𝕃(𝑙𝑙′) ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙)
die Kettendistanz

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + Δ ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙) + Δopt = 𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
ist und somit

𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
tatsächlich die optimale Kettendistanz ist, wodurch

𝑙𝑙𝑒𝑒
kettensortiert wäre.

Es wird eine Fallunterscheidung zwischen solchen Permutationen gemacht, bei denen

𝑒𝑒
am Rand (am Index

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
) zu finden ist, und jenen, bei denen es zwischen zwei anderen Elementen (

𝑖𝑖 ∈ [2, 𝑛𝑛]
) vorliegt.

Fall 1.

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
Da

𝑒𝑒
am Rand eingefügt wird, ist

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒)
für ein beliebiges

8

 	 (11)

Es soll gezeigt werden, dass für jede Permutation ​​l ′ ​​ gilt:

𝑙𝑙′𝑒𝑒
konstruiert, in die das Element

𝑒𝑒
an einer Stelle

𝑖𝑖
eingefügt wurde, also

𝑙𝑙′𝑒𝑒 ≔ 𝑙𝑙′1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙′𝑖𝑖:𝑛𝑛
.

Δ ≔ 𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) − 𝑑𝑑𝕃𝕃(𝑙𝑙′) (11)
Es soll gezeigt werden, dass für jede Permutation

𝑙𝑙′
gilt:

Δ ≥ Δopt (12)
sodass durch

𝑑𝑑𝕃𝕃(𝑙𝑙′) ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙)
die Kettendistanz

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + Δ ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙) + Δopt = 𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
ist und somit

𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
tatsächlich die optimale Kettendistanz ist, wodurch

𝑙𝑙𝑒𝑒
kettensortiert wäre.

Es wird eine Fallunterscheidung zwischen solchen Permutationen gemacht, bei denen

𝑒𝑒
am Rand (am Index

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
) zu finden ist, und jenen, bei denen es zwischen zwei anderen Elementen (

𝑖𝑖 ∈ [2, 𝑛𝑛]
) vorliegt.

Fall 1.

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
Da

𝑒𝑒
am Rand eingefügt wird, ist

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒)
für ein beliebiges

8

 	 (12)

So dass durch ​​​d​ L​​​(​​​l ′ ​​)​​  ≥  ​d​ L​​​(​​l​)​​​​ die Kettendistanz

𝑙𝑙′𝑒𝑒
konstruiert, in die das Element

𝑒𝑒
an einer Stelle

𝑖𝑖
eingefügt wurde, also

𝑙𝑙′𝑒𝑒 ≔ 𝑙𝑙′1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙′𝑖𝑖:𝑛𝑛
.

Δ ≔ 𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) − 𝑑𝑑𝕃𝕃(𝑙𝑙′) (11)
Es soll gezeigt werden, dass für jede Permutation

𝑙𝑙′
gilt:

Δ ≥ Δopt (12)
sodass durch

𝑑𝑑𝕃𝕃(𝑙𝑙′) ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙)
die Kettendistanz

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + Δ ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙) + Δopt = 𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
ist und somit

𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
tatsächlich die optimale Kettendistanz ist, wodurch

𝑙𝑙𝑒𝑒
kettensortiert wäre.

Es wird eine Fallunterscheidung zwischen solchen Permutationen gemacht, bei denen

𝑒𝑒
am Rand (am Index

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
) zu finden ist, und jenen, bei denen es zwischen zwei anderen Elementen (

𝑖𝑖 ∈ [2, 𝑛𝑛]
) vorliegt.

Fall 1.

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
Da

𝑒𝑒
am Rand eingefügt wird, ist

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒)
für ein beliebiges

8

ist und somit ​​​d​ L​​​(​​ ​l​​ e​​)​​​​ tatsächlich die optimale Kettendistanz
ist, wodurch ​​l​​ e​​ kettensortiert wäre.

Es wird eine Fallunterscheidung zwischen solchen Permutati-
onen gemacht, bei denen ​e​ am Rand (Index ​i  =  1 ∨ i  =  n + 1​)
zu finden ist, und jenen, bei denen es zwischen zwei anderen
Elementen (​i  ∈  ​[2, n]​​) vorliegt.

Fall 1. ​i  =  1 ∨ i  =  n + 1​

Da ​e​ am Rand eingefügt wird, ist

𝑙𝑙′𝑒𝑒
konstruiert, in die das Element

𝑒𝑒
an einer Stelle

𝑖𝑖
eingefügt wurde, also

𝑙𝑙′𝑒𝑒 ≔ 𝑙𝑙′1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙′𝑖𝑖:𝑛𝑛
.

Δ ≔ 𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) − 𝑑𝑑𝕃𝕃(𝑙𝑙′) (11)
Es soll gezeigt werden, dass für jede Permutation

𝑙𝑙′
gilt:

Δ ≥ Δopt (12)
sodass durch

𝑑𝑑𝕃𝕃(𝑙𝑙′) ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙)
die Kettendistanz

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + Δ ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙) + Δopt = 𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
ist und somit

𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒)
tatsächlich die optimale Kettendistanz ist, wodurch

𝑙𝑙𝑒𝑒
kettensortiert wäre.

Es wird eine Fallunterscheidung zwischen solchen Permutationen gemacht, bei denen

𝑒𝑒
am Rand (am Index

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
) zu finden ist, und jenen, bei denen es zwischen zwei anderen Elementen (

𝑖𝑖 ∈ [2, 𝑛𝑛]
) vorliegt.

Fall 1.

𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1
Da

𝑒𝑒
am Rand eingefügt wird, ist

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒)
für ein beliebiges

8

Informatik | Seite 4

JUNGE wissenschaft 15 / 18 | Seite 5JUNGE wissenschaft 03 / 25 | Seite 5

doi: 10.7795/320.202503

für ein beliebiges ​i​ aus der Indexmenge von ​l​. Die Distanz ist
dabei ein Element von ​K​, da es eine Distanz zwischen ​e​ und
einem Element von ​l​ ist. Da ​​Δ​ opt​​​ das minimale Element aus K
ist, kann ​​∆ = d​(​​ ​l​ i​​, e​)​​​​ nicht geringer sein, sodass Ungleichung
(12) zutrifft.

Fall 2. ​i  ∈  ​[2, n]​​

Hierbei liegt ​e​ zwischen zwei Elementen ​​l​ i−1​ ʹ  ​​ und ​​l​ i​ ʹ ​​. Die neue
Kettenlänge setzt sich nun zusammen aus der alten Ketten-
länge minus der Distanz dieser beiden Elemente plus der Dis-
tanz jedes dieser Elemente mit dem neu eingefügten:

𝑖𝑖
aus der Indexmenge von

𝑙𝑙
. Die Distanz ist dabei ein Element von

𝐾𝐾
, da es eine Distanz zwischen

𝑒𝑒
und einem Element von

𝑙𝑙
ist. Da

Δopt
das minimale Element aus

𝐾𝐾
ist, kann

Δ = 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒)
nicht geringer sein, sodass Ungleichung (12) zutrifft.

Fall 2.

𝑖𝑖 ∈ [2, 𝑛𝑛]
Hierbei liegt

𝑒𝑒
zwischen zwei Elementen,

𝑙𝑙′𝑖𝑖−1
und

𝑙𝑙′𝑖𝑖
. Die neue Kettenlänge setzt sich nun zusammen aus der alten Kettenlänge minus der Distanz dieser beiden Elemente plus der Distanz jedes dieser Elemente mit dem neu eingefügten:

Δ = 𝑑𝑑(𝑙𝑙′𝑖𝑖−1, 𝑒𝑒) + 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒) − 𝑑𝑑(𝑙𝑙′𝑖𝑖−1, 𝑙𝑙′𝑖𝑖)

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + Δ (13)
Gegeben sind

𝑙𝑙′𝑖𝑖−1 < 𝑒𝑒
und

𝑙𝑙′𝑖𝑖 < 𝑒𝑒
; o. B. d. A. wird nun von

𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒
ausgegangen, der Beweis kann analog durch Tauschen der beiden Elemente in der Ungleichung geführt werden. Explizit wird hier auf Eigenschaften der Betragsfunktion zurückgegriffen:

9

𝑖𝑖
aus der Indexmenge von

𝑙𝑙
. Die Distanz ist dabei ein Element von

𝐾𝐾
, da es eine Distanz zwischen

𝑒𝑒
und einem Element von

𝑙𝑙
ist. Da

Δopt
das minimale Element aus

𝐾𝐾
ist, kann

Δ = 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒)
nicht geringer sein, sodass Ungleichung (12) zutrifft.

Fall 2.

𝑖𝑖 ∈ [2, 𝑛𝑛]
Hierbei liegt

𝑒𝑒
zwischen zwei Elementen,

𝑙𝑙′𝑖𝑖−1
und

𝑙𝑙′𝑖𝑖
. Die neue Kettenlänge setzt sich nun zusammen aus der alten Kettenlänge minus der Distanz dieser beiden Elemente plus der Distanz jedes dieser Elemente mit dem neu eingefügten:

Δ = 𝑑𝑑(𝑙𝑙′𝑖𝑖−1, 𝑒𝑒) + 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒) − 𝑑𝑑(𝑙𝑙′𝑖𝑖−1, 𝑙𝑙′𝑖𝑖)

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + Δ (13)
Gegeben sind

𝑙𝑙′𝑖𝑖−1 < 𝑒𝑒
und

𝑙𝑙′𝑖𝑖 < 𝑒𝑒
; o. B. d. A. wird nun von

𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒
ausgegangen, der Beweis kann analog durch Tauschen der beiden Elemente in der Ungleichung geführt werden. Explizit wird hier auf Eigenschaften der Betragsfunktion zurückgegriffen:

9

	 (13)

Gegeben sind ​​l​ i−1​ ʹ  ​  <  e​ und ​​l​ i​ ʹ ​  <  e​; o. B. d. A. wird nun von ​​

l​ i−1​ ʹ  ​  <  ​l​ i​ ʹ ​  <  e​ ausgegangen, der Beweis kann analog durch
Tauschen der beiden Elemente in der Ungleichung geführt
werden. Explizit wird hier auf Eigenschaften der Betragsfunk-
tion zurückgegriffen und mit Δ = |𝑙𝑙′𝑖𝑖−1 − 𝑒𝑒| + |𝑙𝑙𝑖𝑖 − 𝑒𝑒| − |𝑙𝑙′𝑖𝑖−1 − 𝑙𝑙′𝑖𝑖|

= (𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1) + (𝑒𝑒 − 𝑙𝑙′𝑖𝑖) − (𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1) (da 𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒)

= 𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 + 𝑙𝑙′𝑖𝑖−1 = 𝑒𝑒 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1 + 𝑙𝑙′𝑖𝑖−1

= 2 ⋅ 𝑒𝑒 − 2 ⋅ 𝑙𝑙′𝑖𝑖 = 2 ⋅ (𝑒𝑒 − 𝑙𝑙′𝑖𝑖)

= 2 ⋅ |𝑙𝑙′𝑖𝑖 − 𝑒𝑒| = 2 ⋅ 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)

(14)

Δ
ist folglich das Doppelte von

𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)
. Dabei handelt es sich um ein Element aus

𝐾𝐾
, sodass Ungleichung (12) erfüllt ist.

Da keine Permutation der finalen Liste eine niedrigere Kettendistanz als die von

𝑙𝑙𝑒𝑒
beim Anfügen des höchsten Elements erzielen kann, ist

𝑙𝑙𝑒𝑒
– und damit jede sortierte Liste – kettensortiert.

∎
2.3. Generalisierung auf n-dimensionale Vektorräume
Nun wurde bewiesen, dass die Sortierung einer Liste eindimensionaler Objekte, in diesem Fall repräsentiert durch reelle Zahlen, auch einer zur Kettensortierung dieser entspricht. Genauer: jede sortierte Liste ist kettensortiert, jedoch nicht zwangsläufig umgekehrt (aufgrund von Symmetrie der Kettenlänge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Elementen einer geordneten Menge ausführbar ist, die distanzbasierte Sortierung jedoch in jedem metrischen Raum angewendet werden kann und die Betragsmetrik der reellen Zahlen nur ein Sonderfall jeder durch eine

𝑝𝑝
-Norm induzierten Metrik[34] n-dimensionaler Vektorräume ist[50], handelt es sich bei der Kettensortierung um eine Generalisierung der vergleichsbasierten Sortierung im Bezug auf die Dimensionalität der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ‚sortiert‘ auch auf Listen mehrdimensionaler Objekte angewandt werden, da sie bis auf Umkehr der Liste die gleiche Bedeutung wie ‚kettensortiert‘ hat. Als Metrik wird sich aufgrund ihrer Generalisierungsfähigkeit von nun an auf eine durch eine

𝑝𝑝
-Norm induzierte Metrik beschränkt, o.B.d.A. wird für die folgenden Beispiele die euklidische Metrik (gegeben durch

𝑝𝑝 = 2
) gewählt.

3. Graphentheoretische Grundlagen
3.1. Definitionen
Ein Graph

𝐺𝐺
ist zum Zwecke dieser Arbeit ein Paar

(𝑉𝑉 ,𝐸𝐸),𝐸𝐸 ⊆ 𝑉𝑉 2

mit Knotenmenge

𝑉𝑉
und Kantenmenge

𝐸𝐸
. Ist

𝐸𝐸 = 𝑉𝑉 2

, so wird er als vollständig bezeichnet. Zusammen mit einer Kantengewichtsfunktion

10

gilt:

Δ = |𝑙𝑙′𝑖𝑖−1 − 𝑒𝑒| + |𝑙𝑙𝑖𝑖 − 𝑒𝑒| − |𝑙𝑙′𝑖𝑖−1 − 𝑙𝑙′𝑖𝑖|

= (𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1) + (𝑒𝑒 − 𝑙𝑙′𝑖𝑖) − (𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1) (da 𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒)

= 𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 + 𝑙𝑙′𝑖𝑖−1 = 𝑒𝑒 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1 + 𝑙𝑙′𝑖𝑖−1

= 2 ⋅ 𝑒𝑒 − 2 ⋅ 𝑙𝑙′𝑖𝑖 = 2 ⋅ (𝑒𝑒 − 𝑙𝑙′𝑖𝑖)

= 2 ⋅ |𝑙𝑙′𝑖𝑖 − 𝑒𝑒| = 2 ⋅ 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)

(14)

Δ
ist folglich das Doppelte von

𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)
. Dabei handelt es sich um ein Element aus

𝐾𝐾
, sodass Ungleichung (12) erfüllt ist.

Da keine Permutation der finalen Liste eine niedrigere Kettendistanz als die von

𝑙𝑙𝑒𝑒
beim Anfügen des höchsten Elements erzielen kann, ist

𝑙𝑙𝑒𝑒
– und damit jede sortierte Liste – kettensortiert.

∎
2.3. Generalisierung auf n-dimensionale Vektorräume
Nun wurde bewiesen, dass die Sortierung einer Liste eindimensionaler Objekte, in diesem Fall repräsentiert durch reelle Zahlen, auch einer zur Kettensortierung dieser entspricht. Genauer: jede sortierte Liste ist kettensortiert, jedoch nicht zwangsläufig umgekehrt (aufgrund von Symmetrie der Kettenlänge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Elementen einer geordneten Menge ausführbar ist, die distanzbasierte Sortierung jedoch in jedem metrischen Raum angewendet werden kann und die Betragsmetrik der reellen Zahlen nur ein Sonderfall jeder durch eine

𝑝𝑝
-Norm induzierten Metrik[34] n-dimensionaler Vektorräume ist[50], handelt es sich bei der Kettensortierung um eine Generalisierung der vergleichsbasierten Sortierung im Bezug auf die Dimensionalität der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ‚sortiert‘ auch auf Listen mehrdimensionaler Objekte angewandt werden, da sie bis auf Umkehr der Liste die gleiche Bedeutung wie ‚kettensortiert‘ hat. Als Metrik wird sich aufgrund ihrer Generalisierungsfähigkeit von nun an auf eine durch eine

𝑝𝑝
-Norm induzierte Metrik beschränkt, o.B.d.A. wird für die folgenden Beispiele die euklidische Metrik (gegeben durch

𝑝𝑝 = 2
) gewählt.

3. Graphentheoretische Grundlagen
3.1. Definitionen
Ein Graph

𝐺𝐺
ist zum Zwecke dieser Arbeit ein Paar

(𝑉𝑉 ,𝐸𝐸),𝐸𝐸 ⊆ 𝑉𝑉 2

mit Knotenmenge

𝑉𝑉
und Kantenmenge

𝐸𝐸
. Ist

𝐸𝐸 = 𝑉𝑉 2

, so wird er als vollständig bezeichnet. Zusammen mit einer Kantengewichtsfunktion

10

Δ = |𝑙𝑙′𝑖𝑖−1 − 𝑒𝑒| + |𝑙𝑙𝑖𝑖 − 𝑒𝑒| − |𝑙𝑙′𝑖𝑖−1 − 𝑙𝑙′𝑖𝑖|

= (𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1) + (𝑒𝑒 − 𝑙𝑙′𝑖𝑖) − (𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1) (da 𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒)

= 𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 + 𝑙𝑙′𝑖𝑖−1 = 𝑒𝑒 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1 + 𝑙𝑙′𝑖𝑖−1

= 2 ⋅ 𝑒𝑒 − 2 ⋅ 𝑙𝑙′𝑖𝑖 = 2 ⋅ (𝑒𝑒 − 𝑙𝑙′𝑖𝑖)

= 2 ⋅ |𝑙𝑙′𝑖𝑖 − 𝑒𝑒| = 2 ⋅ 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)

(14)

Δ
ist folglich das Doppelte von

𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)
. Dabei handelt es sich um ein Element aus

𝐾𝐾
, sodass Ungleichung (12) erfüllt ist.

Da keine Permutation der finalen Liste eine niedrigere Kettendistanz als die von

𝑙𝑙𝑒𝑒
beim Anfügen des höchsten Elements erzielen kann, ist

𝑙𝑙𝑒𝑒
– und damit jede sortierte Liste – kettensortiert.

∎
2.3. Generalisierung auf n-dimensionale Vektorräume
Nun wurde bewiesen, dass die Sortierung einer Liste eindimensionaler Objekte, in diesem Fall repräsentiert durch reelle Zahlen, auch einer zur Kettensortierung dieser entspricht. Genauer: jede sortierte Liste ist kettensortiert, jedoch nicht zwangsläufig umgekehrt (aufgrund von Symmetrie der Kettenlänge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Elementen einer geordneten Menge ausführbar ist, die distanzbasierte Sortierung jedoch in jedem metrischen Raum angewendet werden kann und die Betragsmetrik der reellen Zahlen nur ein Sonderfall jeder durch eine

𝑝𝑝
-Norm induzierten Metrik[34] n-dimensionaler Vektorräume ist[50], handelt es sich bei der Kettensortierung um eine Generalisierung der vergleichsbasierten Sortierung im Bezug auf die Dimensionalität der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ‚sortiert‘ auch auf Listen mehrdimensionaler Objekte angewandt werden, da sie bis auf Umkehr der Liste die gleiche Bedeutung wie ‚kettensortiert‘ hat. Als Metrik wird sich aufgrund ihrer Generalisierungsfähigkeit von nun an auf eine durch eine

𝑝𝑝
-Norm induzierte Metrik beschränkt, o.B.d.A. wird für die folgenden Beispiele die euklidische Metrik (gegeben durch

𝑝𝑝 = 2
) gewählt.

3. Graphentheoretische Grundlagen
3.1. Definitionen
Ein Graph

𝐺𝐺
ist zum Zwecke dieser Arbeit ein Paar

(𝑉𝑉 ,𝐸𝐸),𝐸𝐸 ⊆ 𝑉𝑉 2

mit Knotenmenge

𝑉𝑉
und Kantenmenge

𝐸𝐸
. Ist

𝐸𝐸 = 𝑉𝑉 2

, so wird er als vollständig bezeichnet. Zusammen mit einer Kantengewichtsfunktion

10

Δ = |𝑙𝑙′𝑖𝑖−1 − 𝑒𝑒| + |𝑙𝑙𝑖𝑖 − 𝑒𝑒| − |𝑙𝑙′𝑖𝑖−1 − 𝑙𝑙′𝑖𝑖|

= (𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1) + (𝑒𝑒 − 𝑙𝑙′𝑖𝑖) − (𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1) (da 𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒)

= 𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 + 𝑙𝑙′𝑖𝑖−1 = 𝑒𝑒 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1 + 𝑙𝑙′𝑖𝑖−1

= 2 ⋅ 𝑒𝑒 − 2 ⋅ 𝑙𝑙′𝑖𝑖 = 2 ⋅ (𝑒𝑒 − 𝑙𝑙′𝑖𝑖)

= 2 ⋅ |𝑙𝑙′𝑖𝑖 − 𝑒𝑒| = 2 ⋅ 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)

(14)

Δ
ist folglich das Doppelte von

𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)
. Dabei handelt es sich um ein Element aus

𝐾𝐾
, sodass Ungleichung (12) erfüllt ist.

Da keine Permutation der finalen Liste eine niedrigere Kettendistanz als die von

𝑙𝑙𝑒𝑒
beim Anfügen des höchsten Elements erzielen kann, ist

𝑙𝑙𝑒𝑒
– und damit jede sortierte Liste – kettensortiert.

∎
2.3. Generalisierung auf n-dimensionale Vektorräume
Nun wurde bewiesen, dass die Sortierung einer Liste eindimensionaler Objekte, in diesem Fall repräsentiert durch reelle Zahlen, auch einer zur Kettensortierung dieser entspricht. Genauer: jede sortierte Liste ist kettensortiert, jedoch nicht zwangsläufig umgekehrt (aufgrund von Symmetrie der Kettenlänge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Elementen einer geordneten Menge ausführbar ist, die distanzbasierte Sortierung jedoch in jedem metrischen Raum angewendet werden kann und die Betragsmetrik der reellen Zahlen nur ein Sonderfall jeder durch eine

𝑝𝑝
-Norm induzierten Metrik[34] n-dimensionaler Vektorräume ist[50], handelt es sich bei der Kettensortierung um eine Generalisierung der vergleichsbasierten Sortierung im Bezug auf die Dimensionalität der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ‚sortiert‘ auch auf Listen mehrdimensionaler Objekte angewandt werden, da sie bis auf Umkehr der Liste die gleiche Bedeutung wie ‚kettensortiert‘ hat. Als Metrik wird sich aufgrund ihrer Generalisierungsfähigkeit von nun an auf eine durch eine

𝑝𝑝
-Norm induzierte Metrik beschränkt, o.B.d.A. wird für die folgenden Beispiele die euklidische Metrik (gegeben durch

𝑝𝑝 = 2
) gewählt.

3. Graphentheoretische Grundlagen
3.1. Definitionen
Ein Graph

𝐺𝐺
ist zum Zwecke dieser Arbeit ein Paar

(𝑉𝑉 ,𝐸𝐸),𝐸𝐸 ⊆ 𝑉𝑉 2

mit Knotenmenge

𝑉𝑉
und Kantenmenge

𝐸𝐸
. Ist

𝐸𝐸 = 𝑉𝑉 2

, so wird er als vollständig bezeichnet. Zusammen mit einer Kantengewichtsfunktion

10

Δ = |𝑙𝑙′𝑖𝑖−1 − 𝑒𝑒| + |𝑙𝑙𝑖𝑖 − 𝑒𝑒| − |𝑙𝑙′𝑖𝑖−1 − 𝑙𝑙′𝑖𝑖|

= (𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1) + (𝑒𝑒 − 𝑙𝑙′𝑖𝑖) − (𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1) (da 𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒)

= 𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 + 𝑙𝑙′𝑖𝑖−1 = 𝑒𝑒 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1 + 𝑙𝑙′𝑖𝑖−1

= 2 ⋅ 𝑒𝑒 − 2 ⋅ 𝑙𝑙′𝑖𝑖 = 2 ⋅ (𝑒𝑒 − 𝑙𝑙′𝑖𝑖)

= 2 ⋅ |𝑙𝑙′𝑖𝑖 − 𝑒𝑒| = 2 ⋅ 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)

(14)

Δ
ist folglich das Doppelte von

𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)
. Dabei handelt es sich um ein Element aus

𝐾𝐾
, sodass Ungleichung (12) erfüllt ist.

Da keine Permutation der finalen Liste eine niedrigere Kettendistanz als die von

𝑙𝑙𝑒𝑒
beim Anfügen des höchsten Elements erzielen kann, ist

𝑙𝑙𝑒𝑒
– und damit jede sortierte Liste – kettensortiert.

∎
2.3. Generalisierung auf n-dimensionale Vektorräume
Nun wurde bewiesen, dass die Sortierung einer Liste eindimensionaler Objekte, in diesem Fall repräsentiert durch reelle Zahlen, auch einer zur Kettensortierung dieser entspricht. Genauer: jede sortierte Liste ist kettensortiert, jedoch nicht zwangsläufig umgekehrt (aufgrund von Symmetrie der Kettenlänge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Elementen einer geordneten Menge ausführbar ist, die distanzbasierte Sortierung jedoch in jedem metrischen Raum angewendet werden kann und die Betragsmetrik der reellen Zahlen nur ein Sonderfall jeder durch eine

𝑝𝑝
-Norm induzierten Metrik[34] n-dimensionaler Vektorräume ist[50], handelt es sich bei der Kettensortierung um eine Generalisierung der vergleichsbasierten Sortierung im Bezug auf die Dimensionalität der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ‚sortiert‘ auch auf Listen mehrdimensionaler Objekte angewandt werden, da sie bis auf Umkehr der Liste die gleiche Bedeutung wie ‚kettensortiert‘ hat. Als Metrik wird sich aufgrund ihrer Generalisierungsfähigkeit von nun an auf eine durch eine

𝑝𝑝
-Norm induzierte Metrik beschränkt, o.B.d.A. wird für die folgenden Beispiele die euklidische Metrik (gegeben durch

𝑝𝑝 = 2
) gewählt.

3. Graphentheoretische Grundlagen
3.1. Definitionen
Ein Graph

𝐺𝐺
ist zum Zwecke dieser Arbeit ein Paar

(𝑉𝑉 ,𝐸𝐸),𝐸𝐸 ⊆ 𝑉𝑉 2

mit Knotenmenge

𝑉𝑉
und Kantenmenge

𝐸𝐸
. Ist

𝐸𝐸 = 𝑉𝑉 2

, so wird er als vollständig bezeichnet. Zusammen mit einer Kantengewichtsfunktion

10

Δ = |𝑙𝑙′𝑖𝑖−1 − 𝑒𝑒| + |𝑙𝑙𝑖𝑖 − 𝑒𝑒| − |𝑙𝑙′𝑖𝑖−1 − 𝑙𝑙′𝑖𝑖|

= (𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1) + (𝑒𝑒 − 𝑙𝑙′𝑖𝑖) − (𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1) (da 𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒)

= 𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 + 𝑙𝑙′𝑖𝑖−1 = 𝑒𝑒 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1 + 𝑙𝑙′𝑖𝑖−1

= 2 ⋅ 𝑒𝑒 − 2 ⋅ 𝑙𝑙′𝑖𝑖 = 2 ⋅ (𝑒𝑒 − 𝑙𝑙′𝑖𝑖)

= 2 ⋅ |𝑙𝑙′𝑖𝑖 − 𝑒𝑒| = 2 ⋅ 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)

(14)

Δ
ist folglich das Doppelte von

𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)
. Dabei handelt es sich um ein Element aus

𝐾𝐾
, sodass Ungleichung (12) erfüllt ist.

Da keine Permutation der finalen Liste eine niedrigere Kettendistanz als die von

𝑙𝑙𝑒𝑒
beim Anfügen des höchsten Elements erzielen kann, ist

𝑙𝑙𝑒𝑒
– und damit jede sortierte Liste – kettensortiert.

∎
2.3. Generalisierung auf n-dimensionale Vektorräume
Nun wurde bewiesen, dass die Sortierung einer Liste eindimensionaler Objekte, in diesem Fall repräsentiert durch reelle Zahlen, auch einer zur Kettensortierung dieser entspricht. Genauer: jede sortierte Liste ist kettensortiert, jedoch nicht zwangsläufig umgekehrt (aufgrund von Symmetrie der Kettenlänge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Elementen einer geordneten Menge ausführbar ist, die distanzbasierte Sortierung jedoch in jedem metrischen Raum angewendet werden kann und die Betragsmetrik der reellen Zahlen nur ein Sonderfall jeder durch eine

𝑝𝑝
-Norm induzierten Metrik[34] n-dimensionaler Vektorräume ist[50], handelt es sich bei der Kettensortierung um eine Generalisierung der vergleichsbasierten Sortierung im Bezug auf die Dimensionalität der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ‚sortiert‘ auch auf Listen mehrdimensionaler Objekte angewandt werden, da sie bis auf Umkehr der Liste die gleiche Bedeutung wie ‚kettensortiert‘ hat. Als Metrik wird sich aufgrund ihrer Generalisierungsfähigkeit von nun an auf eine durch eine

𝑝𝑝
-Norm induzierte Metrik beschränkt, o.B.d.A. wird für die folgenden Beispiele die euklidische Metrik (gegeben durch

𝑝𝑝 = 2
) gewählt.

3. Graphentheoretische Grundlagen
3.1. Definitionen
Ein Graph

𝐺𝐺
ist zum Zwecke dieser Arbeit ein Paar

(𝑉𝑉 ,𝐸𝐸),𝐸𝐸 ⊆ 𝑉𝑉 2

mit Knotenmenge

𝑉𝑉
und Kantenmenge

𝐸𝐸
. Ist

𝐸𝐸 = 𝑉𝑉 2

, so wird er als vollständig bezeichnet. Zusammen mit einer Kantengewichtsfunktion

10

Δ = |𝑙𝑙′𝑖𝑖−1 − 𝑒𝑒| + |𝑙𝑙𝑖𝑖 − 𝑒𝑒| − |𝑙𝑙′𝑖𝑖−1 − 𝑙𝑙′𝑖𝑖|

= (𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1) + (𝑒𝑒 − 𝑙𝑙′𝑖𝑖) − (𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1) (da 𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒)

= 𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 + 𝑙𝑙′𝑖𝑖−1 = 𝑒𝑒 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1 + 𝑙𝑙′𝑖𝑖−1

= 2 ⋅ 𝑒𝑒 − 2 ⋅ 𝑙𝑙′𝑖𝑖 = 2 ⋅ (𝑒𝑒 − 𝑙𝑙′𝑖𝑖)

= 2 ⋅ |𝑙𝑙′𝑖𝑖 − 𝑒𝑒| = 2 ⋅ 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)

(14)

Δ
ist folglich das Doppelte von

𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)
. Dabei handelt es sich um ein Element aus

𝐾𝐾
, sodass Ungleichung (12) erfüllt ist.

Da keine Permutation der finalen Liste eine niedrigere Kettendistanz als die von

𝑙𝑙𝑒𝑒
beim Anfügen des höchsten Elements erzielen kann, ist

𝑙𝑙𝑒𝑒
– und damit jede sortierte Liste – kettensortiert.

∎
2.3. Generalisierung auf n-dimensionale Vektorräume
Nun wurde bewiesen, dass die Sortierung einer Liste eindimensionaler Objekte, in diesem Fall repräsentiert durch reelle Zahlen, auch einer zur Kettensortierung dieser entspricht. Genauer: jede sortierte Liste ist kettensortiert, jedoch nicht zwangsläufig umgekehrt (aufgrund von Symmetrie der Kettenlänge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Elementen einer geordneten Menge ausführbar ist, die distanzbasierte Sortierung jedoch in jedem metrischen Raum angewendet werden kann und die Betragsmetrik der reellen Zahlen nur ein Sonderfall jeder durch eine

𝑝𝑝
-Norm induzierten Metrik[34] n-dimensionaler Vektorräume ist[50], handelt es sich bei der Kettensortierung um eine Generalisierung der vergleichsbasierten Sortierung im Bezug auf die Dimensionalität der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ‚sortiert‘ auch auf Listen mehrdimensionaler Objekte angewandt werden, da sie bis auf Umkehr der Liste die gleiche Bedeutung wie ‚kettensortiert‘ hat. Als Metrik wird sich aufgrund ihrer Generalisierungsfähigkeit von nun an auf eine durch eine

𝑝𝑝
-Norm induzierte Metrik beschränkt, o.B.d.A. wird für die folgenden Beispiele die euklidische Metrik (gegeben durch

𝑝𝑝 = 2
) gewählt.

3. Graphentheoretische Grundlagen
3.1. Definitionen
Ein Graph

𝐺𝐺
ist zum Zwecke dieser Arbeit ein Paar

(𝑉𝑉 ,𝐸𝐸),𝐸𝐸 ⊆ 𝑉𝑉 2

mit Knotenmenge

𝑉𝑉
und Kantenmenge

𝐸𝐸
. Ist

𝐸𝐸 = 𝑉𝑉 2

, so wird er als vollständig bezeichnet. Zusammen mit einer Kantengewichtsfunktion

10

	 (14)

​∆​ ist folglich das Doppelte von ​​d​(​​ ​l​ i​ ʹ​, e​)​​​​. Dabei handelt es sich
um ein Element aus ​K​, sodass Ungleichung (12) erfüllt ist.

Da keine Permutation der finalen Liste eine niedrigere Ket-
tendistanz als die von ​​l​​ e​​ beim Anfügen des höchsten Elements
erzielen kann, ist ​​l​​ e​​– und damit jede sortierte Liste – ketten-
sortiert. █

2.3	 Generalisierung auf n-dimensionale
Vektorräume

Nun wurde bewiesen, dass die Sortierung einer Liste eindi-
mensionaler Objekte, in diesem Fall repräsentiert durch re-
elle Zahlen, auch einer Kettensortierung dieser entspricht.
Genauer: Jede sortierte Liste ist kettensortiert, jedoch nicht

zwangsläufig umgekehrt (aufgrund von Symmetrie der Ket-
tenlänge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Ele-
menten einer geordneten Menge ausführbar ist, die distanz-
basierte Sortierung jedoch in jedem metrischen Raum an-
gewendet werden kann und die Betragsmetrik der reellen
Zahlen nur ein Sonderfall jeder durch eine ​p−​Norm induzier-
ten Metrik [36] n-dimensionaler Vektorräume ist [52], han-
delt es sich bei der Kettensortierung um eine Generalisierung
der vergleichsbasierten Sortierung in Bezug auf die Dimensi-
onalität der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ‚sortiert‘ auch
auf Listen mehrdimensionaler Objekte angewandt werden, da
sie bis auf Umkehr der Liste die gleiche Bedeutung wie ‚ket-
tensortiert‘ hat. Als Metrik wird sich aufgrund ihrer Genera-
lisierungsfähigkeit von nun an auf eine durch eine ​p−​Norm
induzierte Metrik beschränkt, o.B.d.A. wird für die folgen-
den Beispiele die euklidische Metrik (gegeben durch ​p  =  2​)
gewählt.

3.	 Graphentheoretische Grundlagen

3.1	 Definitionen

Ein Graph ​G​ ist zum Zwecke dieser Arbeit ein Paar
​​(V, E)​, E  ⊆  ​V​​ 2​​ mit Knotenmenge ​V​ und Kantenmenge ​E​. Ist ​
E  =  ​V​​ 2​​, so wird er als vollständig bezeichnet. Zusammen mit
einer Kantengewichtsfunktion ​d : E  ↦​ ℝ gilt der Graph als
kantengewichtet (kurz gewichtet), der Wert dieser Funktion
für eine Kante ist ihr Gewicht.

Ein Weg ist eine Sequenz ​p  =  ​v​ 1​​ ​v​ 2​​ ...​v​ n​​​ paarweise ver-
schiedener Knoten. Ein Weg ist ein Pfad, wenn gilt:
​∀ i  ∈  ​[1, n − 1]​ : ​(​p​ i​​, ​p​ i+1​​)​  ∈  E.​ Das Gewicht eines solchen
Pfades bezeichnet die Summe der Gewichte aller
verbindenden Kanten:

𝑑𝑑 : 𝐸𝐸 → ℝ
gilt der Graph als kantengewichtet (kurz gewichtet), der Wert dieser Funktion für eine Kante ist ihr Gewicht.

Ein Weg ist eine Sequenz

𝑝𝑝 = 𝑣𝑣1𝑣𝑣2…𝑣𝑣𝑛𝑛
paarweise verschiedener Knoten. Ein Weg ist ein Pfad, wenn gilt:

∀𝑖𝑖 ∈ [1, 𝑛𝑛 − 1] : (𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖+1) ∈ 𝐸𝐸
. Das Gewicht eines solchen Pfades bezeichnet die Summe der Gewichte aller verbindenden Kanten:

𝑑𝑑𝑝𝑝 = ∑𝑛𝑛−1
𝑖𝑖=0 𝑑𝑑(𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖+1)

.

Ein Pfad wird Hamilton-Pfad genannt, sofern

𝑛𝑛 = |𝑉𝑉 |
zutrifft, der Pfad also alle Knoten erreicht. Ein Hamilton-Pfad ist minimal, sofern kein Hamilton-Pfad des Graphen mit niedrigerem Gewicht existiert.
3.2. Anwendungen auf die Fragestellung
Um die Kettensortierung einer Liste

𝑙𝑙
mit Eingabemenge

𝑈𝑈 ⊆ ℝ𝑛𝑛, 𝑛𝑛 ∈ ℕ
als graphentheoretisches Problem aufzufassen, betrachte man zunächst deren Bildmenge

𝑌𝑌
. Für diese konstruiere man nun den gewichteten Distanzgraphen

𝐺𝐺 = (𝑉𝑉 ,𝐸𝐸) = (𝑌𝑌 , 𝑌𝑌 2)
mit Kantengewichtsfunktion

𝑑𝑑(⃗𝑎𝑎, ⃗𝑏𝑏) = ‖ ⃗𝑎𝑎 − ⃗𝑏𝑏‖
. Der Graph ist vollständig.

Innerhalb dieses Graphen ist die Liste ein Hamilton-Pfad, denn zwischen jedem Paar aufeinanderfolgender Elemente existiert eine Kante (durch Vollständigkeit) und die Liste enthält alle Knoten (durch Konstruktion aus Bildmenge und Eindeutigkeit der Elemente der Liste). Die Kettendistanz der Liste ist gleich dem Gewicht dieses Pfads.

Da sich die Bildmenge durch Vertauschen von Elementen nicht ändert, ist auch jede Permutation der Liste ein valider Hamilton-Pfad, dessen Gewicht gleich der Kettenlänge der Liste ist (

𝑑𝑑𝕃𝕃(𝑝𝑝) ≙ 𝑑𝑑𝑝𝑝
). Aus der Definition der Kettensortiertheit folgt, dass eine Liste genau dann kettensortiert ist, wenn ihr zugehöriger Hamilton-Pfad im Graphen der Bildmenge minimal ist. Somit kann mithilfe eines Algorithmus, der für einen Graphen dessen minimalen Hamilton-Pfad ermitteln kann, eine mehrdimensionale Liste sortiert werden.

4. Algorithmen
Für den Fall der eindimensionalen Sortierung existieren zahlreiche vergleichsbasierte Sortieralgorithmen, die sich in Eigenschaften wie asymptotischen Komplexitäten von Raum und Zeit, Stabilität und Vorgehensweise unterscheiden [3] (Da die Elemente in einer Liste nicht mehrmals vorkommen können, spielt Stabilität für die Listen dieser Arbeit keine Rolle. Um Listen mit doppelten Werten dennoch sortieren zu können, sortiere man die deduplizierte Liste und füge die entfernten Werte an den Stellen nach dem gleichwertigen Element ein.) Bubble Sort, Insertion Sort und Selection Sort gehören zu den simpleren Verfahren, die jedoch aufgrund ihrer höheren Komplexität ineffizienter arbeiten; Merge Sort, Quick Sort[42] und Heap Sort dagegen werden auch in der Praxis genutzt [56], teils mit praktischen Anpassungen wie bei Timsort [8] (Python) oder Pattern-Defeating Quicksort [66] (Rust). Zwei Eigenschaften, die diese Sortieralgorithmen definieren, sind Monotonizität der Ausgabe (im eindimensionalen Fall gleich der in Abschnitt 2.1 definierten Sortiertheit) und Invarianz der Zielmenge.

Nun könnte ein mehrdimensionaler Sortieralgorithmus definiert werden als einer, der eine Liste als Eingabe erhält und eine kettensortierte Liste gleicher Elemente zurückgibt.

In diesem Abschnitt wird zunächst erläutert, warum eine derartige Definition sich für das Problem dieser Arbeit eher nicht eignet und stattdessen in zwei das Problem im allgemeinen Fall nicht lösende, aber dennoch in der Praxis sehr nützliche Arten von Algorithmen aufgeteilt werden muss. Im Anschluss werden Verfahren genannt, die ich zum Zweck dieser Arbeit auch in Rust[43] implementiert habe.
4.1. Komplexität
Da die tatsächlich messbare Laufzeit eines Algorithmus von zu vielen algorithmisch irrelevanten Faktoren wie Hardware, Eingabestruktur und Ressourcenverfügbarkeit abhängt, wird in der theoretischen Informatik eine andere Methode gewählt, um Algorithmen bezüglich ihres Zeitverbrauchs nur abhängig von der Eingabelänge vergleichen zu können: die Landau-Symbole[10, 71, 86] oder auch O-Notation[26, 55, 83]. Diese bezeichnen das asymptotische Verhalten einer Funktion für beliebig größer werdende Eingaben. Wenn die Anzahl der Schritte, die ein Algorithmus für eine Liste der Eingabelänge

𝑛𝑛
ausführt, nun durch eine Funktion

𝑓𝑓
beschrieben werden kann, so liegt der Algorithmus in

𝒪𝒪(𝑔𝑔)
, falls

𝑓𝑓
asymptotisch nicht schneller wächst als

𝑔𝑔
, und in

Θ(𝑔𝑔)
, falls

𝑓𝑓
asymptotisch genauso schnell wächst wie

11

Ein Pfad wird Hamilton-Pfad genannt, sofern ​n  =  ​|V|​​ zu-
trifft, der Pfad also alle Knoten erreicht. Ein Hamilton-Pfad
ist minimal, sofern kein Hamilton-Pfad des Graphen mit
niedrigerem Gewicht existiert.

3.2	 Anwendungen auf die Fragestellung

Um die Kettensortierung einer Liste ​l​ mit Eingabemen-
ge ​U  ⊆​  ℝ​​ n​, n  ∈  ℕ​ als graphentheoretisches Problem auf-
zufassen, betrachte man zunächst deren Bildmenge ​Y​. Für
diese konstruiere man nun den gewichteten Distanzgra-
phen ​G  =  ​(V, E)​  =  ​(Y, ​Y​​ 2​)​​mit Kantengewichtsfunktion
​d​(​ → a ​, ​ → 

 b ​)​  =  ​‖ ​ →  
a

 ​ −  ​ → 
 b

 ​‖​​. Der Graph ist vollständig.

doi: 10.7795/320.202503

Innerhalb dieses Graphen ist die Liste ein Hamilton-Pfad,
denn zwischen jedem Paar aufeinanderfolgender Elemente
existiert eine Kante (durch Vollständigkeit) und die Liste ent-
hält alle Knoten (durch Konstruktion aus Bildmenge und Ein-
deutigkeit der Elemente der Liste). Die Kettendistanz der Liste
ist gleich dem Gewicht dieses Pfads.

Da sich die Bildmenge durch Vertauschen von Elementen
nicht ändert, ist auch jede Permutation der Liste ein valider
Hamilton-Pfad, dessen Gewicht gleich der Kettenlänge der
Liste ist (​​​d​ L​​​(​​p​)​​  :=  ​d​ p​​​​). Aus der Definition der Kettensortiert-
heit folgt, dass eine Liste genau dann kettensortiert ist, wenn
ihr zugehöriger Hamilton-Pfad im Graphen der Bildmenge
minimal ist. Somit kann mithilfe eines Algorithmus, der für
einen Graphen dessen minimalen Hamilton-Pfad ermitteln
kann, eine mehrdimensionale Liste sortiert werden.

4.	 Algorithmen

Für den Fall der eindimensionalen Sortierung existieren zahl-
reiche vergleichsbasierte Sortieralgorithmen, die sich in Ei-
genschaften wie asymptotischen Komplexitäten von Raum
und Zeit, Stabilität und Vorgehensweise unterscheiden [3].
(Da die Elemente in einer Liste nicht mehrmals vorkom-
men können, spielt Stabilität für die Listen dieser Arbeit kei-
ne Rolle. Um Listen mit doppelten Werten dennoch sortieren
zu können, sortiere man die deduplizierte Liste und füge die
entfernten Werte an den Stellen nach dem gleichwertigen Ele-
ment ein.) Bubble Sort, Insertion Sort und Selection Sort ge-
hören zu den simpleren Verfahren, die jedoch aufgrund ih-
rer höheren Komplexität ineffizienter arbeiten; Merge Sort,
Quick Sort [44] und Heap Sort dagegen werden auch in der
Praxis genutzt [58], teils mit praktischen Anpassungen wie
bei Timsort [8] (Python) oder Pattern-Defeating Quicksort
[68] (Rust). Zwei Eigenschaften, die diese Sortieralgorithmen
definieren, sind Monotonizität der Ausgabe (im eindimensio-
nalen Fall gleich der in Kap. 2.1 definierten Sortiertheit) und
Invarianz der Zielmenge.

Nun könnte ein mehrdimensionaler Sortieralgorithmus defi-
niert werden als einer, der eine Liste als Eingabe erhält und
eine kettensortierte Liste gleicher Elemente zurückgibt.

In diesem Abschnitt wird zunächst erläutert, warum eine
derartige Definition sich für das Problem dieser Arbeit eher
nicht eignet und stattdessen in zwei das Problem im allgemei-
nen Fall nicht lösende, aber dennoch in der Praxis sehr nütz-
liche Arten von Algorithmen aufgeteilt werden muss. Im An-
schluss werden Verfahren genannt, die ich zum Zweck dieser
Arbeit auch in Rust [45] implementiert habe.

4.1	 Komplexität

Da die tatsächlich messbare Laufzeit eines Algorithmus von
zu vielen algorithmisch irrelevanten Faktoren wie Hardware,
Eingabestruktur und Ressourcenverfügbarkeit abhängt, wird
in der theoretischen Informatik eine andere Methode ge-
wählt, um Algorithmen bezüglich ihres Zeitverbrauchs nur
abhängig von der Eingabelänge vergleichen zu können: die
Landau-Symbole [10], [73], [88] oder auch O-Notation [28],
[57], [85]. Diese bezeichnen das asymptotische Verhalten ei-
ner Funktion für beliebig größer werdende Eingaben. Wenn
die Anzahl der Schritte, die ein Algorithmus für eine Liste
der Eingabelänge ​n​ ausführt, nun durch eine Funktion ​f​ be-
schrieben werden kann, so liegt der Algorithmus in O, falls ​f​
asymptotisch nicht schneller wächst als ​g​, und in 𝛳(g), falls ​f​
asymptotisch genauso schnell wächst wie ​g​.

Die zu Beginn dieses Abschnitts genannten vergleichsba-
sierten Sortieralgorithmen wurden dabei nach ihrer Zeit-
komplexität sortiert: Die als ‚simpel‘ bezeichneten Algo-
rithmen liegen in ​​O​(​​​n​​ 2​​)​​,​​ während die ‚praktischeren‘ in
​​O​(​​n ∙ log​(​​n​)​​​)​​​​ liegen. Erstere werden daher als quadratisch,
letztere als linearithmisch (ein Kofferwort aus ‚linear‘ und
‚logarithmisch‘) bezeichnet. Entscheidend ist im Folgenden
allerdings eine andere Unterscheidung, die sich nur darauf
bezieht, ob ​g​ durch ein Polynom beschreibbar ist oder nicht:
polynomiell oder nicht-polynomiell. Erstere werden als in P
und effizient beschrieben, während letztere ineffizient sind.

2. Beweisführung
In diesem Abschnitt soll bewiesen werden, dass es sich bei der im Folgenden definierten Kettensortierung um eine Generalisierung der vergleichsbasierten Sortierung auf mehrere Dimensionen handelt. Dabei werden zunächst auf der Zermelo-Fraenkel-Mengenlehre[39, 92] beruhende Definitionen formuliert und im zweiten Teil mittels vollständiger Induktion[72] ein Beweis aufgestellt. Dieser Beweis liefert die Grundlage für die anschließende Ausarbeitung, da sich die anschließend ausgearbeiteten Verfahren ohne ihn nicht als n-dimensionale Sortierung, sondern nur als beliebigen andere Algorithmus auf Listen von Vektoren bezeichnen könnten.
2.1. Definitionen
Eine Liste der Länge 𝑛𝑛 ∈ ℕ ist zum Zwecke dieser Arbeit eine injektive Abbildung 𝑙𝑙, die als Eingabe eine natürliche Zahl 𝑖𝑖 (den Index) im Definitionsbereich {1,…, 𝑛𝑛}, folglich als 𝔻𝔻 bezeichnet, erhält und ein Element der Eingabemenge 𝑈𝑈 zurückgibt. Der Wert von 𝑙𝑙 an der Stelle 𝑖𝑖 wird als 𝑙𝑙𝑖𝑖 notiert. Der Teilabschnitt von 𝑝𝑝 bis 𝑞𝑞, 𝑝𝑝, 𝑞𝑞 ∈ 𝔻𝔻, 𝑝𝑝 ≤ 𝑞𝑞 beschreibt die 𝑞𝑞 − 𝑝𝑝 + 1-lange Liste [𝑙𝑙𝑝𝑝, 𝑙𝑙𝑝𝑝+1,…, 𝑙𝑙𝑞𝑞−1, 𝑙𝑙𝑞𝑞] und wird als 𝑙𝑙𝑝𝑝:𝑞𝑞 notiert. Die Bildmenge 𝑌𝑌 meint die ungeordnete Menge aller in 𝑙𝑙 vorkommenden Elemente, durch Injektivität gilt |𝑌𝑌 | = |𝑙𝑙|.

Das Vertauschen Swap meint: Swap(𝑙𝑙,𝑚𝑚, 𝑛𝑛)𝑖𝑖 ≔ {
𝑙𝑙𝑛𝑛 falls 𝑖𝑖=𝑚𝑚
𝑙𝑙𝑚𝑚 falls 𝑖𝑖=𝑛𝑛
𝑙𝑙𝑖𝑖 sonst

Die Menge der Permutationen Perm einer Liste 𝑙𝑙 wird definiert als:

Perm(𝑙𝑙) ≔ {𝑙𝑙′ | 𝑙𝑙′𝑖𝑖 = 𝑙𝑙𝜎𝜎(𝑖𝑖), 𝜎𝜎 : 𝔻𝔻 → 𝔻𝔻 bijektiv} (1)

Eine Liste 𝑙𝑙, deren Zielmenge Teil einer strikten Totalordnung (𝕋𝕋,>) mit Ordnungsrelation (>) ist, heißt genau dann sortiert, wenn gilt:

∀𝑖𝑖 ∈ 𝔻𝔻 ∖ {𝑛𝑛} : 𝑙𝑙𝑖𝑖+1 > 𝑙𝑙𝑖𝑖 (2)

Die Kettenlänge 𝑑𝑑𝕃𝕃(𝑙𝑙) einer Liste 𝑙𝑙, deren Zielmenge Teil eines metrischen Raums (𝕋𝕋, 𝑑𝑑) mit Distanzfunktion 𝑑𝑑 ist, wird definiert durch:

𝑑𝑑𝕃𝕃(𝑙𝑙) ≔ ∑
𝑛𝑛−1

𝑖𝑖=1
𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖+1) (3)

Eine solche Liste wird als kettensortiert bezeichnet, wenn gilt:

𝑑𝑑𝕃𝕃(𝑙𝑙) = min
𝑙𝑙′∈ Perm(𝑙𝑙)

𝑑𝑑𝕃𝕃(𝑙𝑙′) (4)

2.2. Beweis: Jede sortierte Liste ist kettensortiert
Neben der abbildenden Definition der Liste kann eine Liste reeller Zahlen (also 𝑈𝑈 ⊆ ℝ) äquivalent auch induktiv definiert werden. Hierbei repräsentiere 𝕃𝕃 die Menge aller solcher Listen, 𝜀𝜀 die leere Liste mit Länge 0. ⊕ bezeichne die strukturelle Konkatenation zweier Listen bzw. einer Liste und einem Element, welches als einelementige Liste interpretiert wird. Die Definition erfolgt wie folgt:

𝜀𝜀 ∈ 𝕃𝕃 (5)

𝑙𝑙 ∈ 𝕃𝕃 ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖

⇒ ∀𝑙𝑙𝑒𝑒 ∈ Ins(𝑙𝑙, 𝑒𝑒) : 𝑙𝑙𝑒𝑒 ∈ 𝕃𝕃
(6)

Dabei wird die Einfügemenge Ins definiert als:

Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙𝑒𝑒 | 𝑛𝑛 = |𝑙𝑙|, 𝑖𝑖 ∈ [1, 𝑛𝑛 + 1], 𝑙𝑙𝑒𝑒 = 𝑙𝑙1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙𝑖𝑖:𝑛𝑛} (7)

Es gibt keine weiteren Listen.

Die Menge der sortierten Listen 𝕃𝕃sort bezeichnet dabei:

𝜀𝜀 ∈ 𝕃𝕃sort (8)

𝑙𝑙 ∈ 𝕃𝕃sort ∧ 𝑛𝑛 = |𝑙𝑙| ∧ 𝑒𝑒 ∈ 𝑈𝑈 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : 𝑒𝑒 > 𝑙𝑙𝑖𝑖 ⇔ 𝑙𝑙 ⊕ 𝑒𝑒 ∈ 𝕃𝕃sort (9)

(𝑒𝑒 > 𝑙𝑙𝑛𝑛 wäre an dieser Stelle äquivalent, jedoch wird hier, um die Definitionen analog zu halten, die längere Variante gewählt.)

Dabei gilt: 𝕃𝕃sort ⊂ 𝕃𝕃, da es sich bei der Konstruktion von 𝕃𝕃sort um einen Spezialfall der von 𝕃𝕃 handelt, bei der Ins(𝑙𝑙, 𝑒𝑒) ≔ {𝑙𝑙 ⊕ 𝑒𝑒}.

Nebensatz. Jede Liste mit total geordneter Zielmenge nach Abschnitt 2.1 ist Element von 𝕃𝕃.

Beweis. Man betrachte eine abbildende Liste 𝑙𝑙. Aus dieser konstruiere man nun die 𝕃𝕃-Liste, 𝑤𝑤 genannt, iterativ. So beginne man mit der leeren Liste 𝜀𝜀 (nach (5) ∈ 𝕃𝕃) und betrachte stets das kleinste nicht betrachtete Element 𝑒𝑒 zusammen mit seinem Index 𝑖𝑖. Existiert in 𝑙𝑙 ein 𝑗𝑗 < 𝑖𝑖, sodass 𝑙𝑙𝑗𝑗 < 𝑙𝑙𝑖𝑖, so ist 𝑙𝑙𝑗𝑗 bereits in 𝑤𝑤 und 𝑒𝑒 wird am darauffolgenden Index eingesetzt, ansonsten am Index 0. Da stets ∀𝑖𝑖 ∈ 𝔻𝔻𝑤𝑤 : 𝑒𝑒 > 𝑤𝑤𝑖𝑖 (sofern 𝑤𝑤 noch nicht 𝑖𝑖 enthält) und 𝑒𝑒 an einer Stelle eingefügt (Ins) wird, ist (6) erfüllt und 𝑤𝑤 eine Liste; da durch eindeutige Zuordnung alle Elemente enthalten sind und die Reihenfolge beibehalten wurde, teilen 𝑤𝑤 und 𝑙𝑙 alle Eigenschaften und sind damit identisch. ∎

Somit ist die Konstruierbarkeit aus (5) und (6) als Eigenschaft aller Listen festzuhalten.

Satz. Jede sortierte Liste reeller Zahlen ist unter der Betragsmetrik kettensortiert.

Beweis. Die Definition anwendend, bedeutet dies:

∀𝑙𝑙 ∈ 𝕃𝕃sort : 𝑑𝑑𝕃𝕃(𝑙𝑙) = min
𝑙𝑙′∈ Perm(𝑙𝑙)

𝑑𝑑𝕃𝕃(𝑙𝑙′) (10)

Da das Minimum einer Menge das Element bedeutet, für das kein kleineres Element existiert, ist eine gleichwertige Formulierung, dass für keine sortierte Liste eine Permutation dieser Liste existiert, die eine kleinere Kettenlänge hat. Dabei ist die Metrik 𝑑𝑑(𝑎𝑎, 𝑏𝑏) = |𝑎𝑎 − 𝑏𝑏|.

Induktionsbeginn:

• Länge 0: Die einzige Liste der Länge 0 ist 𝜀𝜀, somit ist der Definitionsbereich {}. Nach (8) ist 𝜀𝜀 ∈ 𝕃𝕃sort. Somit kann keine Funktion eine Änderung der Elemente vornehmen (da keine solchen existieren), und jede sortierte Liste der Länge 0 ist sortiert und kettensortiert.

• Länge 1: Eine sortierte Liste 𝑙𝑙 der Länge 1 besteht aus einem Element, also 𝑙𝑙 = 𝑙𝑙1. Der Definitionsbereich ist {1}, die einzige Permutationsfunktion 𝜎𝜎 ist {(1, 1)} (Der Kürze halber werden Funktionen in diesem Abschnitt ihrer Definition zufolge als Mengen notiert.) Da ∀𝑖𝑖 : 𝜎𝜎(𝑖𝑖) = 𝑖𝑖 (Identität), wird keine Änderung der Elemente vorgenommen. Somit existiert keine Liste mit kürzerer Kettenlänge und jede sortierte Liste der Länge 1 ist kettensortiert.

• Länge 2: Jede sortierte Liste 𝑙𝑙 der Länge 2 erfüllt 𝑙𝑙 = 𝑙𝑙1 ⊕ 𝑙𝑙2, wobei 𝑙𝑙2 > 𝑙𝑙1. Die möglichen Permutationsfunktionen sind {{(1, 1), (2, 2)}, {(1, 2), (2, 1)}}. Beide ändern die Kettendistanz nicht, da die erste hier aufgeführte die Identität ist und die zweite die Liste umkehrt, was durch Kommutativität der Addition sowie Symmetrie der Metrik die Kettendistanz nicht ändert. Also ist auch jede sortierte Liste der Länge 2 kettensortiert.

Induktionsschritt:

𝑙𝑙 sei eine sortierte und kettensortierte Liste der Länge 𝑛𝑛 ∈ ℕ, 𝑛𝑛 ≥ 2. Gemäß der induktiven Definition einer Liste wird nun ein neues Element 𝑒𝑒 ∈ 𝑈𝑈, 𝑒𝑒 > 𝑙𝑙𝑛𝑛 an einer beliebigen Position 𝑖𝑖 in die Liste, welche fortan 𝑙𝑙𝑒𝑒 genannt werde, eingefügt. Definitionsgemäß bleibt die Liste nur dann sortiert, wenn 𝑖𝑖 = 𝑛𝑛 + 1 – andernfalls wäre 𝑙𝑙𝑖𝑖+1 < 𝑙𝑙𝑖𝑖 und die Liste unsortiert. Es wird nun bewiesen, dass beim Anfügen eines neuen Elements an genau dieser Stelle die Liste kettensortiert bleibt.

Zunächst wird die Kettenlänge betrachtet, die sich ergibt, falls 𝑖𝑖 = 𝑛𝑛 + 1. In diesem Fall gilt: 𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙) + 𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒). Die Differenz zwischen bisheriger und neuer Kettenlänge wird als 𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒) − 𝑑𝑑𝕃𝕃(𝑙𝑙) = 𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒) als Δopt bezeichnet.

𝐾𝐾 sei nun die Menge aller Distanzen zwischen 𝑒𝑒 und einem Element 𝑙𝑙𝑖𝑖 an Index 𝑖𝑖 der Liste. 𝑒𝑒 > 𝑙𝑙𝑖𝑖 ist (wie auch 𝑒𝑒 > 𝑙𝑙𝑛𝑛) gegeben. Da 𝑖𝑖 < 𝑛𝑛, folgt (durch Definition von 𝕃𝕃sort und Transitivität von <), dass 𝑙𝑙𝑖𝑖 < 𝑙𝑙𝑛𝑛 < 𝑒𝑒. Deshalb gilt 𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒) = 𝑒𝑒 − 𝑙𝑙𝑛𝑛 und 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒) = 𝑒𝑒 − 𝑙𝑙𝑖𝑖, und somit 𝑙𝑙𝑖𝑖 < 𝑙𝑙𝑛𝑛 ⇔ 𝑒𝑒 − 𝑙𝑙𝑖𝑖 > 𝑒𝑒 − 𝑙𝑙𝑛𝑛. Da 𝑖𝑖 beliebig gewählt wurde, ist die Distanz zwischen jedem Element und 𝑒𝑒 größer als die zwischen 𝑙𝑙𝑛𝑛 und 𝑒𝑒. Diese Distanz 𝑑𝑑(𝑙𝑙𝑛𝑛, 𝑒𝑒) = Δopt ist folglich von allen Distanzen, die 𝑒𝑒 involvieren, minimal.

Nun wird jede Permutation von 𝑙𝑙 betrachtet und 𝑙𝑙′ genannt. Da 𝑙𝑙 kettensortiert ist, gilt: 𝑑𝑑𝕃𝕃(𝑙𝑙) ≤ 𝑑𝑑𝕃𝕃(𝑙𝑙′). Auf Basis dieser Permutation wird eine neue Liste 𝑙𝑙′𝑒𝑒 konstruiert, in die das Element 𝑒𝑒 an einer Stelle 𝑖𝑖 eingefügt wurde, also 𝑙𝑙′𝑒𝑒 ≔ 𝑙𝑙′1:𝑖𝑖−1 ⊕ 𝑒𝑒 ⊕ 𝑙𝑙′𝑖𝑖:𝑛𝑛.

Δ ≔ 𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) − 𝑑𝑑𝕃𝕃(𝑙𝑙′) (11)

Es soll gezeigt werden, dass für jede Permutation 𝑙𝑙′ gilt:

Δ ≥ Δopt (12)

sodass durch 𝑑𝑑𝕃𝕃(𝑙𝑙′) ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙) die Kettendistanz 𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + Δ ≥ 𝑑𝑑𝕃𝕃(𝑙𝑙) + Δopt = 𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒) ist und somit 𝑑𝑑𝕃𝕃(𝑙𝑙𝑒𝑒) tatsächlich die optimale Kettendistanz ist, wodurch 𝑙𝑙𝑒𝑒 kettensortiert wäre.

Es wird eine Fallunterscheidung zwischen solchen Permutationen gemacht, bei denen 𝑒𝑒 am Rand (am Index 𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1) zu finden ist, und jenen, bei denen es zwischen zwei anderen Elementen (𝑖𝑖 ∈ [2, 𝑛𝑛]) vorliegt.

Fall 1. 𝑖𝑖 = 1 ∨ 𝑖𝑖 = 𝑛𝑛 + 1

Da 𝑒𝑒 am Rand eingefügt wird, ist 𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒) für ein beliebiges 𝑖𝑖 aus der Indexmenge von 𝑙𝑙. Die Distanz ist dabei ein Element von 𝐾𝐾, da es eine Distanz zwischen 𝑒𝑒 und einem Element von 𝑙𝑙 ist. Da Δopt das minimale Element aus 𝐾𝐾 ist, kann Δ = 𝑑𝑑(𝑙𝑙𝑖𝑖, 𝑒𝑒) nicht geringer sein, sodass Ungleichung (12) zutrifft.

Fall 2. 𝑖𝑖 ∈ [2, 𝑛𝑛]

Hierbei liegt 𝑒𝑒 zwischen zwei Elementen, 𝑙𝑙′𝑖𝑖−1 und 𝑙𝑙′𝑖𝑖. Die neue Kettenlänge setzt sich nun zusammen aus der alten Kettenlänge minus der Distanz dieser beiden Elemente plus der Distanz jedes dieser Elemente mit dem neu eingefügten: Δ = 𝑑𝑑(𝑙𝑙′𝑖𝑖−1, 𝑒𝑒) + 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒) − 𝑑𝑑(𝑙𝑙′𝑖𝑖−1, 𝑙𝑙′𝑖𝑖)

𝑑𝑑𝕃𝕃(𝑙𝑙′𝑒𝑒) = 𝑑𝑑𝕃𝕃(𝑙𝑙′) + Δ (13)

Gegeben sind 𝑙𝑙′𝑖𝑖−1 < 𝑒𝑒 und 𝑙𝑙′𝑖𝑖 < 𝑒𝑒; o. B. d. A. wird nun von 𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒 ausgegangen, der Beweis kann analog durch Tauschen der beiden Elemente in der Ungleichung geführt werden. Explizit wird hier auf Eigenschaften der Betragsfunktion zurückgegriffen:

Δ = |𝑙𝑙′𝑖𝑖−1 − 𝑒𝑒| + |𝑙𝑙𝑖𝑖 − 𝑒𝑒| − |𝑙𝑙′𝑖𝑖−1 − 𝑙𝑙′𝑖𝑖|

= (𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1) + (𝑒𝑒 − 𝑙𝑙′𝑖𝑖) − (𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1) (da 𝑙𝑙′𝑖𝑖−1 < 𝑙𝑙′𝑖𝑖 < 𝑒𝑒)

= 𝑒𝑒 − 𝑙𝑙′𝑖𝑖−1 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 + 𝑙𝑙′𝑖𝑖−1 = 𝑒𝑒 + 𝑒𝑒 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖 − 𝑙𝑙′𝑖𝑖−1 + 𝑙𝑙′𝑖𝑖−1

= 2 ⋅ 𝑒𝑒 − 2 ⋅ 𝑙𝑙′𝑖𝑖 = 2 ⋅ (𝑒𝑒 − 𝑙𝑙′𝑖𝑖)

= 2 ⋅ |𝑙𝑙′𝑖𝑖 − 𝑒𝑒| = 2 ⋅ 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒)

(14)

Δ ist folglich das Doppelte von 𝑑𝑑(𝑙𝑙′𝑖𝑖, 𝑒𝑒). Dabei handelt es sich um ein Element aus 𝐾𝐾, sodass Ungleichung (12) erfüllt ist.

Da keine Permutation der finalen Liste eine niedrigere Kettendistanz als die von 𝑙𝑙𝑒𝑒 beim Anfügen des höchsten Elements erzielen kann, ist 𝑙𝑙𝑒𝑒 – und damit jede sortierte Liste – kettensortiert. ∎
2.3. Generalisierung auf n-dimensionale Vektorräume
Nun wurde bewiesen, dass die Sortierung einer Liste eindimensionaler Objekte, in diesem Fall repräsentiert durch reelle Zahlen, auch einer zur Kettensortierung dieser entspricht. Genauer: jede sortierte Liste ist kettensortiert, jedoch nicht zwangsläufig umgekehrt (aufgrund von Symmetrie der Kettenlänge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Elementen einer geordneten Menge ausführbar ist, die distanzbasierte Sortierung jedoch in jedem metrischen Raum angewendet werden kann und die Betragsmetrik der reellen Zahlen nur ein Sonderfall jeder durch eine 𝑝𝑝-Norm induzierten Metrik[36] n-dimensionaler Vektorräume ist[52], handelt es sich bei der Kettensortierung um eine Generalisierung der vergleichsbasierten Sortierung im Bezug auf die Dimensionalität der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ‚sortiert‘ auch auf Listen mehrdimensionaler Objekte angewandt werden, da sie bis auf Umkehr der Liste die gleiche Bedeutung wie ‚kettensortiert‘ hat. Als Metrik wird sich aufgrund ihrer Generalisierungsfähigkeit von nun an auf eine durch eine 𝑝𝑝-Norm induzierte Metrik beschränkt, o.B.d.A. wird für die folgenden Beispiele die euklidische Metrik (gegeben durch 𝑝𝑝 = 2) gewählt.

3. Graphentheoretische Grundlagen
3.1. Definitionen
Ein Graph 𝐺𝐺 ist zum Zwecke dieser Arbeit ein Paar (𝑉𝑉 ,𝐸𝐸),𝐸𝐸 ⊆ 𝑉𝑉 2 mit Knotenmenge 𝑉𝑉 und Kantenmenge 𝐸𝐸. Ist 𝐸𝐸 = 𝑉𝑉 2, so wird er als vollständig bezeichnet. Zusammen mit einer Kantengewichtsfunktion 𝑑𝑑 : 𝐸𝐸 → ℝ gilt der Graph als kantengewichtet (kurz gewichtet), der Wert dieser Funktion für eine Kante ist ihr Gewicht.

Ein Weg ist eine Sequenz 𝑝𝑝 = 𝑣𝑣1𝑣𝑣2…𝑣𝑣𝑛𝑛 paarweise verschiedener Knoten. Ein Weg ist ein Pfad, wenn gilt: ∀𝑖𝑖 ∈ [1, 𝑛𝑛 − 1] : (𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖+1) ∈ 𝐸𝐸. Das Gewicht eines solchen Pfades bezeichnet die Summe der Gewichte aller verbindenden Kanten: 𝑑𝑑𝑝𝑝 = ∑𝑛𝑛−1
𝑖𝑖=0 𝑑𝑑(𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖+1).

Ein Pfad wird Hamilton-Pfad genannt, sofern 𝑛𝑛 = |𝑉𝑉 | zutrifft, der Pfad also alle Knoten erreicht. Ein Hamilton-Pfad ist minimal, sofern kein Hamilton-Pfad des Graphen mit niedrigerem Gewicht existiert.
3.2. Anwendungen auf die Fragestellung
Um die Kettensortierung einer Liste 𝑙𝑙 mit Eingabemenge 𝑈𝑈 ⊆ ℝ𝑛𝑛, 𝑛𝑛 ∈ ℕ als graphentheoretisches Problem aufzufassen, betrachte man zunächst deren Bildmenge 𝑌𝑌 . Für diese konstruiere man nun den gewichteten Distanzgraphen 𝐺𝐺 = (𝑉𝑉 ,𝐸𝐸) = (𝑌𝑌 , 𝑌𝑌 2) mit Kantengewichtsfunktion 𝑑𝑑(⃗𝑎𝑎, ⃗𝑏𝑏) = ‖ ⃗𝑎𝑎 − ⃗𝑏𝑏‖. Der Graph ist vollständig.

Innerhalb dieses Graphen ist die Liste ein Hamilton-Pfad, denn zwischen jedem Paar aufeinanderfolgender Elemente existiert eine Kante (durch Vollständigkeit) und die Liste enthält alle Knoten (durch Konstruktion aus Bildmenge und Eindeutigkeit der Elemente der Liste). Die Kettendistanz der Liste ist gleich dem Gewicht dieses Pfads.

Da sich die Bildmenge durch Vertauschen von Elementen nicht ändert, ist auch jede Permutation der Liste ein valider Hamilton-Pfad, dessen Gewicht gleich der Kettenlänge der Liste ist (𝑑𝑑𝕃𝕃(𝑝𝑝) ≙ 𝑑𝑑𝑝𝑝). Aus der Definition der Kettensortiertheit folgt, dass eine Liste genau dann kettensortiert ist, wenn ihr zugehöriger Hamilton-Pfad im Graphen der Bildmenge minimal ist. Somit kann mithilfe eines Algorithmus, der für einen Graphen dessen minimalen Hamilton-Pfad ermitteln kann, eine mehrdimensionale Liste sortiert werden.

4. Algorithmen
Für den Fall der eindimensionalen Sortierung existieren zahlreiche vergleichsbasierte Sortieralgorithmen, die sich in Eigenschaften wie asymptotischen Komplexitäten von Raum und Zeit, Stabilität und Vorgehensweise unterscheiden [3] (Da die Elemente in einer Liste nicht mehrmals vorkommen können, spielt Stabilität für die Listen dieser Arbeit keine Rolle. Um Listen mit doppelten Werten dennoch sortieren zu können, sortiere man die deduplizierte Liste und füge die entfernten Werte an den Stellen nach dem gleichwertigen Element ein.) Bubble Sort, Insertion Sort und Selection Sort gehören zu den simpleren Verfahren, die jedoch aufgrund ihrer höheren Komplexität ineffizienter arbeiten; Merge Sort, Quick Sort[44] und Heap Sort dagegen werden auch in der Praxis genutzt [58], teils mit praktischen Anpassungen wie bei Timsort [8] (Python) oder Pattern-Defeating Quicksort [68] (Rust). Zwei Eigenschaften, die diese Sortieralgorithmen definieren, sind Monotonizität der Ausgabe (im eindimensionalen Fall gleich der in Abschnitt 2.1 definierten Sortiertheit) und Invarianz der Zielmenge.

Nun könnte ein mehrdimensionaler Sortieralgorithmus definiert werden als einer, der eine Liste als Eingabe erhält und eine kettensortierte Liste gleicher Elemente zurückgibt.

In diesem Abschnitt wird zunächst erläutert, warum eine derartige Definition sich für das Problem dieser Arbeit eher nicht eignet und stattdessen in zwei das Problem im allgemeinen Fall nicht lösende, aber dennoch in der Praxis sehr nützliche Arten von Algorithmen aufgeteilt werden muss. Im Anschluss werden Verfahren genannt, die ich zum Zweck dieser Arbeit auch in Rust[45] implementiert habe.
4.1. Komplexität
Da die tatsächlich messbare Laufzeit eines Algorithmus von zu vielen algorithmisch irrelevanten Faktoren wie Hardware, Eingabestruktur und Ressourcenverfügbarkeit abhängt, wird in der theoretischen Informatik eine andere Methode gewählt, um Algorithmen bezüglich ihres Zeitverbrauchs nur abhängig von der Eingabelänge vergleichen zu können: die Landau-Symbole[10, 73, 88] oder auch O-Notation[28, 57, 85]. Diese bezeichnen das asymptotische Verhalten einer Funktion für beliebig größer werdende Eingaben. Wenn die Anzahl der Schritte, die ein Algorithmus für eine Liste der Eingabelänge 𝑛𝑛 ausführt, nun durch eine Funktion 𝑓𝑓 beschrieben werden kann, so liegt der Algorithmus in 𝒪𝒪(𝑔𝑔), falls 𝑓𝑓 asymptotisch nicht schneller wächst als 𝑔𝑔, und in Θ(𝑔𝑔), falls 𝑓𝑓 asymptotisch genauso schnell wächst wie 𝑔𝑔.

Die zu Beginn dieses Abschnitts genannten vergleichsbasierten Sortieralgorithmen wurden dabei nach ihrer Zeitkomplexität sortiert: die als ‚simpel‘ bezeichneten Algorithmen liegen in 𝒪𝒪(𝑛𝑛2), während die ‚praktischeren‘ in 𝒪𝒪(𝑛𝑛 ⋅ log 𝑛𝑛) liegen. Erstere werden daher als quadratisch, letztere als linearithmisch (ein Kofferwort aus ‚linear‘ und ‚logarithmisch‘) bezeichnet. Entscheidend ist im Folgenden allerdings eine andere Unterscheidung, die sich nur darauf bezieht, ob 𝑔𝑔 durch ein Polynom beschreibbar ist oder nicht: polynomiell oder nicht-polynomiell. Erstere werden als in P und effizient beschrieben, während letztere ineffizient sind.

In der theoretischen Informatik werden die Komplexitätsklassen als Mengen dargestellt, die Entscheidungsprobleme beinhalten. P ist die Menge aller Probleme, die sich durch eine deterministische Turingmaschine in einer polynomiellen Anzahl von Schritten („effizient“) lösen lässt, während NP die umfasst, die eine nichtdeterministische Turingmaschine effizient lösen kann. Da jedes in P lösbare Problem auch in NP lösbar ist, gilt P ⊆ NP. (Obwohl in der praktischen Anwendung davon ausgegangen wird, dass P ≠ NP[53](S. 465), bleibt dies ein ungelöstes Problem der Informatik[84]). Dagegen müssen NP-schwere Probleme nicht in NP liegen, sondern die ‚Schwierigkeit‘ dieser Klasse nur übertreffen.
4.1.1. Effiziente Lösbarkeit und Hartnäckigkeit
Probleme, die in P liegen, werden als effizient lösbar Abschnitt 4.1.1, solche, die unter Annahme von P ≠ NP außerhalb von P liegen, als hartnäckig bezeichnet. Der Grund liegt in der unterschiedlichen Steigung der Terme für wachsende 𝑛𝑛: bei einem Polynom wird stets ein von 𝑛𝑛 abhängiger Term addiert, bei einer Exponentialfunktion (die häufigste Form eines nicht-polynomiellen Terms) multipliziert.
4.1.2. Beweis der Hartnäckigkeit durch Reduktion
Um zu beweisen, dass ein Problem 𝑃𝑃1 hartnäckig ist, wird in der theoretischen Informatik eine Reduktion eines bekanntermaßen NP-schweren Problems 𝑃𝑃0 auf das Problem 𝑃𝑃1 durchgeführt[53](S. 452-454). Man zeigt, dass sich jede Instanz von 𝑃𝑃0 in polynomieller Zeit in eine Instanz von 𝑃𝑃1 transformieren lässt. Im Folgenden wird das Problem des minimalen Hamilton-Pfads im Fall vollständiger Graphen auf das bewiesenermaßen NP-schwere Hamilton-Pfad-Problem[53](S. 474-479)[38, 43] reduziert, welches aus der Frage besteht, ob zu einem beliebigen gegebenen Graphen ein Hamilton-Pfad existiert.

Dazu wird die Hypothese aufgestellt, es gäbe einen Algorithmus 𝐴𝐴, der das Problem für jeden vollständigen Graphen in polynomieller Zeit abhängig von der Anzahl der Knoten lösen könnte. Man betrachte nun jeden möglichen (insbesondere unvollständigen) Graphen 𝐺𝐺 = (𝑉𝑉 ,𝐸𝐸). Man konstruiere nun einen neuen vollständigen gewichteten Graphen 𝐺𝐺′ = (𝑉𝑉 ,𝐸𝐸′, 𝑑𝑑), wobei 𝐸𝐸′ = 𝑉𝑉 2 und 𝑑𝑑(𝑎𝑎, 𝑏𝑏) = {0 falls (𝑎𝑎,𝑏𝑏)∈𝐸𝐸
1 falls (𝑎𝑎,𝑏𝑏)∉𝐸𝐸. Nun führe man 𝐴𝐴 mit der Eingabe 𝐺𝐺′ aus und erhalte den minimalen Hamilton-Pfad 𝑝𝑝opt.

Abb. 2: Auch die
Spielbaumtraversierung bis

Tiefe 𝑛𝑛 ist im Schach
hartnäckig, da exponentiell.

[13](S. 6-8)

3

Abb. 2: Auch die Spielbaumtraversierung bis
Tiefe ​n​ ist im Schach hartnäckig, da
exponentiell [13] (S. 6–8).

Informatik | Seite 6

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-02.jpg

JUNGE wissenschaft 15 / 18 | Seite 7JUNGE wissenschaft 03 / 25 | Seite 7

doi: 10.7795/320.202503

Dazu wird die Hypothese aufgestellt, es gäbe einen Algorith-
mus ​A​, der das Problem für jeden vollständigen Graphen in
polynomieller Zeit abhängig von der Anzahl der Knoten lö-
sen könnte. Man betrachte nun jeden möglichen (insbeson-
dere unvollständigen) Graphen ​G  =  ​(V, E)​​ (s. Abb. 3). Man
konstruiere nun einen neuen vollständigen gewichteten Gra-
phen (siehe Abb. 4) ​Gʹ= ​(V, ​E ′ ​, d)​​, wobei ​​E ′ ​  =  ​V​​ 2​​ und

𝑑𝑑(𝑎𝑎, 𝑏𝑏) = {0 falls (𝑎𝑎,𝑏𝑏)∈𝐸𝐸
1 falls (𝑎𝑎,𝑏𝑏)∉𝐸𝐸

. Nun führe man

𝐴𝐴
mit der Eingabe

𝐺𝐺′

aus und erhalte den minimalen Hamilton-Pfad

𝑝𝑝opt
.

Anhand dieser Ausgabe kann das Hamilton-Pfad-Problem für den Graphen

𝐺𝐺
gelöst werden: ist das Gewicht von

𝑝𝑝opt

0
, so existiert für

𝐺𝐺
ein Hamilton-Pfad, andernfalls nicht. Dies folgt daraus, dass

𝐴𝐴
stets den minimalen Hamilton-Pfad auswählt – existiert einer im originalen Graphen, so kann dieser nur aus Kanten mit Gewicht

0
gebildet werden, sonst nicht.

Der Beweis basiert auf [51](S. 479) und [49] und wurde hier statt auf das Travelling Salesman Problem auf das gegebene Problem des minimalen Hamilton-Pfads angewandt. Dies bestätigt erneut die Ähnlichkeit der beiden Probleme.

Somit entsteht ein Widerspruch: die Aussagen, dass das Hamilton-Pfad-Problem NP-schwer ist, und, dass der in P liegende Algorithmus

𝐴𝐴
es lösen kann, widersprechen sich. Somit ist die Hypothese falsch,

𝐴𝐴
notwendigerweise ineffizient und das Problem NP-schwer. Es wurde bisher nur gezeigt, dass das Problem des minimalen Hamilton-Pfad auf beliebigen Graphen NP-schwer sein muss; für die im weiteren Verlauf dieser Arbeit betrachteten Distanzgraphen könnte das Problem immer noch in P liegen. Ein Beweis der NP-Schwere (hier ausgelassen) involviert die durch Translationsinvarianz von

𝑑𝑑
gegebene metrische Universalkonstruierbarkeit, die eine Reduktion ermöglicht.
4.2. Heuristik
Wie bereits in Abschnitt 4.1.1 gezeigt wurde, kann die Kettensortierung im Allgemeinfall nicht in einer sinnvollen Zeitspanne gelöst werden. Aus diesem Grund werden auch andere Algorithmen betrachtet: Heuristiken. Eine Heuristik ist dabei ein effizienter Algorithmus, der ein hartnäckiges Problem nicht vollständig löst, sondern nur eine ungefähre Lösung liefert.

Im Fall der Sortierung mehrdimensionaler Objekte bedeutet dies, dass ein derartiger Algorithmus strategisch versucht, die Kettenlänge zu reduzieren, jedoch nicht zwangsläufig das globale Minimum (welches der Sortierung der Liste entspräche) findet.

Zudem ist eine weitere auf graphentheoretischer Grundlage beruhende Dichotomie der im Folgenden erläuterten Algorithmen sinnvoll: Konstruktionsalgorithmen auf der einen und Verbesserungsalgorithmen auf der anderen Seite. Dabei erhalten erstere als Eingabe eine Liste und geben einen Pfad zurück, während letztere versuchen, die Kettenlänge eines bestehenden Pfades zu verringern. Im Bezug auf die verwendeten Datenstrukturen ist dies unerheblich, da auch Pfade als Listen repräsentiert werden; die Nutzerfreundlichkeit der Oberfläche nimmt allerdings zu, da Kombinationen des Ausführens von Algorithmen, die zu einer Annäherung an die Kettensortierung nicht beitragen, verhindert bzw. disincentiviert werden.

Ein Beispiel dafür ist, dass es keinen Sinn ergibt, nach dem Ausführen des Greedy-Algorithmus einen anderen Konstruktionsalgorithmus wie Nearest Neighbor zu nutzen, da dieser die vorherigen Ergebnisse nicht berücksichtigt. Diese somit zu limitieren (engl. constrain), wird als universeller Design-Grundsatz[53] verstanden.

Grundlegend betrachten Konstruktionsalgorithmen die Liste also eher als ungeordnete Menge, während sie bei Verbesserungsalgorithmen als geordneter Pfad interpretiert wird.

4.3. Pfadkonstruktion
Um die folgenden Konstruktionsalgorithmen anwenden zu können, wird eine Beispielliste

𝑙𝑙
gewählt, welche sich aus sechs zweidimensionalen Vektoren zusammensetzt, folglich auch durch Farben im RGB-Farbraum dargestellt. Dabei repräsentieren die Komponenten des Vektors jeweils den Rot- und Blauwert der Farbe im Intervall

[0, 1]
, der Grünwert wird auf

0
festgelegt:

𝑙𝑙 ≔

[(0.6
0.2), (0.1

0.7), (0.9
0.4), (0.2

0.2), (0.8
0.7), (0.5

0.5)] ≙
Um einen Pfad sowie die darin enthaltenen Vektoren zu visualisieren, habe ich für die folgenden Abbildungen ein Programm mittels der JavaScript-Bibliothek p5.js[60] entwickelt, welches die Listenelemente und ihre Farben in einem zweidimensionalen kartesischen Koordinatensystem darstellt. Die folgenden derartigen Abbildungen entspringen diesem.

4.3.1. Triviale Pfadkonstruktion
Die triviale Pfadkonstruktion gibt die Eingabeliste unverändert zurück – in diesem Fall entstünde der in Abb. 5 erkennbare Pfad. Dieser Algorithmus ermöglicht es, beliebige Pfade selbst zu erstellen und zu verändern, ohne dabei an eine bestimmte Heuristik gebunden zu sein. Zudem können so die Verbesserungsalgorithmen teils besser dargestellt werden. Eine Alternative dieses Verfahrens ist, die Liste vorher zufällig zu mischen.
4.3.2. Brute Force
Der Brute-Force-Algorithmus kann tatsächlich eine Liste mehrdimensional sortieren, also das Minimum aller Permutationen finden, indem jede dieser Permutationen auf ihre Kettenlänge überprüft und jene mit der minimalen zurückgegeben wird (siehe Tabelle 1).

Die Zeitkomplexität dieses Algorithmus liegt in

13

Nun führe man ​A​ mit der Eingabe ​G​ aus und erhalte den mi-
nimalen Hamilton-Pfad Popt.

Anhand dieser Ausgabe kann das Hamilton-Pfad-Prob-
lem für den Graphen ​G​ gelöst werden: ist das Gewicht von
Popt​​ ​  ​​=  0​, so existiert für ​G​ ein Hamilton-Pfad, andernfalls
nicht. Dies folgt daraus, dass ​A​ stets den minimalen Hamil-
ton-Pfad auswählt – existiert einer im originalen Graphen, so
kann dieser nur aus Kanten mit Gewicht 0 gebildet werden,
sonst nicht.

Der Beweis basiert auf [53] (S. 479) und [51] und wurde hier
statt auf das Travelling-Salesman-Problem auf das gegebene
Problem des minimalen Hamilton-Pfads angewandt. Dies be-
stätigt erneut die Ähnlichkeit der beiden Probleme.

Somit entsteht ein Widerspruch: Die Aussagen, dass das Ha-
milton-Pfad-Problem NP-schwer ist, und, dass der in P lie-
gende Algorithmus ​A​ es lösen kann, widersprechen sich. So-
mit ist die Hypothese falsch, ​A​ notwendigerweise ineffizient
und das Problem NP-schwer. Es wurde bisher nur gezeigt,
dass das Problem des minimalen Hamilton-Pfads auf beliebi-
gen Graphen NP-schwer sein muss; für die im weiteren Ver-
lauf dieser Arbeit betrachteten Distanzgraphen könnte das
Problem immer noch in P liegen. Ein Beweis der NP-Schwe-
re (hier ausgelassen) involviert die durch Translationsinva-
rianz von ​d​ gegebene metrische Universalkonstruierbarkeit,
die eine Reduktion ermöglicht.

In der theoretischen Informatik werden die Komplexitäts-
klassen als Mengen dargestellt, die Entscheidungsprobleme
beinhalten. P ist die Menge aller Probleme, die sich durch
eine deterministische Turingmaschine in einer polynomiel-
len Anzahl von Schritten („effizient“) lösen lassen, während
NP die umfasst, die eine nichtdeterministische Turingma-
schine effizient lösen kann. Da jedes in P lösbare Problem
auch in NP lösbar ist, gilt ​P  ⊆  NP​. (Obwohl in der prakti-
schen Anwendung davon ausgegangen wird, dass ​P  ≠  NP​
[53] (S. 465), bleibt dies ein ungelöstes Problem der Informa-
tik [84]). Dagegen müssen NP-schwere Probleme nicht in NP
liegen, sondern die ‚Schwierigkeit‘ dieser Klasse nur übertref-
fen.

4.1.1	 Effiziente Lösbarkeit und Hartnäckigkeit

Probleme, die in P liegen, werden als effizient lösbar, sol-
che, die unter Annahme von ​P  ≠  NP​ außerhalb von P lie-
gen, als hartnäckig bezeichnet (s. Abb. 2). Der Grund liegt in
der unterschiedlichen Steigung der Terme für wachsende ​n​:
bei einem Polynom wird stets ein von ​n​ abhängiger Term ad-
diert, bei einer Exponentialfunktion (die häufigste Form ei-
nes nicht-polynomiellen Terms) multipliziert.

4.1.2	 Beweis der Hartnäckigkeit durch Reduktion

Um zu beweisen, dass ein Problem P1 hartnäckig ist, wird
in der theoretischen Informatik eine Reduktion eines be-
kanntermaßen NP-schweren Problems P0 auf das Problem
P1 durchgeführt [53] (S. 452–454). Man zeigt, dass sich jede
Instanz von P0 in polynomieller Zeit in eine Instanz von P1
transformieren lässt. Im Folgenden wird das Problem des mi-
nimalen Hamilton-Pfads im Fall vollständiger Graphen auf
das bewiesenermaßen NP-schwere Hamilton-Pfad-Problem
[53] (S. 474–479) [38], [43] reduziert, welches aus der Frage
besteht, ob zu einem beliebigen gegebenen Graphen ein Ha-
milton-Pfad existiert.

Abb. 3: Ein Beispiel für den
Graphen 𝐺𝐺.

4

Abb. 3: Ein Beispiel für den Graphen G Abb. 4: Der für 𝐺𝐺 neu
erstellte Graph 𝐺𝐺′. Schwarze

Kanten sind in 𝐸𝐸, graue
nicht.

5

Abb. 4: Der für ​G​ neu erstellte Graph Gʹ. Schwarze
Kanten sind in ​E​, graue nicht.

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-03.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-04.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-02.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-03.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-04.jpg

doi: 10.7795/320.202503

4.2	 Heuristik

Wie bereits in Kap. 4.1.1 gezeigt wurde, kann die Kettensor-
tierung im Allgemeinfall nicht in einer sinnvollen Zeitspanne
gelöst werden. Aus diesem Grund werden auch andere Algo-
rithmen betrachtet: Heuristiken. Eine Heuristik ist dabei ein
effizienter Algorithmus, der ein hartnäckiges Problem nicht
vollständig löst, sondern nur eine ungefähre Lösung liefert.

Im Fall der Sortierung mehrdimensionaler Objekte bedeutet
dies, dass ein derartiger Algorithmus strategisch versucht, die
Kettenlänge zu reduzieren, jedoch nicht zwangsläufig das glo-
bale Minimum (welches der Sortierung der Liste entspräche)
findet.

Zudem ist eine weitere auf graphentheoretischer Grundla-
ge beruhende Dichotomie der im Folgenden erläuterten Al-
gorithmen sinnvoll: Konstruktionsalgorithmen auf der einen
und Verbesserungsalgorithmen auf der anderen Seite. Dabei
erhalten erstere als Eingabe eine Liste und geben einen Pfad
zurück, während letztere versuchen, die Kettenlänge eines be-
stehenden Pfades zu verringern. In Bezug auf die verwende-
ten Datenstrukturen ist dies unerheblich, da auch Pfade als
Listen repräsentiert werden; die Nutzerfreundlichkeit der
Oberfläche nimmt allerdings zu, da Kombinationen des Aus-
führens von Algorithmen, die zu einer Annäherung an die
Kettensortierung nicht beitragen, verhindert bzw. disincen-
tiviert werden.

Ein Beispiel dafür ist, dass es keinen Sinn ergibt, nach dem
Ausführen des Greedy-Algorithmus einen anderen Konstruk-
tionsalgorithmus wie Nearest Neighbor zu nutzen, da dieser
die vorherigen Ergebnisse nicht berücksichtigt. Diese somit
zu limitieren (engl. constrain), wird als universeller Design-
Grundsatz [55] verstanden.

Grundlegend betrachten Konstruktionsalgorithmen die Liste
also eher als ungeordnete Menge, während sie bei Verbesse-
rungsalgorithmen als geordneter Pfad interpretiert wird.

4.3	 Pfadkonstruktion

Um die folgenden Konstruktionsalgorithmen anwenden zu
können, wird eine Beispielliste ​l​ gewählt, welche sich aus
sechs zweidimensionalen Vektoren zusammensetzt, folglich
auch durch Farben im RGB-Farbraum dargestellt. Dabei re-
präsentieren die Komponenten des Vektors jeweils den Rot-
und Blauwert der Farbe im Intervall ​​[0,1]​​, der Grünwert wird
auf ​0​ festgelegt:

𝑑𝑑(𝑎𝑎, 𝑏𝑏) = {0 falls (𝑎𝑎,𝑏𝑏)∈𝐸𝐸
1 falls (𝑎𝑎,𝑏𝑏)∉𝐸𝐸

. Nun führe man

𝐴𝐴
mit der Eingabe

𝐺𝐺′

aus und erhalte den minimalen Hamilton-Pfad

𝑝𝑝opt
.

Anhand dieser Ausgabe kann das Hamilton-Pfad-Problem für den Graphen

𝐺𝐺
gelöst werden: ist das Gewicht von

𝑝𝑝opt

0
, so existiert für

𝐺𝐺
ein Hamilton-Pfad, andernfalls nicht. Dies folgt daraus, dass

𝐴𝐴
stets den minimalen Hamilton-Pfad auswählt – existiert einer im originalen Graphen, so kann dieser nur aus Kanten mit Gewicht

0
gebildet werden, sonst nicht.

Der Beweis basiert auf [51](S. 479) und [49] und wurde hier statt auf das Travelling Salesman Problem auf das gegebene Problem des minimalen Hamilton-Pfads angewandt. Dies bestätigt erneut die Ähnlichkeit der beiden Probleme.

Somit entsteht ein Widerspruch: die Aussagen, dass das Hamilton-Pfad-Problem NP-schwer ist, und, dass der in P liegende Algorithmus

𝐴𝐴
es lösen kann, widersprechen sich. Somit ist die Hypothese falsch,

𝐴𝐴
notwendigerweise ineffizient und das Problem NP-schwer. Es wurde bisher nur gezeigt, dass das Problem des minimalen Hamilton-Pfad auf beliebigen Graphen NP-schwer sein muss; für die im weiteren Verlauf dieser Arbeit betrachteten Distanzgraphen könnte das Problem immer noch in P liegen. Ein Beweis der NP-Schwere (hier ausgelassen) involviert die durch Translationsinvarianz von

𝑑𝑑
gegebene metrische Universalkonstruierbarkeit, die eine Reduktion ermöglicht.
4.2. Heuristik
Wie bereits in Abschnitt 4.1.1 gezeigt wurde, kann die Kettensortierung im Allgemeinfall nicht in einer sinnvollen Zeitspanne gelöst werden. Aus diesem Grund werden auch andere Algorithmen betrachtet: Heuristiken. Eine Heuristik ist dabei ein effizienter Algorithmus, der ein hartnäckiges Problem nicht vollständig löst, sondern nur eine ungefähre Lösung liefert.

Im Fall der Sortierung mehrdimensionaler Objekte bedeutet dies, dass ein derartiger Algorithmus strategisch versucht, die Kettenlänge zu reduzieren, jedoch nicht zwangsläufig das globale Minimum (welches der Sortierung der Liste entspräche) findet.

Zudem ist eine weitere auf graphentheoretischer Grundlage beruhende Dichotomie der im Folgenden erläuterten Algorithmen sinnvoll: Konstruktionsalgorithmen auf der einen und Verbesserungsalgorithmen auf der anderen Seite. Dabei erhalten erstere als Eingabe eine Liste und geben einen Pfad zurück, während letztere versuchen, die Kettenlänge eines bestehenden Pfades zu verringern. Im Bezug auf die verwendeten Datenstrukturen ist dies unerheblich, da auch Pfade als Listen repräsentiert werden; die Nutzerfreundlichkeit der Oberfläche nimmt allerdings zu, da Kombinationen des Ausführens von Algorithmen, die zu einer Annäherung an die Kettensortierung nicht beitragen, verhindert bzw. disincentiviert werden.

Ein Beispiel dafür ist, dass es keinen Sinn ergibt, nach dem Ausführen des Greedy-Algorithmus einen anderen Konstruktionsalgorithmus wie Nearest Neighbor zu nutzen, da dieser die vorherigen Ergebnisse nicht berücksichtigt. Diese somit zu limitieren (engl. constrain), wird als universeller Design-Grundsatz[53] verstanden.

Grundlegend betrachten Konstruktionsalgorithmen die Liste also eher als ungeordnete Menge, während sie bei Verbesserungsalgorithmen als geordneter Pfad interpretiert wird.

4.3. Pfadkonstruktion
Um die folgenden Konstruktionsalgorithmen anwenden zu können, wird eine Beispielliste

𝑙𝑙
gewählt, welche sich aus sechs zweidimensionalen Vektoren zusammensetzt, folglich auch durch Farben im RGB-Farbraum dargestellt. Dabei repräsentieren die Komponenten des Vektors jeweils den Rot- und Blauwert der Farbe im Intervall

[0, 1]
, der Grünwert wird auf

0
festgelegt:

𝑙𝑙 ≔

[(0.6
0.2), (0.1

0.7), (0.9
0.4), (0.2

0.2), (0.8
0.7), (0.5

0.5)] ≙
Um einen Pfad sowie die darin enthaltenen Vektoren zu visualisieren, habe ich für die folgenden Abbildungen ein Programm mittels der JavaScript-Bibliothek p5.js[60] entwickelt, welches die Listenelemente und ihre Farben in einem zweidimensionalen kartesischen Koordinatensystem darstellt. Die folgenden derartigen Abbildungen entspringen diesem.

4.3.1. Triviale Pfadkonstruktion
Die triviale Pfadkonstruktion gibt die Eingabeliste unverändert zurück – in diesem Fall entstünde der in Abb. 5 erkennbare Pfad. Dieser Algorithmus ermöglicht es, beliebige Pfade selbst zu erstellen und zu verändern, ohne dabei an eine bestimmte Heuristik gebunden zu sein. Zudem können so die Verbesserungsalgorithmen teils besser dargestellt werden. Eine Alternative dieses Verfahrens ist, die Liste vorher zufällig zu mischen.
4.3.2. Brute Force
Der Brute-Force-Algorithmus kann tatsächlich eine Liste mehrdimensional sortieren, also das Minimum aller Permutationen finden, indem jede dieser Permutationen auf ihre Kettenlänge überprüft und jene mit der minimalen zurückgegeben wird (siehe Tabelle 1).

Die Zeitkomplexität dieses Algorithmus liegt in

13

Um einen Pfad sowie die darin enthaltenen Vektoren zu vi-
sualisieren, habe ich für die Abb. 5 und 11–13 ein Programm
mittels der JavaScript-Bibliothek p5.js [62] entwickelt, welches
die Listenelemente und ihre Farben in einem zweidimensio-
nalen kartesischen Koordinatensystem darstellt. Die genann-
ten Abbildungen entspringen diesem.

4.3.1	Triviale Pfadkonstruktion

Die triviale Pfadkonstruktion gibt die Eingabeliste unverän-
dert zurück – in diesem Fall entstünde der in Abb. 5 erkenn-
bare Pfad. Dieser Algorithmus ermöglicht es, beliebige Pfade
selbst zu erstellen und zu verändern, ohne dabei an eine be-
stimmte Heuristik gebunden zu sein. Zudem können so die
Verbesserungsalgorithmen teils besser dargestellt werden.
Eine Alternative dieses Verfahrens ist, die Liste vorher zufäl-
lig zu mischen.

4.3.2	Brute Force

Der Brute-Force-Algorithmus kann tatsächlich eine Lis-
te mehrdimensional sortieren, also das Minimum aller Per-
mutationen finden, indem jede dieser Permutationen auf ihre
Kettenlänge überprüft und jene mit der minimalen zurückge-
geben wird (siehe Abb. 6)

Die Zeitkomplexität dieses Algorithmus liegt in ​​O​(​​n !​)​​​​, wächst
also proportional zur Fakultät der Eingabelänge, da diese zu-
gleich die Anzahl der Permutationen einer derartigen Liste
beschreibt. In der Praxis zeigt sich, dass das Verfahren für Lis-
ten mit zehn oder weniger Elementen durchaus nutzbar ist, je-

Anhand dieser Ausgabe kann das Hamilton-Pfad-Problem für den Graphen 𝐺𝐺 gelöst werden: ist das Gewicht von 𝑝𝑝opt 0, so existiert für 𝐺𝐺 ein Hamilton-Pfad, andernfalls nicht. Dies folgt daraus, dass 𝐴𝐴 stets den minimalen Hamilton-Pfad auswählt – existiert einer im originalen Graphen, so kann dieser nur aus Kanten mit Gewicht 0 gebildet werden, sonst nicht.

Der Beweis basiert auf [53](S. 479) und [51] und wurde hier statt auf das Travelling Salesman Problem auf das gegebene Problem des minimalen Hamilton-Pfads angewandt. Dies bestätigt erneut die Ähnlichkeit der beiden Probleme.

Somit entsteht ein Widerspruch: die Aussagen, dass das Hamilton-Pfad-Problem NP-schwer ist, und, dass der in P liegende Algorithmus 𝐴𝐴 es lösen kann, widersprechen sich. Somit ist die Hypothese falsch, 𝐴𝐴 notwendigerweise ineffizient und das Problem NP-schwer. Es wurde bisher nur gezeigt, dass das Problem des minimalen Hamilton-Pfad auf beliebigen Graphen NP-schwer sein muss; für die im weiteren Verlauf dieser Arbeit betrachteten Distanzgraphen könnte das Problem immer noch in P liegen. Ein Beweis der NP-Schwere (hier ausgelassen) involviert die durch Translationsinvarianz von 𝑑𝑑 gegebene metrische Universalkonstruierbarkeit, die eine Reduktion ermöglicht.
4.2. Heuristik
Wie bereits in Abschnitt 4.1.1 gezeigt wurde, kann die Kettensortierung im Allgemeinfall nicht in einer sinnvollen Zeitspanne gelöst werden. Aus diesem Grund werden auch andere Algorithmen betrachtet: Heuristiken. Eine Heuristik ist dabei ein effizienter Algorithmus, der ein hartnäckiges Problem nicht vollständig löst, sondern nur eine ungefähre Lösung liefert.

Im Fall der Sortierung mehrdimensionaler Objekte bedeutet dies, dass ein derartiger Algorithmus strategisch versucht, die Kettenlänge zu reduzieren, jedoch nicht zwangsläufig das globale Minimum (welches der Sortierung der Liste entspräche) findet.

Zudem ist eine weitere auf graphentheoretischer Grundlage beruhende Dichotomie der im Folgenden erläuterten Algorithmen sinnvoll: Konstruktionsalgorithmen auf der einen und Verbesserungsalgorithmen auf der anderen Seite. Dabei erhalten erstere als Eingabe eine Liste und geben einen Pfad zurück, während letztere versuchen, die Kettenlänge eines bestehenden Pfades zu verringern. Im Bezug auf die verwendeten Datenstrukturen ist dies unerheblich, da auch Pfade als Listen repräsentiert werden; die Nutzerfreundlichkeit der Oberfläche nimmt allerdings zu, da Kombinationen des Ausführens von Algorithmen, die zu einer Annäherung an die Kettensortierung nicht beitragen, verhindert bzw. disincentiviert werden.

Ein Beispiel dafür ist, dass es keinen Sinn ergibt, nach dem Ausführen des Greedy-Algorithmus einen anderen Konstruktionsalgorithmus wie Nearest Neighbor zu nutzen, da dieser die vorherigen Ergebnisse nicht berücksichtigt. Diese somit zu limitieren (engl. constrain), wird als universeller Design-Grundsatz[55] verstanden.

Grundlegend betrachten Konstruktionsalgorithmen die Liste also eher als ungeordnete Menge, während sie bei Verbesserungsalgorithmen als geordneter Pfad interpretiert wird.

4.3. Pfadkonstruktion

Um die folgenden Konstruktionsalgorithmen anwenden zu können, wird eine Beispielliste 𝑙𝑙 gewählt, welche sich aus sechs zweidimensionalen Vektoren zusammensetzt, folglich auch durch Farben im RGB-Farbraum dargestellt. Dabei repräsentieren die Komponenten des Vektors jeweils den Rot- und Blauwert der Farbe im Intervall [0, 1], der Grünwert wird auf 0 festgelegt: 𝑙𝑙 ≔ [(0.6
0.2), (0.1

0.7), (0.9
0.4), (0.2

0.2), (0.8
0.7), (0.5

0.5)] ≙

Um einen Pfad sowie die darin enthaltenen Vektoren zu visualisieren, habe ich für die folgenden Abbildungen ein Programm mittels der JavaScript-Bibliothek p5.js[62] entwickelt, welches die Listenelemente und ihre Farben in einem zweidimensionalen kartesischen Koordinatensystem darstellt. Die folgenden derartigen Abbildungen entspringen diesem.

Abb. 5: Der durch 𝑙𝑙
gegebene triviale Pfad.

6

Abb. 5: Der durch ​l​ gegebene triviale Pfad.

Informatik | Seite 8

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-05.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-11.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-13.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-05.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-06.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-05.jpg

JUNGE wissenschaft 15 / 18 | Seite 9JUNGE wissenschaft 03 / 25 | Seite 9

doi: 10.7795/320.202503

doch ab einer Länge von 14 Elementen mit einem geschätzten
Zeitaufwand von zwei Stunden keine Option mehr darstellt
(siehe auch Kap. 4.1.1)

4.3.3	Nächster Nachbar

Beim Nächster-Nachbar-Algorithmus (engl. nearest neighbor,
kurz NN) handelt es sich um ein sog. naives gieriges Verfah-
ren. Dabei wird vom ersten Punkt der Liste aus begonnen
und stets der Punkt ausgewählt und folglich betrachtet, des-
sen Distanz zum aktuell betrachteten minimal ist und noch
nicht im zu erstellenden Pfad enthalten ist, bis alle Punkte im
Pfad enthalten sind (s. Abb. 7).

Da es stets einen konkreten Bezugspunkt gibt, von dem aus
vorgegangen wird, ist der Algorithmus einfach zu verstehen
und zu visualisieren. Für die praktische Anwendung reicht
er nicht, da stets nur das nächste Element berücksichtigt und
der restliche Kontext vernachlässigt wird – so kommt es ins-
besondere am Ende des Pfades meist zu besonders langen
Kanten hin zu Knoten, die unter Reduzierung der Kettenlän-
ge bereits vorher hätten besucht werden können, es allerdings
nicht wurden, da andere Knoten unmittelbar näher lagen. Die
Komplexität ist quadratisch, da für jeden hinzuzufügenden
Knoten jeder andere Knoten überprüft wird.

Da stets beim ersten Punkt dieser Liste begonnen wird, ist der
Algorithmus anordnungsabhängig. Abb. 8 zeigt die verschie-
denen erzeugten Pfade im Fall von ​l​ (14) – aufgrund des uni-
direktionalen Auswahlverfahrens weisen sie alle eine unter-
schiedliche Kettenlänge auf.

Um den NN-Algorithmus unabhängig vom ersten Element
der Liste zu gestalten, kann auf Kosten der nun kubischen
Laufzeitkomplexität der bisherige Algorithmus für alle Rota-
tionen der Originalliste ausgeführt werden und das Ergebnis
geringster Kettenlänge ausgewählt werden. Eine alternative
kubische Generalisierung ist die Aufhebung der Beschrän-
kung des Anfügens am Ende auf eine optimale Einfügetaktik
an einer beliebigen Stelle.

4.3.4	Greedy

Der Greedy-Algorithmus (auch Multiple Fragments [49])
enumeriert alle Kanten und sortiert sie nach ihrem Gewicht
aufsteigend. Diese werden in einem Stapel abgelegt und stets
wird die erste Kante ausgewählt, entfernt sowie dem Pfad
angefügt, die die Validität nicht verletzt, also keine bereits
zweifach verbundenen Knoten besucht oder Zyklen erstellt
(s. Abb. 9).

Sobald die Länge dieser Liste von Kanten gleich der der Ein-
gabe minus eins ist, ist ein valider Pfad gefunden, da die
Validität nicht verletzt wurde und alle Knoten besucht wer-
den. Zudem existiert stets ein solcher Pfad, da von der
Vollständigkeit des Graphen ausgegangen wird. Bei Wahl
zweckmäßiger Datenstrukturen liegt die Zeitkomplexität in
​​O​(​​ ​n​​ 2​ ∙ log​(​​n​)​​​​).

Die Fragmentierung kann analog zu Kap. 4.3.3 zum Schluss
zu suboptimalen Kanten führen, jedoch wird das Problem der
Nichtberücksichtigung von „Außenseitern“ zumeist umgan-
gen, da auch der Weg von einem solchen zu einem beliebigen
anderen Knoten zumeist kürzer ist als ein anderer, der zwi-
schen „Clustern“ wechselt.

4.3.1. Triviale Pfadkonstruktion
Die triviale Pfadkonstruktion gibt die Eingabeliste unverändert zurück – in diesem Fall entstünde der in Abb. 5 erkennbare Pfad. Dieser Algorithmus ermöglicht es, beliebige Pfade selbst zu erstellen und zu verändern, ohne dabei an eine bestimmte Heuristik gebunden zu sein. Zudem können so die Verbesserungsalgorithmen teils besser dargestellt werden. Eine Alternative dieses Verfahrens ist, die Liste vorher zufällig zu mischen.
4.3.2. Brute Force
Der Brute-Force-Algorithmus kann tatsächlich eine Liste mehrdimensional sortieren, also das Minimum aller Permutationen finden, indem jede dieser Permutationen auf ihre Kettenlänge überprüft und jene mit der minimalen zurückgegeben wird (siehe Abb. 6).

Die Zeitkomplexität dieses Algorithmus liegt in Θ(𝑛𝑛!), wächst also proportional zur Fakultät der Eingabelänge, da diese zugleich die Anzahl der Permutationen einer derartigen Liste beschreibt. In der Praxis zeigt sich, dass das Verfahren für Listen mit zehn oder weniger Elementen durchaus nutzbar ist, jedoch ab einer Länge von 14 mit einem geschätzten Zeitaufwand von zwei Stunden keine Option mehr darstellt (siehe auch Abschnitt 4.1.1).

𝑝𝑝 𝑑𝑑𝕃𝕃(𝑝𝑝) min
1 3.43 3.43
2 3.07 3.07
… (233

weitere)
236 1.88 1.88
… (483

weitere)
718 3.07 1.88
719 3.43 1.88
Abb. 6: Brute Force überprüft

jede Permutation.

7

Abb. 6: Brute Force überprüft jede Permutation

Pfad 𝑝𝑝
(𝑑𝑑𝕃𝕃(𝑝𝑝))

Nachbarn
von 𝑝𝑝|𝑝𝑝|

(0)
 0.32 0.36
 0.40 0.54
 0.71

(0.32)
 0.36 0.41
 0.42 0.45

(0.68)
 0.32 0.70
 0.78

(0.99)
 0.73 0.85

(1.72)
 0.51

(2.23)
Abb. 7: Stets wird vom

aktuellen Punkt aus der nächste
Nachbar besucht.

8

Abb. 7: Stets wird vom aktuellen Punkt aus der
nächste Nachbar gesucht

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-07.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-08.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-09.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-06.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-07.jpg

doi: 10.7795/320.202503

4.3.5	Ganzzahlige lineare Optimierung
und Branch-and-Bound

Um die optimale Lösung zu finden, ohne jede Permutati-
on überprüfen zu müssen, eignet sich die Neuformulierung
des Problems in Begriffen der ganzzahligen linearen Opti-
mierung (ILP). Für eine Instanz der Länge ​n​, einen als Ad-
jazenzmatrix ​​A​ ij​​​ repräsentierten Distanzgraphen ​​(​(V, E)​, d)​​
und eine den Pfad ​p​ repräsentierenden ​​{0,1}​​-wertigen Relati-
onsmatrix ​​X​ ij​​  =  ​(​V​ i​​, ​V​ j​​)​  ∈  p​ habe ich das folgende ILP (naiv ​​
n​​ 2​ + 3n + 1​Nebenbedingungen) erarbeitet:

Θ(𝑛𝑛!)
, wächst also proportional zur Fakultät der Eingabelänge, da diese zugleich die Anzahl der Permutationen einer derartigen Liste beschreibt. In der Praxis zeigt sich, dass das Verfahren für Listen mit zehn oder weniger Elementen durchaus nutzbar ist, jedoch ab einer Länge von 14 mit einem geschätzten Zeitaufwand von zwei Stunden keine Option mehr darstellt (siehe auch Abschnitt 4.1.1).

4.3.3. Nächster Nachbar
Beim Nächster-Nachbar-Algorithmus (engl. nearest neighbor, kurz NN) handelt es sich um ein sog. naives gieriges Verfahren. Dabei wird vom ersten Punkt der Liste aus begonnen und stets der Punkt ausgewählt und folglich betrachtet, dessen Distanz zum aktuell betrachteten minimal ist und noch nicht im zu erstellenden Pfad enthalten ist, bis alle Punkte im Pfad enthalten sind.

Da es stets einen konkreten Bezugspunkt gibt, von dem aus vorgegangen wird, ist der Algorithmus einfach zu verstehen und zu visualisieren. Für die praktische Anwendung reicht er nicht, da stets nur das nächste Element berücksichtigt und der restliche Kontext vernachlässigt wird – so kommt es insbesondere am Ende des Pfades meist zu besonders langen Kanten hin zu Knoten, die unter Reduzierung der Kettenlänge bereits vorher hätten besucht werden können, es allerdings nicht wurden, da andere Knoten unmittelbar näher lagen. Die Komplexität ist quadratisch, da für jeden hinzuzufügenden Knoten jeder andere Knoten überprüft wird.

Da stets beim ersten Punkt dieser Liste begonnen wird, ist der Algorithmus anordnungsabhängig. Tabelle 3 zeigt die verschiedenen erzeugten Pfade im Fall von

𝑙𝑙
(14) – aufgrund des unidirektionalen Auswahlverfahrens weisen sie alle eine unterschiedliche Kettenlänge auf.

Um den NN-Algorithmus unabhängig vom ersten Element der Liste zu gestalten, kann auf Kosten der nun kubischen Laufzeitkomplexität der bisherige Algorithmus für alle Rotationen der Originalliste ausgeführt werden und das Ergebnis geringster Kettenlänge ausgewählt werden. Eine alternative kubische Generalisierung ist die Aufhebung der Beschränkung des Anfügens am Ende auf eine optimale Einfügetaktik an einer beliebigen Stelle.
4.3.4. Greedy
Der Greedy-Algorithmus (auch Multiple Fragments[47]) enumeriert alle Kanten und sortiert sie nach ihrem Gewicht aufsteigend. Diese werden in einem Stapel abgelegt und stets wird die erste Kante ausgewählt, entfernt sowie dem Pfad angefügt, die die Validität nicht verletzt, also keine bereits zweifach verbundenen Knoten besucht oder Zyklen erstellt.

Sobald die Länge dieser Liste von Kanten gleich der der Eingabe minus eins ist, ist ein valider Pfad gefunden, da die Validität nicht verletzt wurde und alle Knoten besucht werden. Zudem existiert stets ein solcher Pfad, da von der Vollständigkeit des Graphen ausgegangen wird. Bei Wahl zweckmäßiger Datenstrukturen liegt die Zeitkomplexität in

𝒪𝒪(𝑛𝑛2 ⋅ log 𝑛𝑛)
.

Die Fragmentierung kann analog zu Abschnitt 4.3.3 zum Schluss zu suboptimalen Kanten führen, jedoch wird das Problem der Nichtberücksichtung von „Außenseitern“ zumeist umgangen, da auch der Weg von einem solchen zu einem beliebigen anderen Knoten zumeist kürzer ist als ein anderer, der zwischen „Clustern“ wechselt.
4.3.5. Ganzzahlige lineare Optimierung und Branch-and-Bound
Um die optimale Lösung zu finden, ohne jede Permutation überprüfen zu müssen, eignet sich die Neuformulierung des Problems in Begriffen der ganzzahligen linearen Optimierung (ILP). Für eine Instanz der Länge

𝑛𝑛
, einen als Adjazenzmatrix

𝐴𝐴𝑖𝑖𝑗𝑗
repräsentierten Distanzgraphen

((𝑉𝑉 , 𝐸𝐸), 𝑑𝑑)
und eine den Pfad

𝑝𝑝
repräsentierenden

{0, 1}
-wertigen Relationsmatrix

𝑋𝑋𝑖𝑖𝑗𝑗 = (𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) ∈ 𝑝𝑝
, habe ich das folgende ILP (naiv

𝑛𝑛2 + 3𝑛𝑛 + 1
Nebenbedingungen) erarbeitet:

min ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ⋅ 𝐴𝐴𝑖𝑖𝑗𝑗, s.t. ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≥ 1

∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1 ∧ ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1

∧ ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 = 𝑛𝑛 − 1 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≤ 1

Jeder Eintrag der Matrix

𝑋𝑋
ist eine Variable des ILP. Minimiert wird dabei das Gewicht des Pfads, unter den Bedingungen, dass jeder Knoten erreicht wird, in jeder Zeile und jeder Spalte der Matrix höchstens eine Kante Teil des Pfads ist, insgesamt

𝑛𝑛 − 1
Kanten enthalten sind und keine Kante und ihre Gegenkante gewählt wird (dies verhindert auch Schlingen).

Eine alternative und TSP-ähnlichere Modellierung könnte (durch Symmetrie) nur Kanten oberhalb der Hauptdiagonale betrachten. So wäre das ILP effizienter (da kleiner), jedoch würden die ersten beiden Nebenbedingungen deutlich komplexer, da gültige Lösungen pro Zeile und Spalte 0 bis 2 Kanten auswählen könnten und eine neue Validitätseinschränkung formuliert werden muss. In meiner Arbeit verzichte ich auf diese Optimierung.

Eine zulässige Lösung[74] ist dabei nicht zwangsläufig eine valide Permutation, da Zyklen nicht betrachtet werden: sie müssen nach Ermitteln einer invaliden Lösung als neue Nebenbedingungen hinzugefügt werden. Da der Beweis in Abschnitt 4.1.2 zutrifft, ist auch dieses ILP (bzw. dessen azyklische Variation) hartnäckig; allerdings können die konstanten Faktoren mit einem geeigneten Algorithmus stark gesenkt werden. Fokus meiner Arbeit ist dabei ein Branch-and-Bound-Verfahren[62]: Zunächst wird (mithilfe einer externen Bibliothek) das effizient lösbare bedingungsgleiche in

𝑋𝑋
reellwertige LP gelöst (da statt diskreten Werten kontinuierliche ermittelt werden, handelt es sich dabei um eine Relaxierung), um die Menge möglicher Lösungen einzugrenzen; im Anschluss werden die kontinuierlichen Werte durch Aufspalten der Wertebereiche der Variablen fixiert. Das genaue Verfahren , z.B. in [48] und [81] für das symmetrische TSP oder in [58] für allgemeine ILP beschrieben, wird hier der Kürze halber ausgespart; jedoch schafft es meine Implementierung in der Praxis, Instanzen bis

𝑛𝑛 = 50
in hinnehmbarer Zeit zu lösen.
4.4. Pfadverbesserung
Die Pfadverbesserungsalgorithmen werden im Folgenden am Beispiel des eben durch NN (bei Start am ersten Element der Liste) erstellten Pfad,

𝑝𝑝 =
, erklärt (siehe Abb. 6).

4.4.1. Rotation
Mit einer linearen Laufzeit ist die Rotation das algorithmisch einfachste Verfahren aus dieser Liste. Dabei wird das Maximum der Kantengewichte aller Kanten des Pfads sowie der nicht berücksichtigten Kante zwischen Start und Ziel des Pfads ermittelt. Falls diese ein höheres Gewicht als alle im Pfad enthaltenen aufweist, so ist der Pfad bereits rotationsoptimal und kann nicht optimiert werden. Ansonsten wird die maximale Kante aus dem Pfad entfernt und die neue Kante hinzugefügt. Durch Erweitern auf sequenzielle Teilpfade können ästhetische lokale Minima gefunden werden.

Tabelle 5 zeigt die Anwendung der Rotation auf den Beispielpfad. Hierbei zeigt sich, dass eine im Pfad vorkommende Kante (

14

Θ(𝑛𝑛!)
, wächst also proportional zur Fakultät der Eingabelänge, da diese zugleich die Anzahl der Permutationen einer derartigen Liste beschreibt. In der Praxis zeigt sich, dass das Verfahren für Listen mit zehn oder weniger Elementen durchaus nutzbar ist, jedoch ab einer Länge von 14 mit einem geschätzten Zeitaufwand von zwei Stunden keine Option mehr darstellt (siehe auch Abschnitt 4.1.1).

4.3.3. Nächster Nachbar
Beim Nächster-Nachbar-Algorithmus (engl. nearest neighbor, kurz NN) handelt es sich um ein sog. naives gieriges Verfahren. Dabei wird vom ersten Punkt der Liste aus begonnen und stets der Punkt ausgewählt und folglich betrachtet, dessen Distanz zum aktuell betrachteten minimal ist und noch nicht im zu erstellenden Pfad enthalten ist, bis alle Punkte im Pfad enthalten sind.

Da es stets einen konkreten Bezugspunkt gibt, von dem aus vorgegangen wird, ist der Algorithmus einfach zu verstehen und zu visualisieren. Für die praktische Anwendung reicht er nicht, da stets nur das nächste Element berücksichtigt und der restliche Kontext vernachlässigt wird – so kommt es insbesondere am Ende des Pfades meist zu besonders langen Kanten hin zu Knoten, die unter Reduzierung der Kettenlänge bereits vorher hätten besucht werden können, es allerdings nicht wurden, da andere Knoten unmittelbar näher lagen. Die Komplexität ist quadratisch, da für jeden hinzuzufügenden Knoten jeder andere Knoten überprüft wird.

Da stets beim ersten Punkt dieser Liste begonnen wird, ist der Algorithmus anordnungsabhängig. Tabelle 3 zeigt die verschiedenen erzeugten Pfade im Fall von

𝑙𝑙
(14) – aufgrund des unidirektionalen Auswahlverfahrens weisen sie alle eine unterschiedliche Kettenlänge auf.

Um den NN-Algorithmus unabhängig vom ersten Element der Liste zu gestalten, kann auf Kosten der nun kubischen Laufzeitkomplexität der bisherige Algorithmus für alle Rotationen der Originalliste ausgeführt werden und das Ergebnis geringster Kettenlänge ausgewählt werden. Eine alternative kubische Generalisierung ist die Aufhebung der Beschränkung des Anfügens am Ende auf eine optimale Einfügetaktik an einer beliebigen Stelle.
4.3.4. Greedy
Der Greedy-Algorithmus (auch Multiple Fragments[47]) enumeriert alle Kanten und sortiert sie nach ihrem Gewicht aufsteigend. Diese werden in einem Stapel abgelegt und stets wird die erste Kante ausgewählt, entfernt sowie dem Pfad angefügt, die die Validität nicht verletzt, also keine bereits zweifach verbundenen Knoten besucht oder Zyklen erstellt.

Sobald die Länge dieser Liste von Kanten gleich der der Eingabe minus eins ist, ist ein valider Pfad gefunden, da die Validität nicht verletzt wurde und alle Knoten besucht werden. Zudem existiert stets ein solcher Pfad, da von der Vollständigkeit des Graphen ausgegangen wird. Bei Wahl zweckmäßiger Datenstrukturen liegt die Zeitkomplexität in

𝒪𝒪(𝑛𝑛2 ⋅ log 𝑛𝑛)
.

Die Fragmentierung kann analog zu Abschnitt 4.3.3 zum Schluss zu suboptimalen Kanten führen, jedoch wird das Problem der Nichtberücksichtung von „Außenseitern“ zumeist umgangen, da auch der Weg von einem solchen zu einem beliebigen anderen Knoten zumeist kürzer ist als ein anderer, der zwischen „Clustern“ wechselt.
4.3.5. Ganzzahlige lineare Optimierung und Branch-and-Bound
Um die optimale Lösung zu finden, ohne jede Permutation überprüfen zu müssen, eignet sich die Neuformulierung des Problems in Begriffen der ganzzahligen linearen Optimierung (ILP). Für eine Instanz der Länge

𝑛𝑛
, einen als Adjazenzmatrix

𝐴𝐴𝑖𝑖𝑗𝑗
repräsentierten Distanzgraphen

((𝑉𝑉 , 𝐸𝐸), 𝑑𝑑)
und eine den Pfad

𝑝𝑝
repräsentierenden

{0, 1}
-wertigen Relationsmatrix

𝑋𝑋𝑖𝑖𝑗𝑗 = (𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) ∈ 𝑝𝑝
, habe ich das folgende ILP (naiv

𝑛𝑛2 + 3𝑛𝑛 + 1
Nebenbedingungen) erarbeitet:

min ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ⋅ 𝐴𝐴𝑖𝑖𝑗𝑗, s.t. ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≥ 1

∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1 ∧ ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1

∧ ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 = 𝑛𝑛 − 1 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≤ 1

Jeder Eintrag der Matrix

𝑋𝑋
ist eine Variable des ILP. Minimiert wird dabei das Gewicht des Pfads, unter den Bedingungen, dass jeder Knoten erreicht wird, in jeder Zeile und jeder Spalte der Matrix höchstens eine Kante Teil des Pfads ist, insgesamt

𝑛𝑛 − 1
Kanten enthalten sind und keine Kante und ihre Gegenkante gewählt wird (dies verhindert auch Schlingen).

Eine alternative und TSP-ähnlichere Modellierung könnte (durch Symmetrie) nur Kanten oberhalb der Hauptdiagonale betrachten. So wäre das ILP effizienter (da kleiner), jedoch würden die ersten beiden Nebenbedingungen deutlich komplexer, da gültige Lösungen pro Zeile und Spalte 0 bis 2 Kanten auswählen könnten und eine neue Validitätseinschränkung formuliert werden muss. In meiner Arbeit verzichte ich auf diese Optimierung.

Eine zulässige Lösung[74] ist dabei nicht zwangsläufig eine valide Permutation, da Zyklen nicht betrachtet werden: sie müssen nach Ermitteln einer invaliden Lösung als neue Nebenbedingungen hinzugefügt werden. Da der Beweis in Abschnitt 4.1.2 zutrifft, ist auch dieses ILP (bzw. dessen azyklische Variation) hartnäckig; allerdings können die konstanten Faktoren mit einem geeigneten Algorithmus stark gesenkt werden. Fokus meiner Arbeit ist dabei ein Branch-and-Bound-Verfahren[62]: Zunächst wird (mithilfe einer externen Bibliothek) das effizient lösbare bedingungsgleiche in

𝑋𝑋
reellwertige LP gelöst (da statt diskreten Werten kontinuierliche ermittelt werden, handelt es sich dabei um eine Relaxierung), um die Menge möglicher Lösungen einzugrenzen; im Anschluss werden die kontinuierlichen Werte durch Aufspalten der Wertebereiche der Variablen fixiert. Das genaue Verfahren , z.B. in [48] und [81] für das symmetrische TSP oder in [58] für allgemeine ILP beschrieben, wird hier der Kürze halber ausgespart; jedoch schafft es meine Implementierung in der Praxis, Instanzen bis

𝑛𝑛 = 50
in hinnehmbarer Zeit zu lösen.
4.4. Pfadverbesserung
Die Pfadverbesserungsalgorithmen werden im Folgenden am Beispiel des eben durch NN (bei Start am ersten Element der Liste) erstellten Pfad,

𝑝𝑝 =
, erklärt (siehe Abb. 6).

4.4.1. Rotation
Mit einer linearen Laufzeit ist die Rotation das algorithmisch einfachste Verfahren aus dieser Liste. Dabei wird das Maximum der Kantengewichte aller Kanten des Pfads sowie der nicht berücksichtigten Kante zwischen Start und Ziel des Pfads ermittelt. Falls diese ein höheres Gewicht als alle im Pfad enthaltenen aufweist, so ist der Pfad bereits rotationsoptimal und kann nicht optimiert werden. Ansonsten wird die maximale Kante aus dem Pfad entfernt und die neue Kante hinzugefügt. Durch Erweitern auf sequenzielle Teilpfade können ästhetische lokale Minima gefunden werden.

Tabelle 5 zeigt die Anwendung der Rotation auf den Beispielpfad. Hierbei zeigt sich, dass eine im Pfad vorkommende Kante (

14

Θ(𝑛𝑛!)
, wächst also proportional zur Fakultät der Eingabelänge, da diese zugleich die Anzahl der Permutationen einer derartigen Liste beschreibt. In der Praxis zeigt sich, dass das Verfahren für Listen mit zehn oder weniger Elementen durchaus nutzbar ist, jedoch ab einer Länge von 14 mit einem geschätzten Zeitaufwand von zwei Stunden keine Option mehr darstellt (siehe auch Abschnitt 4.1.1).

4.3.3. Nächster Nachbar
Beim Nächster-Nachbar-Algorithmus (engl. nearest neighbor, kurz NN) handelt es sich um ein sog. naives gieriges Verfahren. Dabei wird vom ersten Punkt der Liste aus begonnen und stets der Punkt ausgewählt und folglich betrachtet, dessen Distanz zum aktuell betrachteten minimal ist und noch nicht im zu erstellenden Pfad enthalten ist, bis alle Punkte im Pfad enthalten sind.

Da es stets einen konkreten Bezugspunkt gibt, von dem aus vorgegangen wird, ist der Algorithmus einfach zu verstehen und zu visualisieren. Für die praktische Anwendung reicht er nicht, da stets nur das nächste Element berücksichtigt und der restliche Kontext vernachlässigt wird – so kommt es insbesondere am Ende des Pfades meist zu besonders langen Kanten hin zu Knoten, die unter Reduzierung der Kettenlänge bereits vorher hätten besucht werden können, es allerdings nicht wurden, da andere Knoten unmittelbar näher lagen. Die Komplexität ist quadratisch, da für jeden hinzuzufügenden Knoten jeder andere Knoten überprüft wird.

Da stets beim ersten Punkt dieser Liste begonnen wird, ist der Algorithmus anordnungsabhängig. Tabelle 3 zeigt die verschiedenen erzeugten Pfade im Fall von

𝑙𝑙
(14) – aufgrund des unidirektionalen Auswahlverfahrens weisen sie alle eine unterschiedliche Kettenlänge auf.

Um den NN-Algorithmus unabhängig vom ersten Element der Liste zu gestalten, kann auf Kosten der nun kubischen Laufzeitkomplexität der bisherige Algorithmus für alle Rotationen der Originalliste ausgeführt werden und das Ergebnis geringster Kettenlänge ausgewählt werden. Eine alternative kubische Generalisierung ist die Aufhebung der Beschränkung des Anfügens am Ende auf eine optimale Einfügetaktik an einer beliebigen Stelle.
4.3.4. Greedy
Der Greedy-Algorithmus (auch Multiple Fragments[47]) enumeriert alle Kanten und sortiert sie nach ihrem Gewicht aufsteigend. Diese werden in einem Stapel abgelegt und stets wird die erste Kante ausgewählt, entfernt sowie dem Pfad angefügt, die die Validität nicht verletzt, also keine bereits zweifach verbundenen Knoten besucht oder Zyklen erstellt.

Sobald die Länge dieser Liste von Kanten gleich der der Eingabe minus eins ist, ist ein valider Pfad gefunden, da die Validität nicht verletzt wurde und alle Knoten besucht werden. Zudem existiert stets ein solcher Pfad, da von der Vollständigkeit des Graphen ausgegangen wird. Bei Wahl zweckmäßiger Datenstrukturen liegt die Zeitkomplexität in

𝒪𝒪(𝑛𝑛2 ⋅ log 𝑛𝑛)
.

Die Fragmentierung kann analog zu Abschnitt 4.3.3 zum Schluss zu suboptimalen Kanten führen, jedoch wird das Problem der Nichtberücksichtung von „Außenseitern“ zumeist umgangen, da auch der Weg von einem solchen zu einem beliebigen anderen Knoten zumeist kürzer ist als ein anderer, der zwischen „Clustern“ wechselt.
4.3.5. Ganzzahlige lineare Optimierung und Branch-and-Bound
Um die optimale Lösung zu finden, ohne jede Permutation überprüfen zu müssen, eignet sich die Neuformulierung des Problems in Begriffen der ganzzahligen linearen Optimierung (ILP). Für eine Instanz der Länge

𝑛𝑛
, einen als Adjazenzmatrix

𝐴𝐴𝑖𝑖𝑗𝑗
repräsentierten Distanzgraphen

((𝑉𝑉 , 𝐸𝐸), 𝑑𝑑)
und eine den Pfad

𝑝𝑝
repräsentierenden

{0, 1}
-wertigen Relationsmatrix

𝑋𝑋𝑖𝑖𝑗𝑗 = (𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) ∈ 𝑝𝑝
, habe ich das folgende ILP (naiv

𝑛𝑛2 + 3𝑛𝑛 + 1
Nebenbedingungen) erarbeitet:

min ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ⋅ 𝐴𝐴𝑖𝑖𝑗𝑗, s.t. ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≥ 1

∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1 ∧ ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1

∧ ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 = 𝑛𝑛 − 1 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≤ 1

Jeder Eintrag der Matrix

𝑋𝑋
ist eine Variable des ILP. Minimiert wird dabei das Gewicht des Pfads, unter den Bedingungen, dass jeder Knoten erreicht wird, in jeder Zeile und jeder Spalte der Matrix höchstens eine Kante Teil des Pfads ist, insgesamt

𝑛𝑛 − 1
Kanten enthalten sind und keine Kante und ihre Gegenkante gewählt wird (dies verhindert auch Schlingen).

Eine alternative und TSP-ähnlichere Modellierung könnte (durch Symmetrie) nur Kanten oberhalb der Hauptdiagonale betrachten. So wäre das ILP effizienter (da kleiner), jedoch würden die ersten beiden Nebenbedingungen deutlich komplexer, da gültige Lösungen pro Zeile und Spalte 0 bis 2 Kanten auswählen könnten und eine neue Validitätseinschränkung formuliert werden muss. In meiner Arbeit verzichte ich auf diese Optimierung.

Eine zulässige Lösung[74] ist dabei nicht zwangsläufig eine valide Permutation, da Zyklen nicht betrachtet werden: sie müssen nach Ermitteln einer invaliden Lösung als neue Nebenbedingungen hinzugefügt werden. Da der Beweis in Abschnitt 4.1.2 zutrifft, ist auch dieses ILP (bzw. dessen azyklische Variation) hartnäckig; allerdings können die konstanten Faktoren mit einem geeigneten Algorithmus stark gesenkt werden. Fokus meiner Arbeit ist dabei ein Branch-and-Bound-Verfahren[62]: Zunächst wird (mithilfe einer externen Bibliothek) das effizient lösbare bedingungsgleiche in

𝑋𝑋
reellwertige LP gelöst (da statt diskreten Werten kontinuierliche ermittelt werden, handelt es sich dabei um eine Relaxierung), um die Menge möglicher Lösungen einzugrenzen; im Anschluss werden die kontinuierlichen Werte durch Aufspalten der Wertebereiche der Variablen fixiert. Das genaue Verfahren , z.B. in [48] und [81] für das symmetrische TSP oder in [58] für allgemeine ILP beschrieben, wird hier der Kürze halber ausgespart; jedoch schafft es meine Implementierung in der Praxis, Instanzen bis

𝑛𝑛 = 50
in hinnehmbarer Zeit zu lösen.
4.4. Pfadverbesserung
Die Pfadverbesserungsalgorithmen werden im Folgenden am Beispiel des eben durch NN (bei Start am ersten Element der Liste) erstellten Pfad,

𝑝𝑝 =
, erklärt (siehe Abb. 6).

4.4.1. Rotation
Mit einer linearen Laufzeit ist die Rotation das algorithmisch einfachste Verfahren aus dieser Liste. Dabei wird das Maximum der Kantengewichte aller Kanten des Pfads sowie der nicht berücksichtigten Kante zwischen Start und Ziel des Pfads ermittelt. Falls diese ein höheres Gewicht als alle im Pfad enthaltenen aufweist, so ist der Pfad bereits rotationsoptimal und kann nicht optimiert werden. Ansonsten wird die maximale Kante aus dem Pfad entfernt und die neue Kante hinzugefügt. Durch Erweitern auf sequenzielle Teilpfade können ästhetische lokale Minima gefunden werden.

Tabelle 5 zeigt die Anwendung der Rotation auf den Beispielpfad. Hierbei zeigt sich, dass eine im Pfad vorkommende Kante (

14

Θ(𝑛𝑛!)
, wächst also proportional zur Fakultät der Eingabelänge, da diese zugleich die Anzahl der Permutationen einer derartigen Liste beschreibt. In der Praxis zeigt sich, dass das Verfahren für Listen mit zehn oder weniger Elementen durchaus nutzbar ist, jedoch ab einer Länge von 14 mit einem geschätzten Zeitaufwand von zwei Stunden keine Option mehr darstellt (siehe auch Abschnitt 4.1.1).

4.3.3. Nächster Nachbar
Beim Nächster-Nachbar-Algorithmus (engl. nearest neighbor, kurz NN) handelt es sich um ein sog. naives gieriges Verfahren. Dabei wird vom ersten Punkt der Liste aus begonnen und stets der Punkt ausgewählt und folglich betrachtet, dessen Distanz zum aktuell betrachteten minimal ist und noch nicht im zu erstellenden Pfad enthalten ist, bis alle Punkte im Pfad enthalten sind.

Da es stets einen konkreten Bezugspunkt gibt, von dem aus vorgegangen wird, ist der Algorithmus einfach zu verstehen und zu visualisieren. Für die praktische Anwendung reicht er nicht, da stets nur das nächste Element berücksichtigt und der restliche Kontext vernachlässigt wird – so kommt es insbesondere am Ende des Pfades meist zu besonders langen Kanten hin zu Knoten, die unter Reduzierung der Kettenlänge bereits vorher hätten besucht werden können, es allerdings nicht wurden, da andere Knoten unmittelbar näher lagen. Die Komplexität ist quadratisch, da für jeden hinzuzufügenden Knoten jeder andere Knoten überprüft wird.

Da stets beim ersten Punkt dieser Liste begonnen wird, ist der Algorithmus anordnungsabhängig. Tabelle 3 zeigt die verschiedenen erzeugten Pfade im Fall von

𝑙𝑙
(14) – aufgrund des unidirektionalen Auswahlverfahrens weisen sie alle eine unterschiedliche Kettenlänge auf.

Um den NN-Algorithmus unabhängig vom ersten Element der Liste zu gestalten, kann auf Kosten der nun kubischen Laufzeitkomplexität der bisherige Algorithmus für alle Rotationen der Originalliste ausgeführt werden und das Ergebnis geringster Kettenlänge ausgewählt werden. Eine alternative kubische Generalisierung ist die Aufhebung der Beschränkung des Anfügens am Ende auf eine optimale Einfügetaktik an einer beliebigen Stelle.
4.3.4. Greedy
Der Greedy-Algorithmus (auch Multiple Fragments[47]) enumeriert alle Kanten und sortiert sie nach ihrem Gewicht aufsteigend. Diese werden in einem Stapel abgelegt und stets wird die erste Kante ausgewählt, entfernt sowie dem Pfad angefügt, die die Validität nicht verletzt, also keine bereits zweifach verbundenen Knoten besucht oder Zyklen erstellt.

Sobald die Länge dieser Liste von Kanten gleich der der Eingabe minus eins ist, ist ein valider Pfad gefunden, da die Validität nicht verletzt wurde und alle Knoten besucht werden. Zudem existiert stets ein solcher Pfad, da von der Vollständigkeit des Graphen ausgegangen wird. Bei Wahl zweckmäßiger Datenstrukturen liegt die Zeitkomplexität in

𝒪𝒪(𝑛𝑛2 ⋅ log 𝑛𝑛)
.

Die Fragmentierung kann analog zu Abschnitt 4.3.3 zum Schluss zu suboptimalen Kanten führen, jedoch wird das Problem der Nichtberücksichtung von „Außenseitern“ zumeist umgangen, da auch der Weg von einem solchen zu einem beliebigen anderen Knoten zumeist kürzer ist als ein anderer, der zwischen „Clustern“ wechselt.
4.3.5. Ganzzahlige lineare Optimierung und Branch-and-Bound
Um die optimale Lösung zu finden, ohne jede Permutation überprüfen zu müssen, eignet sich die Neuformulierung des Problems in Begriffen der ganzzahligen linearen Optimierung (ILP). Für eine Instanz der Länge

𝑛𝑛
, einen als Adjazenzmatrix

𝐴𝐴𝑖𝑖𝑗𝑗
repräsentierten Distanzgraphen

((𝑉𝑉 , 𝐸𝐸), 𝑑𝑑)
und eine den Pfad

𝑝𝑝
repräsentierenden

{0, 1}
-wertigen Relationsmatrix

𝑋𝑋𝑖𝑖𝑗𝑗 = (𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) ∈ 𝑝𝑝
, habe ich das folgende ILP (naiv

𝑛𝑛2 + 3𝑛𝑛 + 1
Nebenbedingungen) erarbeitet:

min ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ⋅ 𝐴𝐴𝑖𝑖𝑗𝑗, s.t. ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≥ 1

∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1 ∧ ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1

∧ ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 = 𝑛𝑛 − 1 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≤ 1

Jeder Eintrag der Matrix

𝑋𝑋
ist eine Variable des ILP. Minimiert wird dabei das Gewicht des Pfads, unter den Bedingungen, dass jeder Knoten erreicht wird, in jeder Zeile und jeder Spalte der Matrix höchstens eine Kante Teil des Pfads ist, insgesamt

𝑛𝑛 − 1
Kanten enthalten sind und keine Kante und ihre Gegenkante gewählt wird (dies verhindert auch Schlingen).

Eine alternative und TSP-ähnlichere Modellierung könnte (durch Symmetrie) nur Kanten oberhalb der Hauptdiagonale betrachten. So wäre das ILP effizienter (da kleiner), jedoch würden die ersten beiden Nebenbedingungen deutlich komplexer, da gültige Lösungen pro Zeile und Spalte 0 bis 2 Kanten auswählen könnten und eine neue Validitätseinschränkung formuliert werden muss. In meiner Arbeit verzichte ich auf diese Optimierung.

Eine zulässige Lösung[74] ist dabei nicht zwangsläufig eine valide Permutation, da Zyklen nicht betrachtet werden: sie müssen nach Ermitteln einer invaliden Lösung als neue Nebenbedingungen hinzugefügt werden. Da der Beweis in Abschnitt 4.1.2 zutrifft, ist auch dieses ILP (bzw. dessen azyklische Variation) hartnäckig; allerdings können die konstanten Faktoren mit einem geeigneten Algorithmus stark gesenkt werden. Fokus meiner Arbeit ist dabei ein Branch-and-Bound-Verfahren[62]: Zunächst wird (mithilfe einer externen Bibliothek) das effizient lösbare bedingungsgleiche in

𝑋𝑋
reellwertige LP gelöst (da statt diskreten Werten kontinuierliche ermittelt werden, handelt es sich dabei um eine Relaxierung), um die Menge möglicher Lösungen einzugrenzen; im Anschluss werden die kontinuierlichen Werte durch Aufspalten der Wertebereiche der Variablen fixiert. Das genaue Verfahren , z.B. in [48] und [81] für das symmetrische TSP oder in [58] für allgemeine ILP beschrieben, wird hier der Kürze halber ausgespart; jedoch schafft es meine Implementierung in der Praxis, Instanzen bis

𝑛𝑛 = 50
in hinnehmbarer Zeit zu lösen.
4.4. Pfadverbesserung
Die Pfadverbesserungsalgorithmen werden im Folgenden am Beispiel des eben durch NN (bei Start am ersten Element der Liste) erstellten Pfad,

𝑝𝑝 =
, erklärt (siehe Abb. 6).

4.4.1. Rotation
Mit einer linearen Laufzeit ist die Rotation das algorithmisch einfachste Verfahren aus dieser Liste. Dabei wird das Maximum der Kantengewichte aller Kanten des Pfads sowie der nicht berücksichtigten Kante zwischen Start und Ziel des Pfads ermittelt. Falls diese ein höheres Gewicht als alle im Pfad enthaltenen aufweist, so ist der Pfad bereits rotationsoptimal und kann nicht optimiert werden. Ansonsten wird die maximale Kante aus dem Pfad entfernt und die neue Kante hinzugefügt. Durch Erweitern auf sequenzielle Teilpfade können ästhetische lokale Minima gefunden werden.

Tabelle 5 zeigt die Anwendung der Rotation auf den Beispielpfad. Hierbei zeigt sich, dass eine im Pfad vorkommende Kante (

14

Θ(𝑛𝑛!)
, wächst also proportional zur Fakultät der Eingabelänge, da diese zugleich die Anzahl der Permutationen einer derartigen Liste beschreibt. In der Praxis zeigt sich, dass das Verfahren für Listen mit zehn oder weniger Elementen durchaus nutzbar ist, jedoch ab einer Länge von 14 mit einem geschätzten Zeitaufwand von zwei Stunden keine Option mehr darstellt (siehe auch Abschnitt 4.1.1).

4.3.3. Nächster Nachbar
Beim Nächster-Nachbar-Algorithmus (engl. nearest neighbor, kurz NN) handelt es sich um ein sog. naives gieriges Verfahren. Dabei wird vom ersten Punkt der Liste aus begonnen und stets der Punkt ausgewählt und folglich betrachtet, dessen Distanz zum aktuell betrachteten minimal ist und noch nicht im zu erstellenden Pfad enthalten ist, bis alle Punkte im Pfad enthalten sind.

Da es stets einen konkreten Bezugspunkt gibt, von dem aus vorgegangen wird, ist der Algorithmus einfach zu verstehen und zu visualisieren. Für die praktische Anwendung reicht er nicht, da stets nur das nächste Element berücksichtigt und der restliche Kontext vernachlässigt wird – so kommt es insbesondere am Ende des Pfades meist zu besonders langen Kanten hin zu Knoten, die unter Reduzierung der Kettenlänge bereits vorher hätten besucht werden können, es allerdings nicht wurden, da andere Knoten unmittelbar näher lagen. Die Komplexität ist quadratisch, da für jeden hinzuzufügenden Knoten jeder andere Knoten überprüft wird.

Da stets beim ersten Punkt dieser Liste begonnen wird, ist der Algorithmus anordnungsabhängig. Tabelle 3 zeigt die verschiedenen erzeugten Pfade im Fall von

𝑙𝑙
(14) – aufgrund des unidirektionalen Auswahlverfahrens weisen sie alle eine unterschiedliche Kettenlänge auf.

Um den NN-Algorithmus unabhängig vom ersten Element der Liste zu gestalten, kann auf Kosten der nun kubischen Laufzeitkomplexität der bisherige Algorithmus für alle Rotationen der Originalliste ausgeführt werden und das Ergebnis geringster Kettenlänge ausgewählt werden. Eine alternative kubische Generalisierung ist die Aufhebung der Beschränkung des Anfügens am Ende auf eine optimale Einfügetaktik an einer beliebigen Stelle.
4.3.4. Greedy
Der Greedy-Algorithmus (auch Multiple Fragments[47]) enumeriert alle Kanten und sortiert sie nach ihrem Gewicht aufsteigend. Diese werden in einem Stapel abgelegt und stets wird die erste Kante ausgewählt, entfernt sowie dem Pfad angefügt, die die Validität nicht verletzt, also keine bereits zweifach verbundenen Knoten besucht oder Zyklen erstellt.

Sobald die Länge dieser Liste von Kanten gleich der der Eingabe minus eins ist, ist ein valider Pfad gefunden, da die Validität nicht verletzt wurde und alle Knoten besucht werden. Zudem existiert stets ein solcher Pfad, da von der Vollständigkeit des Graphen ausgegangen wird. Bei Wahl zweckmäßiger Datenstrukturen liegt die Zeitkomplexität in

𝒪𝒪(𝑛𝑛2 ⋅ log 𝑛𝑛)
.

Die Fragmentierung kann analog zu Abschnitt 4.3.3 zum Schluss zu suboptimalen Kanten führen, jedoch wird das Problem der Nichtberücksichtung von „Außenseitern“ zumeist umgangen, da auch der Weg von einem solchen zu einem beliebigen anderen Knoten zumeist kürzer ist als ein anderer, der zwischen „Clustern“ wechselt.
4.3.5. Ganzzahlige lineare Optimierung und Branch-and-Bound
Um die optimale Lösung zu finden, ohne jede Permutation überprüfen zu müssen, eignet sich die Neuformulierung des Problems in Begriffen der ganzzahligen linearen Optimierung (ILP). Für eine Instanz der Länge

𝑛𝑛
, einen als Adjazenzmatrix

𝐴𝐴𝑖𝑖𝑗𝑗
repräsentierten Distanzgraphen

((𝑉𝑉 , 𝐸𝐸), 𝑑𝑑)
und eine den Pfad

𝑝𝑝
repräsentierenden

{0, 1}
-wertigen Relationsmatrix

𝑋𝑋𝑖𝑖𝑗𝑗 = (𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) ∈ 𝑝𝑝
, habe ich das folgende ILP (naiv

𝑛𝑛2 + 3𝑛𝑛 + 1
Nebenbedingungen) erarbeitet:

min ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ⋅ 𝐴𝐴𝑖𝑖𝑗𝑗, s.t. ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≥ 1

∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1 ∧ ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1

∧ ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 = 𝑛𝑛 − 1 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≤ 1

Jeder Eintrag der Matrix

𝑋𝑋
ist eine Variable des ILP. Minimiert wird dabei das Gewicht des Pfads, unter den Bedingungen, dass jeder Knoten erreicht wird, in jeder Zeile und jeder Spalte der Matrix höchstens eine Kante Teil des Pfads ist, insgesamt

𝑛𝑛 − 1
Kanten enthalten sind und keine Kante und ihre Gegenkante gewählt wird (dies verhindert auch Schlingen).

Eine alternative und TSP-ähnlichere Modellierung könnte (durch Symmetrie) nur Kanten oberhalb der Hauptdiagonale betrachten. So wäre das ILP effizienter (da kleiner), jedoch würden die ersten beiden Nebenbedingungen deutlich komplexer, da gültige Lösungen pro Zeile und Spalte 0 bis 2 Kanten auswählen könnten und eine neue Validitätseinschränkung formuliert werden muss. In meiner Arbeit verzichte ich auf diese Optimierung.

Eine zulässige Lösung[74] ist dabei nicht zwangsläufig eine valide Permutation, da Zyklen nicht betrachtet werden: sie müssen nach Ermitteln einer invaliden Lösung als neue Nebenbedingungen hinzugefügt werden. Da der Beweis in Abschnitt 4.1.2 zutrifft, ist auch dieses ILP (bzw. dessen azyklische Variation) hartnäckig; allerdings können die konstanten Faktoren mit einem geeigneten Algorithmus stark gesenkt werden. Fokus meiner Arbeit ist dabei ein Branch-and-Bound-Verfahren[62]: Zunächst wird (mithilfe einer externen Bibliothek) das effizient lösbare bedingungsgleiche in

𝑋𝑋
reellwertige LP gelöst (da statt diskreten Werten kontinuierliche ermittelt werden, handelt es sich dabei um eine Relaxierung), um die Menge möglicher Lösungen einzugrenzen; im Anschluss werden die kontinuierlichen Werte durch Aufspalten der Wertebereiche der Variablen fixiert. Das genaue Verfahren , z.B. in [48] und [81] für das symmetrische TSP oder in [58] für allgemeine ILP beschrieben, wird hier der Kürze halber ausgespart; jedoch schafft es meine Implementierung in der Praxis, Instanzen bis

𝑛𝑛 = 50
in hinnehmbarer Zeit zu lösen.
4.4. Pfadverbesserung
Die Pfadverbesserungsalgorithmen werden im Folgenden am Beispiel des eben durch NN (bei Start am ersten Element der Liste) erstellten Pfad,

𝑝𝑝 =
, erklärt (siehe Abb. 6).

4.4.1. Rotation
Mit einer linearen Laufzeit ist die Rotation das algorithmisch einfachste Verfahren aus dieser Liste. Dabei wird das Maximum der Kantengewichte aller Kanten des Pfads sowie der nicht berücksichtigten Kante zwischen Start und Ziel des Pfads ermittelt. Falls diese ein höheres Gewicht als alle im Pfad enthaltenen aufweist, so ist der Pfad bereits rotationsoptimal und kann nicht optimiert werden. Ansonsten wird die maximale Kante aus dem Pfad entfernt und die neue Kante hinzugefügt. Durch Erweitern auf sequenzielle Teilpfade können ästhetische lokale Minima gefunden werden.

Tabelle 5 zeigt die Anwendung der Rotation auf den Beispielpfad. Hierbei zeigt sich, dass eine im Pfad vorkommende Kante (

14

Θ(𝑛𝑛!)
, wächst also proportional zur Fakultät der Eingabelänge, da diese zugleich die Anzahl der Permutationen einer derartigen Liste beschreibt. In der Praxis zeigt sich, dass das Verfahren für Listen mit zehn oder weniger Elementen durchaus nutzbar ist, jedoch ab einer Länge von 14 mit einem geschätzten Zeitaufwand von zwei Stunden keine Option mehr darstellt (siehe auch Abschnitt 4.1.1).

4.3.3. Nächster Nachbar
Beim Nächster-Nachbar-Algorithmus (engl. nearest neighbor, kurz NN) handelt es sich um ein sog. naives gieriges Verfahren. Dabei wird vom ersten Punkt der Liste aus begonnen und stets der Punkt ausgewählt und folglich betrachtet, dessen Distanz zum aktuell betrachteten minimal ist und noch nicht im zu erstellenden Pfad enthalten ist, bis alle Punkte im Pfad enthalten sind.

Da es stets einen konkreten Bezugspunkt gibt, von dem aus vorgegangen wird, ist der Algorithmus einfach zu verstehen und zu visualisieren. Für die praktische Anwendung reicht er nicht, da stets nur das nächste Element berücksichtigt und der restliche Kontext vernachlässigt wird – so kommt es insbesondere am Ende des Pfades meist zu besonders langen Kanten hin zu Knoten, die unter Reduzierung der Kettenlänge bereits vorher hätten besucht werden können, es allerdings nicht wurden, da andere Knoten unmittelbar näher lagen. Die Komplexität ist quadratisch, da für jeden hinzuzufügenden Knoten jeder andere Knoten überprüft wird.

Da stets beim ersten Punkt dieser Liste begonnen wird, ist der Algorithmus anordnungsabhängig. Tabelle 3 zeigt die verschiedenen erzeugten Pfade im Fall von

𝑙𝑙
(14) – aufgrund des unidirektionalen Auswahlverfahrens weisen sie alle eine unterschiedliche Kettenlänge auf.

Um den NN-Algorithmus unabhängig vom ersten Element der Liste zu gestalten, kann auf Kosten der nun kubischen Laufzeitkomplexität der bisherige Algorithmus für alle Rotationen der Originalliste ausgeführt werden und das Ergebnis geringster Kettenlänge ausgewählt werden. Eine alternative kubische Generalisierung ist die Aufhebung der Beschränkung des Anfügens am Ende auf eine optimale Einfügetaktik an einer beliebigen Stelle.
4.3.4. Greedy
Der Greedy-Algorithmus (auch Multiple Fragments[47]) enumeriert alle Kanten und sortiert sie nach ihrem Gewicht aufsteigend. Diese werden in einem Stapel abgelegt und stets wird die erste Kante ausgewählt, entfernt sowie dem Pfad angefügt, die die Validität nicht verletzt, also keine bereits zweifach verbundenen Knoten besucht oder Zyklen erstellt.

Sobald die Länge dieser Liste von Kanten gleich der der Eingabe minus eins ist, ist ein valider Pfad gefunden, da die Validität nicht verletzt wurde und alle Knoten besucht werden. Zudem existiert stets ein solcher Pfad, da von der Vollständigkeit des Graphen ausgegangen wird. Bei Wahl zweckmäßiger Datenstrukturen liegt die Zeitkomplexität in

𝒪𝒪(𝑛𝑛2 ⋅ log 𝑛𝑛)
.

Die Fragmentierung kann analog zu Abschnitt 4.3.3 zum Schluss zu suboptimalen Kanten führen, jedoch wird das Problem der Nichtberücksichtung von „Außenseitern“ zumeist umgangen, da auch der Weg von einem solchen zu einem beliebigen anderen Knoten zumeist kürzer ist als ein anderer, der zwischen „Clustern“ wechselt.
4.3.5. Ganzzahlige lineare Optimierung und Branch-and-Bound
Um die optimale Lösung zu finden, ohne jede Permutation überprüfen zu müssen, eignet sich die Neuformulierung des Problems in Begriffen der ganzzahligen linearen Optimierung (ILP). Für eine Instanz der Länge

𝑛𝑛
, einen als Adjazenzmatrix

𝐴𝐴𝑖𝑖𝑗𝑗
repräsentierten Distanzgraphen

((𝑉𝑉 , 𝐸𝐸), 𝑑𝑑)
und eine den Pfad

𝑝𝑝
repräsentierenden

{0, 1}
-wertigen Relationsmatrix

𝑋𝑋𝑖𝑖𝑗𝑗 = (𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) ∈ 𝑝𝑝
, habe ich das folgende ILP (naiv

𝑛𝑛2 + 3𝑛𝑛 + 1
Nebenbedingungen) erarbeitet:

min ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ⋅ 𝐴𝐴𝑖𝑖𝑗𝑗, s.t. ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≥ 1

∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1 ∧ ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1

∧ ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 = 𝑛𝑛 − 1 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≤ 1

Jeder Eintrag der Matrix

𝑋𝑋
ist eine Variable des ILP. Minimiert wird dabei das Gewicht des Pfads, unter den Bedingungen, dass jeder Knoten erreicht wird, in jeder Zeile und jeder Spalte der Matrix höchstens eine Kante Teil des Pfads ist, insgesamt

𝑛𝑛 − 1
Kanten enthalten sind und keine Kante und ihre Gegenkante gewählt wird (dies verhindert auch Schlingen).

Eine alternative und TSP-ähnlichere Modellierung könnte (durch Symmetrie) nur Kanten oberhalb der Hauptdiagonale betrachten. So wäre das ILP effizienter (da kleiner), jedoch würden die ersten beiden Nebenbedingungen deutlich komplexer, da gültige Lösungen pro Zeile und Spalte 0 bis 2 Kanten auswählen könnten und eine neue Validitätseinschränkung formuliert werden muss. In meiner Arbeit verzichte ich auf diese Optimierung.

Eine zulässige Lösung[74] ist dabei nicht zwangsläufig eine valide Permutation, da Zyklen nicht betrachtet werden: sie müssen nach Ermitteln einer invaliden Lösung als neue Nebenbedingungen hinzugefügt werden. Da der Beweis in Abschnitt 4.1.2 zutrifft, ist auch dieses ILP (bzw. dessen azyklische Variation) hartnäckig; allerdings können die konstanten Faktoren mit einem geeigneten Algorithmus stark gesenkt werden. Fokus meiner Arbeit ist dabei ein Branch-and-Bound-Verfahren[62]: Zunächst wird (mithilfe einer externen Bibliothek) das effizient lösbare bedingungsgleiche in

𝑋𝑋
reellwertige LP gelöst (da statt diskreten Werten kontinuierliche ermittelt werden, handelt es sich dabei um eine Relaxierung), um die Menge möglicher Lösungen einzugrenzen; im Anschluss werden die kontinuierlichen Werte durch Aufspalten der Wertebereiche der Variablen fixiert. Das genaue Verfahren , z.B. in [48] und [81] für das symmetrische TSP oder in [58] für allgemeine ILP beschrieben, wird hier der Kürze halber ausgespart; jedoch schafft es meine Implementierung in der Praxis, Instanzen bis

𝑛𝑛 = 50
in hinnehmbarer Zeit zu lösen.
4.4. Pfadverbesserung
Die Pfadverbesserungsalgorithmen werden im Folgenden am Beispiel des eben durch NN (bei Start am ersten Element der Liste) erstellten Pfad,

𝑝𝑝 =
, erklärt (siehe Abb. 6).

4.4.1. Rotation
Mit einer linearen Laufzeit ist die Rotation das algorithmisch einfachste Verfahren aus dieser Liste. Dabei wird das Maximum der Kantengewichte aller Kanten des Pfads sowie der nicht berücksichtigten Kante zwischen Start und Ziel des Pfads ermittelt. Falls diese ein höheres Gewicht als alle im Pfad enthaltenen aufweist, so ist der Pfad bereits rotationsoptimal und kann nicht optimiert werden. Ansonsten wird die maximale Kante aus dem Pfad entfernt und die neue Kante hinzugefügt. Durch Erweitern auf sequenzielle Teilpfade können ästhetische lokale Minima gefunden werden.

Tabelle 5 zeigt die Anwendung der Rotation auf den Beispielpfad. Hierbei zeigt sich, dass eine im Pfad vorkommende Kante (

14

Jeder Eintrag der Matrix ​X​ ist eine Variable des ILP. Mini-
miert wird dabei das Gewicht des Pfads, unter den Bedingun-
gen, dass jeder Knoten erreicht wird, in jeder Zeile und jeder
Spalte der Matrix höchstens eine Kante Teil des Pfads ist, ins-
gesamt ​n − 1​ Kanten enthalten sind und keine Kante und ihre
Gegenkante gewählt wird (dies verhindert auch Schlingen).

Eine alternative und TSP-ähnlichere Modellierung könnte
(durch Symmetrie) nur Kanten oberhalb der Hauptdiagona-
le betrachten. So wäre das ILP effizienter (da kleiner), jedoch
würden die ersten beiden Nebenbedingungen deutlich kom-
plexer, da gültige Lösungen pro Zeile und Spalte 0 bis 2 Kan-
ten auswählen könnten und eine neue Validitätseinschrän-
kung formuliert werden muss. In meiner Arbeit verzichte ich
auf diese Optimierung.

Eine zulässige Lösung [76] ist dabei nicht zwangsläufig eine va-
lide Permutation, da Zyklen nicht betrachtet werden: Sie müs-
sen nach Ermitteln einer invaliden Lösung als neue Nebenbe-
dingungen hinzugefügt werden. Da der Beweis in Kap. 4.1.2
zutrifft, ist auch dieses ILP (bzw. dessen azyklische Variati-
on) hartnäckig; allerdings können die konstanten Faktoren
mit einem geeigneten Algorithmus stark gesenkt werden. Fo-
kus meiner Arbeit ist dabei ein Branch-and-Bound-Verfahren
[64]: Zunächst wird (mithilfe einer externen Bibliothek) das
effizient lösbare bedingungsgleiche in ​X​ reellwertige LP ge-
löst (da statt diskreten Werten kontinuierliche ermittelt wer-
den, handelt es sich dabei um eine Relaxierung), um die Men-
ge möglicher Lösungen einzugrenzen; im Anschluss werden
die kontinuierlichen Werte durch Aufspalten der Werteberei-
che der Variablen fixiert. Das genaue Verfahren, z. B. in [50]
und [83] für das symmetrische TSP oder in [60] für allgemei-
ne ILP beschrieben, wird hier der Kürze halber ausgespart; je-
doch schafft es meine Implementierung in der Praxis, Instan-
zen bis ​n  =  50​ in hinnehmbarer Zeit zu lösen.

4.4	 Pfadverbesserung

Die Pfadverbesserungsalgorithmen werden im Folgenden am
Beispiel des eben durch NN (bei Start am ersten Element der

4.3.3. Nächster Nachbar
Beim Nächster-Nachbar-Algorithmus (engl. nearest neighbor, kurz NN) handelt es sich um ein sog. naives gieriges Verfahren. Dabei wird vom ersten Punkt der Liste aus begonnen und stets der Punkt ausgewählt und folglich betrachtet, dessen Distanz zum aktuell betrachteten minimal ist und noch nicht im zu erstellenden Pfad enthalten ist, bis alle Punkte im Pfad enthalten sind.

Da es stets einen konkreten Bezugspunkt gibt, von dem aus vorgegangen wird, ist der Algorithmus einfach zu verstehen und zu visualisieren. Für die praktische Anwendung reicht er nicht, da stets nur das nächste Element berücksichtigt und der restliche Kontext vernachlässigt wird – so kommt es insbesondere am Ende des Pfades meist zu besonders langen Kanten hin zu Knoten, die unter Reduzierung der Kettenlänge bereits vorher hätten besucht werden können, es allerdings nicht wurden, da andere Knoten unmittelbar näher lagen. Die Komplexität ist quadratisch, da für jeden hinzuzufügenden Knoten jeder andere Knoten überprüft wird.

𝑝𝑝0 𝑝𝑝 𝑑𝑑𝕃𝕃(𝑝𝑝)
2.23
2.22
1.90
2.25
1.93
2.20

Abb. 8: Die NN-Pfade
abhängig vom
Anfangspunkt.

9

Abb. 8: Die NN-Pfade abhängig
vom Anfangspunkt

(0) .71 .36 .40 .54 .32
.71 (0) .85 .51 .70 .45
.36 .85 (0) .73 .32 .41
.40 .51 .73 (0) .78 .42
.54 .70 .32 .78 (0) .36
.32 .45 .41 .42 .36 (0)

Abb. 9: Adjazenzmatrix 𝐴𝐴 ∈
ℝ|𝑝𝑝|×|𝑝𝑝|: 𝐴𝐴𝑖𝑖𝑗𝑗 = 𝑑𝑑(𝑝𝑝𝑖𝑖, 𝑝𝑝𝑗𝑗) des

Graphen der Bildmenge von
𝑙𝑙.

10

Abb. 9: Adjazenzmatrix ​​A  ∈ ​ ℝ​​ ​| p|​
 
×

 
​| p 

|​​ :  ​A​ 
ij
​​  =  d​(​​ ​d​ 

i 
​​, ​d​ 

j
​​​)​​​​

des Graphen der Bildmenge von ​l​

Informatik | Seite 10

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-08.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-09.jpg

JUNGE wissenschaft 15 / 18 | Seite 11JUNGE wissenschaft 03 / 25 | Seite 11

doi: 10.7795/320.202503

Liste) erstellten Pfads,

erklärt (siehe Abb. 11).

4.4.1	 Rotation

Mit einer linearen Laufzeit ist die Rotation das algorithmisch
einfachste Verfahren aus dieser Liste. Dabei wird das Maxi-
mum der Kantengewichte aller Kanten des Pfads sowie der
nicht berücksichtigten Kante zwischen Start und Ziel des
Pfads ermittelt. Falls diese ein höheres Gewicht als alle im
Pfad enthaltenen aufweist, so ist der Pfad bereits rotations-
optimal und kann nicht optimiert werden. Ansonsten wird
die maximale Kante aus dem Pfad entfernt und die neue Kan-
te hinzugefügt. Durch Erweitern auf sequenzielle Teilpfade
können ästhetische lokale Minima gefunden werden.

Abb. 10 zeigt die Anwendung der Rotation auf den Beispiel-
pfad. Hierbei zeigt sich, dass eine im Pfad vorkommende
Kante () ein höheres Gewicht als die ausgelasse-
ne () aufweist. Somit kann durch eine Rotation der
den Pfad repräsentierenden Liste die Kettenlänge (in diesem
Fall jedoch nur um ​0,73 − 0,71  =  0,02​ Einheiten) reduziert
werden.

4.4.2	Swap

Swap betrachtet den Pfad als Liste und überprüft, ob das Tau-
schen („Swap“ nach Kap. 2.1) zweier Elemente zu einem Pfad
mit geringerer Kettenlänge führt. Bei Konstruktion mit-
tels einer nicht-trivialen Heuristik (wie auch hier) ist dies al-
lerdings selten der Fall, weshalb das Verfahren eher nur als
Grundlage für andere wie Kap. 4.4.3 und 4.4.5 dient.

4.4.3	Das 2-opt-Verfahren

Das 2-opt-Verfahren [29] beruht auf der folgenden geome-
trischen Erkenntnis: Sobald sich in der zweidimensiona-
len geometrischen Repräsentation eines Pfads zwei als Stre-
cken repräsentierte Kanten schneiden, kann die Kettenlänge
des Pfades optimiert werden, indem der Schnittpunkt wie in
Abb. 12 durch Tauschen zweier Kanten entfernt wird. Diese
Pfadmodifikation wird als 2-opt-Tausch bezeichnet.

Dabei wird die Kettenlänge stets reduziert, da die neue Stre-
cke zwei Punkte direkt verbindet, statt einen ‚Umweg‘ zu ent-
halten. In Bezug auf einen Pfad als Liste bedeutet ein 2-opt-
Tausch dabei, eine Teilliste dieser umzukehren. Durch
Ungerichtetheit des Graphen ändert sich die Kettenlänge der
Teilliste nicht.

Während die Existenz eines solchen Schnittpunkts im zwei-
dimensionalen kartesischen Koordinatensystem mithilfe ei-
nes Sweepline-Algorithmus in linearithmischer Laufzeit er-
mittelbar ist [9], existiert ein solches Verfahren für höhere
Dimensionen nicht. Aus diesem Grund ist die Laufzeit im all-
gemeinen Fall pro Optimierungsschritt quadratisch, da jede
Kante mit jeder weiteren Kante auf Tauschbarkeit überprüft
wird, die auch nicht mehr nur auf Schnittpunkten basiert,
sondern die Kettendistanzen vergleicht.

Während das Auflösen aller Überschneidungen im Pessimal-
fall eine Laufzeitkomplexität von ​​ ˜ O ​​(​n​​ 10​)​​(die Tilde signali-
siert die Vernachlässigung logarithmischer Faktoren) [7] be-
nötigt, konvergiert der Algorithmus meist schneller. Ist kein
2-opt-Tausch mehr ausführbar, wird der Pfad 2-opt-optimal
genannt.

Da stets beim ersten Punkt dieser Liste begonnen wird, ist der Algorithmus anordnungsabhängig. Abb. 8 zeigt die verschiedenen erzeugten Pfade im Fall von 𝑙𝑙 (14) – aufgrund des unidirektionalen Auswahlverfahrens weisen sie alle eine unterschiedliche Kettenlänge auf.

Um den NN-Algorithmus unabhängig vom ersten Element der Liste zu gestalten, kann auf Kosten der nun kubischen Laufzeitkomplexität der bisherige Algorithmus für alle Rotationen der Originalliste ausgeführt werden und das Ergebnis geringster Kettenlänge ausgewählt werden. Eine alternative kubische Generalisierung ist die Aufhebung der Beschränkung des Anfügens am Ende auf eine optimale Einfügetaktik an einer beliebigen Stelle.
4.3.4. Greedy
Der Greedy-Algorithmus (auch Multiple Fragments[49]) enumeriert alle Kanten und sortiert sie nach ihrem Gewicht aufsteigend. Diese werden in einem Stapel abgelegt und stets wird die erste Kante ausgewählt, entfernt sowie dem Pfad angefügt, die die Validität nicht verletzt, also keine bereits zweifach verbundenen Knoten besucht oder Zyklen erstellt.

Sobald die Länge dieser Liste von Kanten gleich der der Eingabe minus eins ist, ist ein valider Pfad gefunden, da die Validität nicht verletzt wurde und alle Knoten besucht werden. Zudem existiert stets ein solcher Pfad, da von der Vollständigkeit des Graphen ausgegangen wird. Bei Wahl zweckmäßiger Datenstrukturen liegt die Zeitkomplexität in 𝒪𝒪(𝑛𝑛2 ⋅ log 𝑛𝑛).

Die Fragmentierung kann analog zu Abschnitt 4.3.3 zum Schluss zu suboptimalen Kanten führen, jedoch wird das Problem der Nichtberücksichtung von „Außenseitern“ zumeist umgangen, da auch der Weg von einem solchen zu einem beliebigen anderen Knoten zumeist kürzer ist als ein anderer, der zwischen „Clustern“ wechselt.
4.3.5. Ganzzahlige lineare Optimierung und Branch-and-Bound
Um die optimale Lösung zu finden, ohne jede Permutation überprüfen zu müssen, eignet sich die Neuformulierung des Problems in Begriffen der ganzzahligen linearen Optimierung (ILP). Für eine Instanz der Länge 𝑛𝑛, einen als Adjazenzmatrix 𝐴𝐴𝑖𝑖𝑗𝑗 repräsentierten Distanzgraphen ((𝑉𝑉 , 𝐸𝐸), 𝑑𝑑) und eine den Pfad 𝑝𝑝 repräsentierenden {0, 1}-wertigen Relationsmatrix 𝑋𝑋𝑖𝑖𝑗𝑗 = (𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) ∈ 𝑝𝑝, habe ich das folgende ILP (naiv 𝑛𝑛2 + 3𝑛𝑛 + 1 Nebenbedingungen) erarbeitet:

min ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ⋅ 𝐴𝐴𝑖𝑖𝑗𝑗, s.t. ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≥ 1

∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛
𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1 ∧ ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : ∑𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 1

∧ ∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑋𝑋𝑖𝑖𝑗𝑗 = 𝑛𝑛 − 1 ∧ ∀𝑖𝑖 ∈ [1, 𝑛𝑛] : ∀𝑗𝑗 ∈ [1, 𝑛𝑛] : 𝑋𝑋𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑗𝑗𝑖𝑖 ≤ 1

Jeder Eintrag der Matrix 𝑋𝑋 ist eine Variable des ILP. Minimiert wird dabei das Gewicht des Pfads, unter den Bedingungen, dass jeder Knoten erreicht wird, in jeder Zeile und jeder Spalte der Matrix höchstens eine Kante Teil des Pfads ist, insgesamt 𝑛𝑛 − 1 Kanten enthalten sind und keine Kante und ihre Gegenkante gewählt wird (dies verhindert auch Schlingen).

Eine alternative und TSP-ähnlichere Modellierung könnte (durch Symmetrie) nur Kanten oberhalb der Hauptdiagonale betrachten. So wäre das ILP effizienter (da kleiner), jedoch würden die ersten beiden Nebenbedingungen deutlich komplexer, da gültige Lösungen pro Zeile und Spalte 0 bis 2 Kanten auswählen könnten und eine neue Validitätseinschränkung formuliert werden muss. In meiner Arbeit verzichte ich auf diese Optimierung.

Eine zulässige Lösung[76] ist dabei nicht zwangsläufig eine valide Permutation, da Zyklen nicht betrachtet werden: sie müssen nach Ermitteln einer invaliden Lösung als neue Nebenbedingungen hinzugefügt werden. Da der Beweis in Abschnitt 4.1.2 zutrifft, ist auch dieses ILP (bzw. dessen azyklische Variation) hartnäckig; allerdings können die konstanten Faktoren mit einem geeigneten Algorithmus stark gesenkt werden. Fokus meiner Arbeit ist dabei ein Branch-and-Bound-Verfahren[64]: Zunächst wird (mithilfe einer externen Bibliothek) das effizient lösbare bedingungsgleiche in 𝑋𝑋 reellwertige LP gelöst (da statt diskreten Werten kontinuierliche ermittelt werden, handelt es sich dabei um eine Relaxierung), um die Menge möglicher Lösungen einzugrenzen; im Anschluss werden die kontinuierlichen Werte durch Aufspalten der Wertebereiche der Variablen fixiert. Das genaue Verfahren , z.B. in [50] und [83] für das symmetrische TSP oder in [60] für allgemeine ILP beschrieben, wird hier der Kürze halber ausgespart; jedoch schafft es meine Implementierung in der Praxis, Instanzen bis 𝑛𝑛 = 50 in hinnehmbarer Zeit zu lösen.
4.4. Pfadverbesserung

Die Pfadverbesserungsalgorithmen werden im Folgenden am Beispiel des eben durch NN (bei Start am ersten Element der Liste) erstellten Pfad, 𝑝𝑝 = , erklärt (siehe Abb. 11).

4.4.1. Rotation
Mit einer linearen Laufzeit ist die Rotation das algorithmisch einfachste Verfahren aus dieser Liste. Dabei wird das Maximum der Kantengewichte aller Kanten des Pfads sowie der nicht berücksichtigten Kante zwischen Start und Ziel des Pfads ermittelt. Falls diese ein höheres Gewicht als alle im Pfad enthaltenen aufweist, so ist der Pfad bereits rotationsoptimal und kann nicht optimiert werden. Ansonsten wird die maximale Kante aus dem Pfad entfernt und die neue Kante hinzugefügt. Durch Erweitern auf sequenzielle Teilpfade können ästhetische lokale Minima gefunden werden.

𝑖𝑖 𝑒𝑒 ∈ 𝐸𝐸 𝑑𝑑(𝑒𝑒0, 𝑒𝑒1) 𝑒𝑒 ∈ 𝑝𝑝?
0 → 0.32 ja
1 → 0.36 ja
2 → 0.32 ja
3 → 0.73 ja
4 → 0.51 ja
5 → 0.71 nein

Abb. 10: Alle im Pfad
vorkommenden Distanzen sowie

die ausgelassene.

11

Abb. 10: Alle im Pfad vorkommenden Distanzen
sowie die ausgelassene

Abb. 10 zeigt die Anwendung der Rotation auf den Beispielpfad. Hierbei zeigt sich, dass eine im Pfad vorkommende Kante (→) ein höheres Gewicht als die ausgelassene (→) aufweist. Somit kann durch eine Rotation der den Pfad repräsentierenden Liste die Kettenlänge (in diesem Fall jedoch nur um 0.73 − 0.71 = 0.02 Einheiten) reduziert werden.

4.4.2. Swap
Swap betrachtet den Pfad als Liste und überprüft, ob das Tauschen (Swap nach Abschnitt 2.1) zweier Elemente zu einem Pfad mit geringerer Kettenlänge führt. Bei Konstruktion mittels einer nicht-trivialen Heuristik (wie auch hier) ist dies allerdings selten der Fall, weshalb das Verfahren eher nur als Grundlage für andere wie Abschnitt 4.4.3 und 4.4.5 dient.
4.4.3. 2-opt
Das 2-opt-Verfahren[29] beruht auf der folgenden geometrischen Erkenntnis: sobald sich in der zweidimensionalen geometrischen Repräsentation eines Pfads zwei als Strecken repräsentierte Kanten schneiden, so kann die Kettenlänge des Pfades optimiert werden, indem der Schnittpunkt wie in Abb. 12 durch Tauschen zweier Kanten entfernt wird. Diese Pfadmodifikation wird als 2-opt-Tausch bezeichnet.

Abb. 11: Beispielpfad
𝑝𝑝.

12

Abb. 11: Beispielpfad ​p​

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-11.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-10.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-12.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-10.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-11.jpg

doi: 10.7795/320.202503

festgelegt und ein Eingabepfad ​p​ erhalten. Man betrachte nun
in einem Graphen mit

→
) ein höheres Gewicht als die ausgelassene (

→
) aufweist. Somit kann durch eine Rotation der den Pfad repräsentierenden Liste die Kettenlänge (in diesem Fall jedoch nur um

0.73 − 0.71 = 0.02
Einheiten) reduziert werden.

4.4.2. Swap
Swap betrachtet den Pfad als Liste und überprüft, ob das Tauschen (

Swap
nach Abschnitt 2.1) zweier Elemente zu einem Pfad mit geringerer Kettenlänge führt. Bei Konstruktion mittels einer nicht-trivialen Heuristik (wie auch hier) ist dies allerdings selten der Fall, weshalb das Verfahren eher nur als Grundlage für andere wie Abschnitt 4.4.3 und 4.4.5 dient.
4.4.3. 2-opt
Das 2-opt-Verfahren[27] beruht auf der folgenden geometrischen Erkenntnis: sobald sich in der zweidimensionalen geometrischen Repräsentation eines Pfads zwei als Strecken repräsentierte Kanten schneiden, so kann die Kettenlänge des Pfades optimiert werden, indem der Schnittpunkt wie in Abb. 7 durch Tauschen zweier Kanten entfernt wird. Diese Pfadmodifikation wird als 2-opt-Tausch bezeichnet.

Dabei wird die Kettenlänge stets reduziert, da die neue Strecke zwei Punkte direkt verbindet, statt einen ‚Umweg‘ zu enthalten. Im Bezug auf einen Pfad als Liste bedeutet ein 2-opt-Tausch dabei, eine Teilliste dieser umzukehren. Durch Ungerichtetheit des Graphen ändert sich die Kettenlänge der Teilliste nicht.

Während die Existenz eines solchen Schnittpunkts im zweidimensionalen kartesischen Koordinatensystem mithilfe eines Sweepline-Algorithmus in linearithmischer Laufzeit ermittelbar ist[9], existiert ein solches Verfahren für höhere Dimensionen nicht. Aus diesem Grund ist die Laufzeit im allgemeinen Fall pro Optimierungsschritt quadratisch, da jede Kante mit jeder weiteren Kante auf Tauschbarkeit überprüft wird, die auch nicht mehr nur auf Schnittpunkten basiert, sondern die Kettendistanzen vergleicht.

Während das Auflösen aller Überschneidungen im Pessimalfall eine Laufzeitkomplexität von

𝑂̃𝑂(𝑛𝑛10)
(die Tilde signalisiert die Vernachlässigung logarithmischer Faktoren) [7] benötigt, konvergiert der Algorithmus meist schneller. Ist kein 2-opt-Tausch mehr ausführbar, wird der Pfad 2-opt-optimal genannt.
4.4.4. 3-opt und k-opt
Ähnlich funktioniert das 3-opt-Verfahren: hierbei werden allerdings zwei statt drei Kanten getauscht. Da kein exaktes geometrisches Äquivalent existiert, wird die Liste betrachtet. Für einen 3-opt-Swap des Pfads

𝑝𝑝
an den paarweise verschiedenen Indizes

𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ∈ 𝔻𝔻
existieren dabei vier Möglichkeiten, die verschiedene Teillisten dabei umzukehren oder nicht, wenn die Permutationen der Identität und des 2-opt-Tausches vernachlässigt werden, sonst acht. 3-opt generalisiert im letzteren Fall 2-opt, auch eine Generalisierung auf beliebige

𝑘𝑘 ∈ ℕ, 𝑘𝑘 ≥ 2
ist möglich[20]. Effizient gelöst werden kann das Problem jedoch durch beliebig ansteigende

𝑘𝑘
nicht, denn die Auswahl aller möglichen Kanten liegt in

𝒪𝒪(𝑘𝑘!)
.

4.4.5. Simulated Annealing
Simulated Annealing ist ein Verfahren, welches auf der physikalischen Kristallisierung von Materialien beruht[52]. Dabei wird das Swap-Verfahren so erweitert, dass nicht nur solche Kommutationen ausgeführt werden, die kürzere Kettenlängen erzeugen, sondern zu Beginn auf Basis einer Zufallsvariable auch solche, die es nicht tun. Im Laufe der Zeit wird die Wahrscheinlichkeit dafür kontinuierlich reduziert, bis zum Schluss ein swap-optimaler Pfad gefunden wurde – da jedoch ein größerer Teil der möglichen Pfade abgedeckt werden kann, untertrifft er den des Swap-Verfahrens zumeist stark. Im Fall von

𝑝𝑝
(siehe Abb. 8) konnte sogar der optimale Pfad gefunden werden.

Algorithmisch wird dabei eine Starttemperatur

𝑡𝑡 ∈ [0, 1]
festgelegt und ein Eingabepfad

𝑝𝑝
erhalten. Man betrachte nun in einem Graphen mit

𝐺𝐺 = (Perm(𝑝𝑝), {(𝑝𝑝′, 𝑝𝑝″) | 𝑖𝑖, 𝑗𝑗 ∈ 𝔻𝔻, 𝑝𝑝′ ∈ Perm(𝑝𝑝), 𝑝𝑝″ ≔ Swap(𝑝𝑝′, 𝑖𝑖, 𝑗𝑗)})
die Nachbarn von

𝑝𝑝
und wähle ein zufälliges

𝑝𝑝′
aus, dies geschieht durch Wahl von

𝑖𝑖
und

𝑗𝑗 ≠ 𝑖𝑖
und Tauschen der Elemente. Falls nun

15

→
) ein höheres Gewicht als die ausgelassene (

→
) aufweist. Somit kann durch eine Rotation der den Pfad repräsentierenden Liste die Kettenlänge (in diesem Fall jedoch nur um

0.73 − 0.71 = 0.02
Einheiten) reduziert werden.

4.4.2. Swap
Swap betrachtet den Pfad als Liste und überprüft, ob das Tauschen (

Swap
nach Abschnitt 2.1) zweier Elemente zu einem Pfad mit geringerer Kettenlänge führt. Bei Konstruktion mittels einer nicht-trivialen Heuristik (wie auch hier) ist dies allerdings selten der Fall, weshalb das Verfahren eher nur als Grundlage für andere wie Abschnitt 4.4.3 und 4.4.5 dient.
4.4.3. 2-opt
Das 2-opt-Verfahren[27] beruht auf der folgenden geometrischen Erkenntnis: sobald sich in der zweidimensionalen geometrischen Repräsentation eines Pfads zwei als Strecken repräsentierte Kanten schneiden, so kann die Kettenlänge des Pfades optimiert werden, indem der Schnittpunkt wie in Abb. 7 durch Tauschen zweier Kanten entfernt wird. Diese Pfadmodifikation wird als 2-opt-Tausch bezeichnet.

Dabei wird die Kettenlänge stets reduziert, da die neue Strecke zwei Punkte direkt verbindet, statt einen ‚Umweg‘ zu enthalten. Im Bezug auf einen Pfad als Liste bedeutet ein 2-opt-Tausch dabei, eine Teilliste dieser umzukehren. Durch Ungerichtetheit des Graphen ändert sich die Kettenlänge der Teilliste nicht.

Während die Existenz eines solchen Schnittpunkts im zweidimensionalen kartesischen Koordinatensystem mithilfe eines Sweepline-Algorithmus in linearithmischer Laufzeit ermittelbar ist[9], existiert ein solches Verfahren für höhere Dimensionen nicht. Aus diesem Grund ist die Laufzeit im allgemeinen Fall pro Optimierungsschritt quadratisch, da jede Kante mit jeder weiteren Kante auf Tauschbarkeit überprüft wird, die auch nicht mehr nur auf Schnittpunkten basiert, sondern die Kettendistanzen vergleicht.

Während das Auflösen aller Überschneidungen im Pessimalfall eine Laufzeitkomplexität von

𝑂̃𝑂(𝑛𝑛10)
(die Tilde signalisiert die Vernachlässigung logarithmischer Faktoren) [7] benötigt, konvergiert der Algorithmus meist schneller. Ist kein 2-opt-Tausch mehr ausführbar, wird der Pfad 2-opt-optimal genannt.
4.4.4. 3-opt und k-opt
Ähnlich funktioniert das 3-opt-Verfahren: hierbei werden allerdings zwei statt drei Kanten getauscht. Da kein exaktes geometrisches Äquivalent existiert, wird die Liste betrachtet. Für einen 3-opt-Swap des Pfads

𝑝𝑝
an den paarweise verschiedenen Indizes

𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ∈ 𝔻𝔻
existieren dabei vier Möglichkeiten, die verschiedene Teillisten dabei umzukehren oder nicht, wenn die Permutationen der Identität und des 2-opt-Tausches vernachlässigt werden, sonst acht. 3-opt generalisiert im letzteren Fall 2-opt, auch eine Generalisierung auf beliebige

𝑘𝑘 ∈ ℕ, 𝑘𝑘 ≥ 2
ist möglich[20]. Effizient gelöst werden kann das Problem jedoch durch beliebig ansteigende

𝑘𝑘
nicht, denn die Auswahl aller möglichen Kanten liegt in

𝒪𝒪(𝑘𝑘!)
.

4.4.5. Simulated Annealing
Simulated Annealing ist ein Verfahren, welches auf der physikalischen Kristallisierung von Materialien beruht[52]. Dabei wird das Swap-Verfahren so erweitert, dass nicht nur solche Kommutationen ausgeführt werden, die kürzere Kettenlängen erzeugen, sondern zu Beginn auf Basis einer Zufallsvariable auch solche, die es nicht tun. Im Laufe der Zeit wird die Wahrscheinlichkeit dafür kontinuierlich reduziert, bis zum Schluss ein swap-optimaler Pfad gefunden wurde – da jedoch ein größerer Teil der möglichen Pfade abgedeckt werden kann, untertrifft er den des Swap-Verfahrens zumeist stark. Im Fall von

𝑝𝑝
(siehe Abb. 8) konnte sogar der optimale Pfad gefunden werden.

Algorithmisch wird dabei eine Starttemperatur

𝑡𝑡 ∈ [0, 1]
festgelegt und ein Eingabepfad

𝑝𝑝
erhalten. Man betrachte nun in einem Graphen mit

𝐺𝐺 = (Perm(𝑝𝑝), {(𝑝𝑝′, 𝑝𝑝″) | 𝑖𝑖, 𝑗𝑗 ∈ 𝔻𝔻, 𝑝𝑝′ ∈ Perm(𝑝𝑝), 𝑝𝑝″ ≔ Swap(𝑝𝑝′, 𝑖𝑖, 𝑗𝑗)})
die Nachbarn von

𝑝𝑝
und wähle ein zufälliges

𝑝𝑝′
aus, dies geschieht durch Wahl von

𝑖𝑖
und

𝑗𝑗 ≠ 𝑖𝑖
und Tauschen der Elemente. Falls nun

15

die Nachbarn von ​p​ und wähle ein zufälliges ​pʹ​ aus, dies ge-
schieht durch Wahl von ​i​ und ​i  ≠  j​ und Tauschen der Ele-
mente. Falls nun

𝑑𝑑𝕃𝕃(𝑝𝑝′) < 𝑑𝑑𝕃𝕃(𝑝𝑝)
, wird mit

𝑝𝑝′
in jedem Fall weiterverfahren, ansonsten beträgt die Wahrscheinlichkeit dafür

𝑒𝑒−
𝑑𝑑𝕃𝕃(𝑝𝑝

′)−𝑑𝑑𝕃𝕃(𝑝𝑝)
𝑡𝑡

, sinkt also kontinuierlich mit der Temperatur.

𝑡𝑡
wird nun arithmetisch um eine Konstante

𝑘𝑘
verringert, je nach gewünschter Konvergenzgeschwindigkeit – für den Fall der Farbsortierung von

𝑛𝑛 ∈ [10, 50]
hat sich der Bereich um

𝑘𝑘 ≈ 10−10

bewährt, sodass 10 Millionen Iterationen stattfinden – mit

𝑡𝑡 → 0
findet kein Tausch mehr statt und der Algorithmus wird abgebrochen.

5. Webanwendung
Was nützen die besten Algorithmen, wenn sie nicht auf Daten aus der realen Welt angewandt werden können? Um dies und vieles mehr zu ermöglichen, habe ich eine interaktive Webanwendung entwickelt, die genutzt werden kann, um mehrdimensionale Daten verschiedener Kategorien zu sortieren. Im folgenden Abschnitt werden dabei zunächst die verwendeten Technologien grundlegend erklärt, bevor auf die einzelnen Unterseiten eingegangen wird. Dabei sticht der Abschnitt zur Sortierung von Farben hervor, da dieser meine ursprüngliche Fragestellung beantwortet: Wie können algorithmisch Bücher ästhetisch nach ihrer Farbe sortiert werden?
5.1. Grundlagen und Open-Source-Implementierung
Der Quelltext der gesamten Anwendung ist frei und unter der GNU GPL v3[80] veröffentlicht. Über GitHub ist der des Frontends unter [14]; der des Backends unter [13] zu erreichen.
5.1.1. Frontend
Das Frontend der Anwendung habe ich in Svelte[38] und TypeScript[11, 40] geschrieben; es verwaltet mittels SvelteKit[39] die Unterseiten. Dabei erfolgt die Modellierung nach dem Component-Prinzip – individuelle Components verwalten dabei sowohl einen Zustand als auch die dazugehörigen (reaktiven) DOM-Elemente. So existiert etwa ein PathProperties-Component, welches die Eigenschaften eines Pfades (wie Länge, Kettenlänge und Kettensortiertheit) anzeigt und selbst akquiriert, und analog ein PathAlgorithms-Component, das das Ausführen von Konstruktions- und Verbesserungsalgorithmen über die Serververbindung ermöglicht.

5.1.2. Backend
Um maximale (zeitliche) Effizienz der Algorithmen sowie Speicher- und Typensicherheit zu gewährleisten, habe ich mich dafür entschieden, für das Backend der Anwendung die Programmiersprache Rust[43, 59] zu nutzen. Ein Pfadkonstruktionsalgorithmus ist dabei beispielsweise eine Funktion fn(PathCreateContext) -> Path, wobei Path ein Typ ist, der eine Liste als Pfad repräsentiert und PathCreateContext als struct PathCreateContext { action: ActionContext, dim: u8, points: Points, metric: Metric } definiert ist.

Code 1 zeigt eine Implementierung von NN in Rust. Dabei wird an einen Pfad (wie in Abschnitt 4.3.3 beschrieben) stets der nächste nicht besuchte Nachbar angehängt. In der aktuellen Version wird dagegen stets die Adjazenzmatrix (siehe Tabelle 4) vollständig berechnet. Dies sorgt zwar (bei Dimension

𝑑𝑑
und Listenlänge

𝑛𝑛
) für

Ω(𝑑𝑑 ⋅ 𝑛𝑛2)
, doch

𝑑𝑑(𝑎𝑎, 𝑏𝑏) ∈ 𝒪𝒪(1)
statt

𝒪𝒪(𝑑𝑑)
(konstanter Aufruf der Lookup-Tabelle[29, 85]) überwiegt zumeist.

5.2. Server-Client-Kommunikation
In bisherigen Projekten (wie [12]) nutzte ich das HTTP-Protokoll, um mit dem Server zu kommunizieren. Dieses zeichnet sich durch ein Request-Response-Schema aus, bei dem auf eine Anfrage (Request) des Clients genau eine Antwort (Response) des Servers erfolgen soll, die idealerweise nur auf den Daten der Anfrage beruht.

Während einige Methoden entwickelt wurden, um diese Einschränkungen aufzuheben oder ihre negativen Auswirkungen zu mindern (dazu zählt das wiederholte Anfragen einer Ressource vom Server oder das in HTTP/2 implementierte Server Push-Verfahren[91]; während erstere negative Auswirkungen auf die Performanz der Anwendung hat, ist zweitere nicht universell nutzbar und keine Alternative für den gewählten Servertyp), eignet sich für diese derartig dynamische Anwendung, bei der eine einzige Anfrage hunderte Status-Antworten zur Folge haben sollte, um Responsivität zu gewährleisten, eher ein anderes in Webbrowsern mittlerweile universell implementiertes Protokoll: das Websocket-Protokoll[30]. Dieses baut auf einem dauerhaft aktiven TCP-Server auf und ermöglicht so bidirektionale zustandsbehaftete Kommunikation.

Server und Client tauschen JSON-Dokumente aus, die auf der Backend-Seite in Rust mithilfe von serde[84] und auf der Frontend-Seite in TypeScript mithilfe von zod[61] typensicher deserialisiert werden. In Code 2 wird gezeigt, wie eine solche Kommunikation aussehen kann: zunächst fragt der Client die Erstellung eines Pfads an und übergibt die gewünschte Konstruktionsmethode und Minimallatenz (Falls der Server zu viele Antworten in zu kurzer Zeit verschickt, kann dies zu Unresponsivität des Clients und einem potenziellen Speicherleck führen – aus diesem Grund kann die Latenz, die der Server zwischen Abschicken zweier Antworten mindestens wartet, hier konfiguriert werden) , daraufhin schickt der Server für jeden relevanten Schritt eine Antwort zurück, bis der vollständige Pfad ausgegeben wird. Im Fall von NN ist dies für die Responsivität noch nicht entscheidend; bei länger andauernden Prozessen wie mehrschrittigen Verbesserungsalgorithmen dagegen signifikant.

5.3. Zahlen sortieren
Auf der Seite /sort-integers können ganze Zahlen eingegeben und nach einem Sortierungsalgorithmus der Wahl (aktuell implementiert sind Bubble Sort, Insertion Sort, Selection Sort, Quick Sort und Merge Sort) aufsteigend sortiert werden. Dabei wird bei jedem durch den Server ausgeführten algorithmischen Schritt – etwa Vergleich zweier Werte, Vertauschen oder Einstufen als bereits sortiert – die Liste samt der aktuell ausgeführten Schritte zurückgegeben. Dabei kann die Liste neben der üblichen Darstellung ihrer Elemente auch in einem Balkendiagramm dargestellt werden. Abb. 9 zeigt ein solches Diagramm, das Quick Sort angewandt auf die ersten sechzehn Zahlen der OEIS-Sequenz A107833[73, 77] darstellt.
5.4. Vektoren sortieren
Die Seite /sort-vectors ermöglicht die Sortierung einer Liste von Vektoren beliebiger Dimension. Nach Festlegen einer Dimension können Vektoren hinzugefügt, ihre Komponenten modifiziert und anschließend mittels PathAlgorithms ein Pfad erzeugt werden. Da jede andere Seite ebenfalls n-dimensionale Objekte sortiert, die als Vektoren repräsentiert werden können, enthalten sie eine Weiterleitung auf diese Seite, welche die Vektoren als URL-Parameter übergibt.

Um die Daten zu visualisieren, wurde ein kraftgerichteter (force-directed) Graph-Layout-Algorithmus implementiert. Dieser enthält ein Partikelsystem, sodass jeder Vektor durch ein Partikel repräsentiert wird, auf welches physikalische Kräfte wirken. Dabei existiert zwischen jedem Paar von Vektoren eine Feder mit einer Ruhelänge der durch die gewählte Metrik gegebenen Distanz, sodass analog zum Hookeschen Gesetz[21] Kräfte auf die betroffenen Partikel wirken. So approximiert die euklidische Distanz zwischen den sehbaren Punkten die genannte Distanz zwischen den Vektoren und skaliert damit mehrdimensional. Im zweidimensionalen euklidischen Fall konvergiert der Graph bis auf Rotation, Skalierung und Spiegelung dabei zu den tatsächlichen Punkten. Durch einen einstellbaren Parameter der Initialgeschwindigkeit kann zwischen einer zeitintensiveren, genaueren Darstellung und einer schnelleren und damit ungenaueren Konvergenz gewählt werden.

5.5. Orte sortieren
Die Probleme des bilokal sesshaften, polylokal handelnden Händlers, der drohnenbasierten Paketzustellung sowie der optimalen U-Bahn-Strecke werden durch die Seite /sort-places lösbar. Dabei zeigt eine interaktive auf der Basis von Leaflet[2] und über OpenStreetMap[22] auch der Mercator-Projektion entwickelte Karte die Punkte sowie den Pfad an.

Als Beispiel wurden für Abb. 10 die Landeshauptstädte der Bundesländer Deutschlands ausgewählt, zwischen denen z.B. ein Paketdienst verkehren soll. Dazu wurden ihre geographischen Koordinaten auf der Website eingegeben und im Anschluss mittels ILP (Abschnitt 4.3.5) der kürzeste Pfad konstruiert. In diesem Fall beginnt die Strecke in Düsseldorf und endet in Dresden. Eine möglichst effizient entworfene Eisenbahnlinie mit dem Ziel, all diese Orte zu verbinden, sollte ebenfalls den genannten Start- und Zielpunkt nutzen.

5.6. Farben sortieren
Im Alltag gibt es viele Dinge, die nach Farben sortiert werden können – während Bücher zumeist alphabetisch oder nach Kategorien sortiert werden sollten, ist dies bei Malstiften jeglicher Art, farblicher Dekoration und womöglich auch Kleidung anders. Hier ergibt eine Farbsortierung Sinn, und die meisten Menschen haben eine intuitive Vorstellung davon, was das bedeutet: ähnliche Farben gehören nah zueinander und unterschiedliche auseinander – es scheint also eine quantifizierbare intuitive Distanz zwischen zwei Farben zu geben. Während Ästhetik subjektiv bleibt und daher nicht die ästhetischste Liste für jeden existieren kann, treffe ich die Annahme, dass die Kettensortierung einer Liste am ästhetischsten ist, da sie Farbunterschiede minimiert.

Menschen sind Trichromaten[16, 44], was bedeutet, dass sie drei verschiedene Arten von Zapfen besitzen, die jeweils für eine bestimmte Wellenlängenreichweite des sichtbaren Lichts empfindlich sind, dessen Intensität messen und die Information ans Gehirn weiterleiten. Abb. 11 zeigt ein Diagramm der Empfindlichkeit abhängig von der Wellenlänge. Im Gegensatz zu Fischen mit vier[17] und Hunden mit zwei[63] braucht es beim Menschen folglich drei Dimensionen, um jede Farbe verlustfrei repräsentieren zu können.
5.6.1. Farbräume
Dabei gibt es eine Vielzahl an Farbräumen[46, 79], die allesamt Farben als dreidimensionale Vektoren[23] enkodieren. Der womöglich bekannteste[6] ist sRGB, der eine Rot-, eine Grün- und eine Blau-Komponente enthält (und der in Abschnitt 4 bereits genutzt wurde, um Vektoren zu illustrieren). Daraus setzt sich jede auf einem Computerbildschirm darstellbare Farbe zusammen: jeder Pixel besteht aus drei Subpixeln, die jeweils R, G oder B in einer bestimmten Intensität anzeigen. Zur Auswahl von Farben eignet sich HSV[78] dagegen besser[25] – hier repräsentieren die Komponenten eines Vektors den Buntton (Hue), die Sättigung der Farbe sowie die Helligkeit (Value). Dieses Farbmodell deckt ebenfalls alle sRGB-Farben ab.

Beide können jedoch nicht dazu genutzt werden, um Farben nach ihrem Aussehen in der realen Welt zu vergleichen – in sRGB sind die Farben

⃗𝑐𝑐1 ≔
und

⃗𝑐𝑐2 ≔
genauso weit entfernt wie

⃗𝑐𝑐3 ≔
und

⃗𝑐𝑐4 ≔
, obwohl die ersten beiden viel ähnlicher erscheinen.

Aus diesem Grund (und weiteren) wurde das perzeptuelle OKLAB-Farbsystem[64] entwickelt. Perzeptuell bedeutet zum Zwecke dieser Arbeit, dass die euklische Distanz zwischen zwei OKLAB-Farbwerten den wahrgenommenen Abstand modelliert, und dass Eigenschaften wie Buntton, Sättigung und Helligkeit experimentellen Daten eher entsprechen[54]. LAB bezieht sich darauf, dass das Farbsystem Farben als Helligkeit (Luminosity) sowie zwei Bunttönen, a und b, repräsentiert. In diesem Farbsystem beträgt

16

wird mit ​pʹ​ in jedem Fall weiterverfahren, ansonsten beträgt
die Wahrscheinlichkeit dafür

𝑑𝑑𝕃𝕃(𝑝𝑝′) < 𝑑𝑑𝕃𝕃(𝑝𝑝)
, wird mit

𝑝𝑝′
in jedem Fall weiterverfahren, ansonsten beträgt die Wahrscheinlichkeit dafür

𝑒𝑒−
𝑑𝑑𝕃𝕃(𝑝𝑝

′)−𝑑𝑑𝕃𝕃(𝑝𝑝)
𝑡𝑡

, sinkt also kontinuierlich mit der Temperatur.

𝑡𝑡
wird nun arithmetisch um eine Konstante

𝑘𝑘
verringert, je nach gewünschter Konvergenzgeschwindigkeit – für den Fall der Farbsortierung von

𝑛𝑛 ∈ [10, 50]
hat sich der Bereich um

𝑘𝑘 ≈ 10−10

bewährt, sodass 10 Millionen Iterationen stattfinden – mit

𝑡𝑡 → 0
findet kein Tausch mehr statt und der Algorithmus wird abgebrochen.

5. Webanwendung
Was nützen die besten Algorithmen, wenn sie nicht auf Daten aus der realen Welt angewandt werden können? Um dies und vieles mehr zu ermöglichen, habe ich eine interaktive Webanwendung entwickelt, die genutzt werden kann, um mehrdimensionale Daten verschiedener Kategorien zu sortieren. Im folgenden Abschnitt werden dabei zunächst die verwendeten Technologien grundlegend erklärt, bevor auf die einzelnen Unterseiten eingegangen wird. Dabei sticht der Abschnitt zur Sortierung von Farben hervor, da dieser meine ursprüngliche Fragestellung beantwortet: Wie können algorithmisch Bücher ästhetisch nach ihrer Farbe sortiert werden?
5.1. Grundlagen und Open-Source-Implementierung
Der Quelltext der gesamten Anwendung ist frei und unter der GNU GPL v3[80] veröffentlicht. Über GitHub ist der des Frontends unter [14]; der des Backends unter [13] zu erreichen.
5.1.1. Frontend
Das Frontend der Anwendung habe ich in Svelte[38] und TypeScript[11, 40] geschrieben; es verwaltet mittels SvelteKit[39] die Unterseiten. Dabei erfolgt die Modellierung nach dem Component-Prinzip – individuelle Components verwalten dabei sowohl einen Zustand als auch die dazugehörigen (reaktiven) DOM-Elemente. So existiert etwa ein PathProperties-Component, welches die Eigenschaften eines Pfades (wie Länge, Kettenlänge und Kettensortiertheit) anzeigt und selbst akquiriert, und analog ein PathAlgorithms-Component, das das Ausführen von Konstruktions- und Verbesserungsalgorithmen über die Serververbindung ermöglicht.

5.1.2. Backend
Um maximale (zeitliche) Effizienz der Algorithmen sowie Speicher- und Typensicherheit zu gewährleisten, habe ich mich dafür entschieden, für das Backend der Anwendung die Programmiersprache Rust[43, 59] zu nutzen. Ein Pfadkonstruktionsalgorithmus ist dabei beispielsweise eine Funktion fn(PathCreateContext) -> Path, wobei Path ein Typ ist, der eine Liste als Pfad repräsentiert und PathCreateContext als struct PathCreateContext { action: ActionContext, dim: u8, points: Points, metric: Metric } definiert ist.

Code 1 zeigt eine Implementierung von NN in Rust. Dabei wird an einen Pfad (wie in Abschnitt 4.3.3 beschrieben) stets der nächste nicht besuchte Nachbar angehängt. In der aktuellen Version wird dagegen stets die Adjazenzmatrix (siehe Tabelle 4) vollständig berechnet. Dies sorgt zwar (bei Dimension

𝑑𝑑
und Listenlänge

𝑛𝑛
) für

Ω(𝑑𝑑 ⋅ 𝑛𝑛2)
, doch

𝑑𝑑(𝑎𝑎, 𝑏𝑏) ∈ 𝒪𝒪(1)
statt

𝒪𝒪(𝑑𝑑)
(konstanter Aufruf der Lookup-Tabelle[29, 85]) überwiegt zumeist.

5.2. Server-Client-Kommunikation
In bisherigen Projekten (wie [12]) nutzte ich das HTTP-Protokoll, um mit dem Server zu kommunizieren. Dieses zeichnet sich durch ein Request-Response-Schema aus, bei dem auf eine Anfrage (Request) des Clients genau eine Antwort (Response) des Servers erfolgen soll, die idealerweise nur auf den Daten der Anfrage beruht.

Während einige Methoden entwickelt wurden, um diese Einschränkungen aufzuheben oder ihre negativen Auswirkungen zu mindern (dazu zählt das wiederholte Anfragen einer Ressource vom Server oder das in HTTP/2 implementierte Server Push-Verfahren[91]; während erstere negative Auswirkungen auf die Performanz der Anwendung hat, ist zweitere nicht universell nutzbar und keine Alternative für den gewählten Servertyp), eignet sich für diese derartig dynamische Anwendung, bei der eine einzige Anfrage hunderte Status-Antworten zur Folge haben sollte, um Responsivität zu gewährleisten, eher ein anderes in Webbrowsern mittlerweile universell implementiertes Protokoll: das Websocket-Protokoll[30]. Dieses baut auf einem dauerhaft aktiven TCP-Server auf und ermöglicht so bidirektionale zustandsbehaftete Kommunikation.

Server und Client tauschen JSON-Dokumente aus, die auf der Backend-Seite in Rust mithilfe von serde[84] und auf der Frontend-Seite in TypeScript mithilfe von zod[61] typensicher deserialisiert werden. In Code 2 wird gezeigt, wie eine solche Kommunikation aussehen kann: zunächst fragt der Client die Erstellung eines Pfads an und übergibt die gewünschte Konstruktionsmethode und Minimallatenz (Falls der Server zu viele Antworten in zu kurzer Zeit verschickt, kann dies zu Unresponsivität des Clients und einem potenziellen Speicherleck führen – aus diesem Grund kann die Latenz, die der Server zwischen Abschicken zweier Antworten mindestens wartet, hier konfiguriert werden) , daraufhin schickt der Server für jeden relevanten Schritt eine Antwort zurück, bis der vollständige Pfad ausgegeben wird. Im Fall von NN ist dies für die Responsivität noch nicht entscheidend; bei länger andauernden Prozessen wie mehrschrittigen Verbesserungsalgorithmen dagegen signifikant.

5.3. Zahlen sortieren
Auf der Seite /sort-integers können ganze Zahlen eingegeben und nach einem Sortierungsalgorithmus der Wahl (aktuell implementiert sind Bubble Sort, Insertion Sort, Selection Sort, Quick Sort und Merge Sort) aufsteigend sortiert werden. Dabei wird bei jedem durch den Server ausgeführten algorithmischen Schritt – etwa Vergleich zweier Werte, Vertauschen oder Einstufen als bereits sortiert – die Liste samt der aktuell ausgeführten Schritte zurückgegeben. Dabei kann die Liste neben der üblichen Darstellung ihrer Elemente auch in einem Balkendiagramm dargestellt werden. Abb. 9 zeigt ein solches Diagramm, das Quick Sort angewandt auf die ersten sechzehn Zahlen der OEIS-Sequenz A107833[73, 77] darstellt.
5.4. Vektoren sortieren
Die Seite /sort-vectors ermöglicht die Sortierung einer Liste von Vektoren beliebiger Dimension. Nach Festlegen einer Dimension können Vektoren hinzugefügt, ihre Komponenten modifiziert und anschließend mittels PathAlgorithms ein Pfad erzeugt werden. Da jede andere Seite ebenfalls n-dimensionale Objekte sortiert, die als Vektoren repräsentiert werden können, enthalten sie eine Weiterleitung auf diese Seite, welche die Vektoren als URL-Parameter übergibt.

Um die Daten zu visualisieren, wurde ein kraftgerichteter (force-directed) Graph-Layout-Algorithmus implementiert. Dieser enthält ein Partikelsystem, sodass jeder Vektor durch ein Partikel repräsentiert wird, auf welches physikalische Kräfte wirken. Dabei existiert zwischen jedem Paar von Vektoren eine Feder mit einer Ruhelänge der durch die gewählte Metrik gegebenen Distanz, sodass analog zum Hookeschen Gesetz[21] Kräfte auf die betroffenen Partikel wirken. So approximiert die euklidische Distanz zwischen den sehbaren Punkten die genannte Distanz zwischen den Vektoren und skaliert damit mehrdimensional. Im zweidimensionalen euklidischen Fall konvergiert der Graph bis auf Rotation, Skalierung und Spiegelung dabei zu den tatsächlichen Punkten. Durch einen einstellbaren Parameter der Initialgeschwindigkeit kann zwischen einer zeitintensiveren, genaueren Darstellung und einer schnelleren und damit ungenaueren Konvergenz gewählt werden.

5.5. Orte sortieren
Die Probleme des bilokal sesshaften, polylokal handelnden Händlers, der drohnenbasierten Paketzustellung sowie der optimalen U-Bahn-Strecke werden durch die Seite /sort-places lösbar. Dabei zeigt eine interaktive auf der Basis von Leaflet[2] und über OpenStreetMap[22] auch der Mercator-Projektion entwickelte Karte die Punkte sowie den Pfad an.

Als Beispiel wurden für Abb. 10 die Landeshauptstädte der Bundesländer Deutschlands ausgewählt, zwischen denen z.B. ein Paketdienst verkehren soll. Dazu wurden ihre geographischen Koordinaten auf der Website eingegeben und im Anschluss mittels ILP (Abschnitt 4.3.5) der kürzeste Pfad konstruiert. In diesem Fall beginnt die Strecke in Düsseldorf und endet in Dresden. Eine möglichst effizient entworfene Eisenbahnlinie mit dem Ziel, all diese Orte zu verbinden, sollte ebenfalls den genannten Start- und Zielpunkt nutzen.

5.6. Farben sortieren
Im Alltag gibt es viele Dinge, die nach Farben sortiert werden können – während Bücher zumeist alphabetisch oder nach Kategorien sortiert werden sollten, ist dies bei Malstiften jeglicher Art, farblicher Dekoration und womöglich auch Kleidung anders. Hier ergibt eine Farbsortierung Sinn, und die meisten Menschen haben eine intuitive Vorstellung davon, was das bedeutet: ähnliche Farben gehören nah zueinander und unterschiedliche auseinander – es scheint also eine quantifizierbare intuitive Distanz zwischen zwei Farben zu geben. Während Ästhetik subjektiv bleibt und daher nicht die ästhetischste Liste für jeden existieren kann, treffe ich die Annahme, dass die Kettensortierung einer Liste am ästhetischsten ist, da sie Farbunterschiede minimiert.

Menschen sind Trichromaten[16, 44], was bedeutet, dass sie drei verschiedene Arten von Zapfen besitzen, die jeweils für eine bestimmte Wellenlängenreichweite des sichtbaren Lichts empfindlich sind, dessen Intensität messen und die Information ans Gehirn weiterleiten. Abb. 11 zeigt ein Diagramm der Empfindlichkeit abhängig von der Wellenlänge. Im Gegensatz zu Fischen mit vier[17] und Hunden mit zwei[63] braucht es beim Menschen folglich drei Dimensionen, um jede Farbe verlustfrei repräsentieren zu können.
5.6.1. Farbräume
Dabei gibt es eine Vielzahl an Farbräumen[46, 79], die allesamt Farben als dreidimensionale Vektoren[23] enkodieren. Der womöglich bekannteste[6] ist sRGB, der eine Rot-, eine Grün- und eine Blau-Komponente enthält (und der in Abschnitt 4 bereits genutzt wurde, um Vektoren zu illustrieren). Daraus setzt sich jede auf einem Computerbildschirm darstellbare Farbe zusammen: jeder Pixel besteht aus drei Subpixeln, die jeweils R, G oder B in einer bestimmten Intensität anzeigen. Zur Auswahl von Farben eignet sich HSV[78] dagegen besser[25] – hier repräsentieren die Komponenten eines Vektors den Buntton (Hue), die Sättigung der Farbe sowie die Helligkeit (Value). Dieses Farbmodell deckt ebenfalls alle sRGB-Farben ab.

Beide können jedoch nicht dazu genutzt werden, um Farben nach ihrem Aussehen in der realen Welt zu vergleichen – in sRGB sind die Farben

⃗𝑐𝑐1 ≔
und

⃗𝑐𝑐2 ≔
genauso weit entfernt wie

⃗𝑐𝑐3 ≔
und

⃗𝑐𝑐4 ≔
, obwohl die ersten beiden viel ähnlicher erscheinen.

Aus diesem Grund (und weiteren) wurde das perzeptuelle OKLAB-Farbsystem[64] entwickelt. Perzeptuell bedeutet zum Zwecke dieser Arbeit, dass die euklische Distanz zwischen zwei OKLAB-Farbwerten den wahrgenommenen Abstand modelliert, und dass Eigenschaften wie Buntton, Sättigung und Helligkeit experimentellen Daten eher entsprechen[54]. LAB bezieht sich darauf, dass das Farbsystem Farben als Helligkeit (Luminosity) sowie zwei Bunttönen, a und b, repräsentiert. In diesem Farbsystem beträgt

16

sinkt also kontinuierlich mit der Temperatur. ​t​ wird nun arith-
metisch um eine Konstante ​k​ verringert, je nach gewünschter
Konvergenzgeschwindigkeit – für den Fall der Farbsortierung
von ​n  ∈  ​[10,50]​​ hat sich der Bereich um ​k  ≈  ​10​​ −10​​ bewährt,
sodass 10 Millionen Iterationen stattfinden – mit ​t  →  0​ fin-
det kein Tausch mehr statt und der Algorithmus wird abge-
brochen.

5.	 Webanwendung

Was nützen die besten Algorithmen, wenn sie nicht auf Daten
aus der realen Welt angewandt werden können? Um dies und
vieles mehr zu ermöglichen, habe ich eine interaktive Weban-
wendung entwickelt, die genutzt werden kann, um mehrdi-
mensionale Daten verschiedener Kategorien zu sortieren. Im

4.4.4	3-opt und k-opt Verfahren

Ähnlich funktioniert das 3-opt-Verfahren: Hierbei werden
allerdings zwei statt drei Kanten getauscht. Da kein exaktes
geometrisches Äquivalent existiert, wird die Liste betrachtet.
Für einen 3-opt-Swap des Pfads ​p​ an den paarweise verschie-
denen Indizes ​i, j, k  ∈​ 𝔻 existieren dabei vier Möglichkei-
ten, die verschiedene Teillisten dabei umzukehren oder nicht,
wenn die Permutationen der Identität und des 2-opt-Tausches
vernachlässigt werden, sonst acht. 3-opt generalisiert im
letzteren Fall 2-opt, auch eine Generalisierung auf beliebige ​
k  ∈  ℕ, k  ≥  2​ ist möglich [22]. Effizient gelöst werden kann
das Problem jedoch durch beliebig ansteigende ​k​ nicht, denn
die Auswahl aller möglichen Kanten liegt in ​​O​(​​k !​)​​.​​

4.4.5	Simulated Annealing

Simulated Annealing ist ein Verfahren, welches auf der physi-
kalischen Kristallisierung von Materialien beruht [54]. Dabei
wird das Swap-Verfahren so erweitert, dass nicht nur solche
Kommutationen ausgeführt werden, die kürzere Kettenlän-
gen erzeugen, sondern zu Beginn auf Basis einer Zufallsvari-
able auch solche, die es nicht tun. Im Laufe der Zeit wird die
Wahrscheinlichkeit dafür kontinuierlich reduziert, bis zum
Schluss ein swap-optimaler Pfad gefunden wurde – da je-
doch ein größerer Teil der möglichen Pfade abgedeckt werden
kann, untertrifft er den des Swap-Verfahrens zumeist stark.
Im Fall von ​p​ (siehe Abb. 13) konnte sogar der optimale Pfad
gefunden werden.

Algorithmisch wird dabei eine Starttemperatur ​t  ∈  ​[0,1]​​

Abb. 12: Der 2-opt-
optimale Pfad 𝑝𝑝′ nach
2-opt-Tausch von 𝑙𝑙3

und 𝑙𝑙6.

13

Abb. 12: Der 2-opt-optimale Pfad ​pʹ​ nach
2-opt-Tausch von ​​l​ 

3
​​​ und ​​l​ 

6
​​​

Dabei wird die Kettenlänge stets reduziert, da die neue Strecke zwei Punkte direkt verbindet, statt einen ‚Umweg‘ zu enthalten. Im Bezug auf einen Pfad als Liste bedeutet ein 2-opt-Tausch dabei, eine Teilliste dieser umzukehren. Durch Ungerichtetheit des Graphen ändert sich die Kettenlänge der Teilliste nicht.

Während die Existenz eines solchen Schnittpunkts im zweidimensionalen kartesischen Koordinatensystem mithilfe eines Sweepline-Algorithmus in linearithmischer Laufzeit ermittelbar ist[9], existiert ein solches Verfahren für höhere Dimensionen nicht. Aus diesem Grund ist die Laufzeit im allgemeinen Fall pro Optimierungsschritt quadratisch, da jede Kante mit jeder weiteren Kante auf Tauschbarkeit überprüft wird, die auch nicht mehr nur auf Schnittpunkten basiert, sondern die Kettendistanzen vergleicht.

Während das Auflösen aller Überschneidungen im Pessimalfall eine Laufzeitkomplexität von 𝑂̃𝑂(𝑛𝑛10) (die Tilde signalisiert die Vernachlässigung logarithmischer Faktoren) [7] benötigt, konvergiert der Algorithmus meist schneller. Ist kein 2-opt-Tausch mehr ausführbar, wird der Pfad 2-opt-optimal genannt.
4.4.4. 3-opt und k-opt
Ähnlich funktioniert das 3-opt-Verfahren: hierbei werden allerdings zwei statt drei Kanten getauscht. Da kein exaktes geometrisches Äquivalent existiert, wird die Liste betrachtet. Für einen 3-opt-Swap des Pfads 𝑝𝑝 an den paarweise verschiedenen Indizes 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ∈ 𝔻𝔻 existieren dabei vier Möglichkeiten, die verschiedene Teillisten dabei umzukehren oder nicht, wenn die Permutationen der Identität und des 2-opt-Tausches vernachlässigt werden, sonst acht. 3-opt generalisiert im letzteren Fall 2-opt, auch eine Generalisierung auf beliebige 𝑘𝑘 ∈ ℕ, 𝑘𝑘 ≥ 2 ist möglich[22]. Effizient gelöst werden kann das Problem jedoch durch beliebig ansteigende 𝑘𝑘 nicht, denn die Auswahl aller möglichen Kanten liegt in 𝒪𝒪(𝑘𝑘!).

4.4.5. Simulated Annealing
Simulated Annealing ist ein Verfahren, welches auf der physikalischen Kristallisierung von Materialien beruht[54]. Dabei wird das Swap-Verfahren so erweitert, dass nicht nur solche Kommutationen ausgeführt werden, die kürzere Kettenlängen erzeugen, sondern zu Beginn auf Basis einer Zufallsvariable auch solche, die es nicht tun. Im Laufe der Zeit wird die Wahrscheinlichkeit dafür kontinuierlich reduziert, bis zum Schluss ein swap-optimaler Pfad gefunden wurde – da jedoch ein größerer Teil der möglichen Pfade abgedeckt werden kann, untertrifft er den des Swap-Verfahrens zumeist stark. Im Fall von 𝑝𝑝 (siehe Abb. 13) konnte sogar der optimale Pfad gefunden werden.

Abb. 13: Simulated
Annealing.

14

Abb. 13: Simulated Annealing

Informatik | Seite 12

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-13.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-12.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-13.jpg

JUNGE wissenschaft 15 / 18 | Seite 13JUNGE wissenschaft 03 / 25 | Seite 13

doi: 10.7795/320.202503

5.2	 Server-Client-Kommunikation

In bisherigen Projekten (wie [14]) nutzte ich das HTTP-Pro-
tokoll, um mit dem Server zu kommunizieren. Dieses zeich-
net sich durch ein Request-Response-Schema aus, bei dem auf
eine Anfrage (Request) des Clients genau eine Antwort (Res-
ponse) des Servers erfolgen soll, die idealerweise nur auf den
Daten der Anfrage beruht.

Während einige Methoden entwickelt wurden, um diese Ein-
schränkungen aufzuheben oder ihre negativen Auswirkun-
gen zu mindern (dazu zählt das wiederholte Anfragen einer
Ressource vom Server oder das in HTTP/2 implementierte
Server-Push-Verfahren [93]; während erstere negative Aus-
wirkungen auf die Performanz der Anwendung hat, ist zwei-
tere nicht universell nutzbar und keine Alternative für den
gewählten Servertyp), eignet sich für diese derartig dynami-
sche Anwendung, bei der eine einzige Anfrage hunderte Sta-
tus-Antworten zur Folge haben sollte, um Responsivität zu
gewährleisten, eher ein anderes in Webbrowsern mittlerweile
universell implementiertes Protokoll: das Websocket-Proto-

folgenden Abschnitt werden dabei zunächst die verwendeten
Technologien grundlegend erklärt, bevor auf die einzelnen
Unterseiten eingegangen wird. Dabei sticht der Abschnitt zur
Sortierung von Farben hervor, da dieser meine ursprüngliche
Fragestellung beantwortet: Wie können algorithmisch Bücher
ästhetisch nach ihrer Farbe sortiert werden?

5.1	 Grundlagen und
Open-Source-Implementierung

Der Quelltext der gesamten Anwendung ist frei und unter
der GNU GPL v3 [82] veröffentlicht. Über GitHub ist der des
Frontends unter [16]; der des Backends unter [15] zu erreichen.

5.1.1	 Frontend

Das Frontend der Anwendung habe ich in Svelte [40] und Ty-
peScript [12], [42] geschrieben; es verwaltet mittels Svelte-
Kit [41] die Unterseiten. Dabei erfolgt die Modellierung nach
dem Component-Prinzip – individuelle Components verwal-
ten dabei sowohl einen Zustand als auch die dazugehörigen
(reaktiven) DOM-Elemente. So existiert etwa ein PathPro-
perties-Component, welches die Eigenschaften eines Pfa-
des (wie Länge, Kettenlänge und Kettensortiertheit) anzeigt
und selbst akquiriert, und analog ein PathAlgorithms-
Component, das das Ausführen von Konstruktions- und Ver-
besserungsalgorithmen über die Serververbindung ermög-
licht.

5.1.2	 Backend

Um maximale (zeitliche) Effizienz der Algorithmen sowie
Speicher- und Typensicherheit zu gewährleisten, habe ich
mich dafür entschieden, für das Backend der Anwendung
die Programmiersprache Rust [45], [61] zu nutzen. Ein Pfad-
konstruktionsalgorithmus ist dabei beispielsweise eine Funk-
tion fn(PathCreateContext) -> Path, wobei Path
ein Typ ist, der eine Liste als Pfad repräsentiert und Path-
CreateContext als struct PathCreateContext
{action: ActionContext, dim: u8, points:
Points, metric: Metric } definiert ist.

Der Code in Abb. 14 zeigt eine Implementierung von NN in
Rust. Dabei wird an einen Pfad (wie in Kap. 4.3.3 beschrie-
ben) stets der nächste nicht besuchte Nachbar angehängt. In
der aktuellen Version wird dagegen stets die Adjazenzmatrix
(siehe Abb. 9) vollständig berechnet. Dies sorgt zwar (bei Di-
mension ​d​ und Listenlänge ​n​) für ​Ω​(d ∙ ​n​​ 2​)​​, doch auf die Dis-
tanz zweier Elemente in Konstantzeit zugreifen zu können
(​​d​(​​a, b​)​​  ∈  O​(​​1​)​​​​ statt ​​O​(​​d​)​​​​) [31], [87], ist zumeist laufzeittech-
nisch vorteilhaft.

pub fn nearest_neighbor(ctx: PathCreateContext)
-> Path {
 let PathCreateContext {
 action, dim, points: values, norm
 } = ctx;

 let mut visited = HashSet::new();
 let mut path = Path::try_new(
 vec![values[0].clone()],
 dim).expect("invalid dimension");
 while path.len() != values.len() {
 let last = &path[path.len() - 1];
 visited.insert(last.clone());

 let min = values
 .iter()
 .filter(|&point|
 !visited.contains(point))
 .min_by_key(|point|
 point.comparable_dist(
 last, norm
)
)
 .unwrap();

 path.push(min.clone());
 action.send(
 PathCreation::from_path(
 path.clone()
).progress(path.len() as f32
 / values.len() as f32),
);
 }

 path
}

Abb. 14: NN als Rust-Programm. Alle anderen
aus Kap. 4 implementierten Verfahren sind über
GitHub (siehe Kap. 5.1) ersichtlich.

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-14.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-09.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-14.jpg

doi: 10.7795/320.202503

5.3	 Zahlen sortieren

Auf der Seite /sort-integers können ganze Zahlen ein-
gegeben und nach einem Sortierungsalgorithmus der Wahl
(aktuell implementiert sind Bubble Sort, Insertion Sort, Se-
lection Sort, Quick Sort und Merge Sort) aufsteigend sortiert
werden. Dabei wird bei jedem durch den Server ausgeführten
algorithmischen Schritt – etwa Vergleich zweier Werte, Ver-
tauschen oder Einstufen als bereits sortiert – die Liste samt
der aktuell ausgeführten Schritte zurückgegeben. Dabei kann
die Liste neben der üblichen Darstellung ihrer Elemente auch
in einem Balkendiagramm dargestellt werden. Abb. 16 zeigt
ein solches Diagramm, das Quick Sort angewandt auf die ers-
ten sechzehn Zahlen der OEIS-Sequenz A107833 [75], [79]
darstellt.

5.4	 Vektoren sortieren

Die Seite /sort-vectors ermöglicht die Sortierung einer
Liste von Vektoren beliebiger Dimension. Nach Festlegen einer
Dimension können Vektoren hinzugefügt, ihre Komponenten
modifiziert und anschließend mittels PathAlgorithms
ein Pfad erzeugt werden. Da jede andere Seite ebenfalls ​n​
-dimensionale Objekte sortiert, die als Vektoren repräsen-
tiert werden können, enthalten sie eine Weiterleitung auf die-
se Seite, welche die Vektoren als URL-Parameter übergibt.

Um die Daten zu visualisieren, wurde ein kraftgerichteter
(force-directed) Graph-Layout-Algorithmus implementiert.
Dieser enthält ein Partikelsystem, sodass jeder Vektor durch
ein Partikel repräsentiert wird, auf welches physikalische
Kräfte wirken. Dabei existiert zwischen jedem Paar von Vek-
toren eine Feder mit einer Ruhelänge der durch die gewähl-
te Metrik gegebenen Distanz, sodass analog zum Hook'schen
Gesetz [23] Kräfte auf die betroffenen Partikel wirken. So ap-
proximiert die euklidische Distanz zwischen den sehbaren
Punkten die genannte Distanz zwischen den Vektoren und
skaliert damit mehrdimensional. Im zweidimensionalen eu-
klidischen Fall konvergiert der Graph bis auf Rotation, Ska-
lierung und Spiegelung dabei zu den tatsächlichen Punkten.
Durch einen einstellbaren Parameter der Initialgeschwindig-
keit kann zwischen einer zeitintensiveren, genaueren Darstel-
lung und einer schnelleren und damit ungenaueren Konver-
genz gewählt werden.

5.5	 Orte sortieren

Die Probleme des bilokal sesshaften, polylokal handelnden
Händlers, der drohnenbasierten Paketzustellung sowie der
optimalen U-Bahn-Strecke werden durch die Seite /sort-
places lösbar. Dabei zeigt eine interaktive auf der Basis von
Leaflet [2] und OpenStreetMap [24] entwickelte Karte die
Punkte sowie den Pfad an.

koll [32]. Dieses baut auf einem dauerhaft aktiven TCP-Server
auf und ermöglicht so bidirektionale zustandsbehaftete Kom-
munikation.

Server und Client tauschen JSON-Dokumente aus, die auf der
Backend-Seite in Rust mithilfe von serde [86] und auf der
Frontend-Seite in TypeScript mithilfe von zod [63] typensi-
cher deserialisiert werden. Im Code in Abb. 15 wird gezeigt,
wie eine solche Kommunikation aussehen kann: zunächst
fragt der Client die Erstellung eines Pfads an und übergibt
die gewünschte Konstruktionsmethode und Minimallatenz.
(Falls der Server zu viele Antworten in zu kurzer Zeit ver-
schickt, kann dies zu Unresponsivität des Clients und einem
potenziellen Speicherleck führen – aus diesem Grund kann
die Latenz, die der Server zwischen Abschicken zweier Ant-
worten mindestens wartet, hier konfiguriert werden), darauf-
hin schickt der Server für jeden relevanten Schritt eine Ant-
wort zurück, bis der vollständige Pfad ausgegeben wird. Im
Fall von NN ist dies für die Responsivität noch nicht entschei-
dend; bei länger andauernden Prozessen wie mehrschrittigen
Verbesserungsalgorithmen dagegen signifikant.

{"type":"action", "latency":100,
"action":{"type":"createPath",
"method":
{"type":"nearestNeighbor"},
"dimensions":3, "values":[[0.6,
0.2], [0.1, 0.7], [0.9, 0.4],
[0.2, 0.2], [0.5, 0.5], [0.8,
0.7]]}}

{"type":"pathCreation",
"currentEdges":[[[0.6, 0.2], [0.5,
0.5]]], "progress":0.33333334}
{"type":"pathCreation",
"currentEdges":[[[0.6, 0.2], [0.5,
0.5]], [[0.5, 0.5], [0.8, 0.7]]],
"progress":0.5}
{"type":"pathCreation",
"currentEdges":[[[0.6, 0.2], [0.5,
0.5]], [[0.5, 0.5], [0.8, 0.7]],
[[0.8, 0.7], [0.9, 0.4]]],
"progress":0.6666667}
...
{"type":"pathCreation",
"donePath":[[0.6, 0.2], [0.5,
0.5], [0.8, 0.7], [0.9, 0.4],
[0.2, 0.2], [0.1, 0.7]],
"currentEdges":[[[0.6, 0.2], [0.5,
0.5]], [[0.5, 0.5], [0.8, 0.7]],
[[0.8, 0.7], [0.9, 0.4]], [[0.9,
0.4], [0.2, 0.2]], [[0.2, 0.2],
[0.1, 0.7]]], "progress":1.0}

Abb. 15: Eine Anfrage (nach Kap. 4.3.3) und
die fünf darauffolgenden Antworten.

Informatik | Seite 14

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-16.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-15.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-15.jpg

JUNGE wissenschaft 15 / 18 | Seite 15JUNGE wissenschaft 03 / 25 | Seite 15

doi: 10.7795/320.202503

5.6.1	 Farbräume

Dabei gibt es eine Vielzahl an Farbräumen [48], [81], die al-
lesamt Farben als dreidimensionale Vektoren [25] enkodie-
ren. Der womöglich bekannteste [6] ist sRGB, der eine Rot-,
eine Grün- und eine Blau-Komponente enthält (und der in
Kap. 4 bereits genutzt wurde, um Vektoren zu illustrieren).
Daraus setzt sich jede auf einem Computerbildschirm dar-
stellbare Farbe zusammen: Jeder Pixel besteht aus drei Subpi-
xeln, die jeweils Rot, Gelb oder Blau in einer bestimmten In-
tensität anzeigen. Zur Auswahl von Farben eignet sich HSV
[80] dagegen besser [27] – hier repräsentieren die Komponen-
ten eines Vektors den Buntton (Hue), die Sättigung der Farbe
sowie die Helligkeit (Value). Dieses Farbmodell deckt eben-
falls alle sRGB-Farben ab.

Beide können jedoch nicht dazu genutzt werden, um Farben
nach ihrem Aussehen in der realen Welt zu vergleichen – in
sRGB sind die Farben

𝑑𝑑𝕃𝕃(𝑝𝑝′) < 𝑑𝑑𝕃𝕃(𝑝𝑝)
, wird mit

𝑝𝑝′
in jedem Fall weiterverfahren, ansonsten beträgt die Wahrscheinlichkeit dafür

𝑒𝑒−
𝑑𝑑𝕃𝕃(𝑝𝑝

′)−𝑑𝑑𝕃𝕃(𝑝𝑝)
𝑡𝑡

, sinkt also kontinuierlich mit der Temperatur.

𝑡𝑡
wird nun arithmetisch um eine Konstante

𝑘𝑘
verringert, je nach gewünschter Konvergenzgeschwindigkeit – für den Fall der Farbsortierung von

𝑛𝑛 ∈ [10, 50]
hat sich der Bereich um

𝑘𝑘 ≈ 10−10

bewährt, sodass 10 Millionen Iterationen stattfinden – mit

𝑡𝑡 → 0
findet kein Tausch mehr statt und der Algorithmus wird abgebrochen.

5. Webanwendung
Was nützen die besten Algorithmen, wenn sie nicht auf Daten aus der realen Welt angewandt werden können? Um dies und vieles mehr zu ermöglichen, habe ich eine interaktive Webanwendung entwickelt, die genutzt werden kann, um mehrdimensionale Daten verschiedener Kategorien zu sortieren. Im folgenden Abschnitt werden dabei zunächst die verwendeten Technologien grundlegend erklärt, bevor auf die einzelnen Unterseiten eingegangen wird. Dabei sticht der Abschnitt zur Sortierung von Farben hervor, da dieser meine ursprüngliche Fragestellung beantwortet: Wie können algorithmisch Bücher ästhetisch nach ihrer Farbe sortiert werden?
5.1. Grundlagen und Open-Source-Implementierung
Der Quelltext der gesamten Anwendung ist frei und unter der GNU GPL v3[80] veröffentlicht. Über GitHub ist der des Frontends unter [14]; der des Backends unter [13] zu erreichen.
5.1.1. Frontend
Das Frontend der Anwendung habe ich in Svelte[38] und TypeScript[11, 40] geschrieben; es verwaltet mittels SvelteKit[39] die Unterseiten. Dabei erfolgt die Modellierung nach dem Component-Prinzip – individuelle Components verwalten dabei sowohl einen Zustand als auch die dazugehörigen (reaktiven) DOM-Elemente. So existiert etwa ein PathProperties-Component, welches die Eigenschaften eines Pfades (wie Länge, Kettenlänge und Kettensortiertheit) anzeigt und selbst akquiriert, und analog ein PathAlgorithms-Component, das das Ausführen von Konstruktions- und Verbesserungsalgorithmen über die Serververbindung ermöglicht.

5.1.2. Backend
Um maximale (zeitliche) Effizienz der Algorithmen sowie Speicher- und Typensicherheit zu gewährleisten, habe ich mich dafür entschieden, für das Backend der Anwendung die Programmiersprache Rust[43, 59] zu nutzen. Ein Pfadkonstruktionsalgorithmus ist dabei beispielsweise eine Funktion fn(PathCreateContext) -> Path, wobei Path ein Typ ist, der eine Liste als Pfad repräsentiert und PathCreateContext als struct PathCreateContext { action: ActionContext, dim: u8, points: Points, metric: Metric } definiert ist.

Code 1 zeigt eine Implementierung von NN in Rust. Dabei wird an einen Pfad (wie in Abschnitt 4.3.3 beschrieben) stets der nächste nicht besuchte Nachbar angehängt. In der aktuellen Version wird dagegen stets die Adjazenzmatrix (siehe Tabelle 4) vollständig berechnet. Dies sorgt zwar (bei Dimension

𝑑𝑑
und Listenlänge

𝑛𝑛
) für

Ω(𝑑𝑑 ⋅ 𝑛𝑛2)
, doch

𝑑𝑑(𝑎𝑎, 𝑏𝑏) ∈ 𝒪𝒪(1)
statt

𝒪𝒪(𝑑𝑑)
(konstanter Aufruf der Lookup-Tabelle[29, 85]) überwiegt zumeist.

5.2. Server-Client-Kommunikation
In bisherigen Projekten (wie [12]) nutzte ich das HTTP-Protokoll, um mit dem Server zu kommunizieren. Dieses zeichnet sich durch ein Request-Response-Schema aus, bei dem auf eine Anfrage (Request) des Clients genau eine Antwort (Response) des Servers erfolgen soll, die idealerweise nur auf den Daten der Anfrage beruht.

Während einige Methoden entwickelt wurden, um diese Einschränkungen aufzuheben oder ihre negativen Auswirkungen zu mindern (dazu zählt das wiederholte Anfragen einer Ressource vom Server oder das in HTTP/2 implementierte Server Push-Verfahren[91]; während erstere negative Auswirkungen auf die Performanz der Anwendung hat, ist zweitere nicht universell nutzbar und keine Alternative für den gewählten Servertyp), eignet sich für diese derartig dynamische Anwendung, bei der eine einzige Anfrage hunderte Status-Antworten zur Folge haben sollte, um Responsivität zu gewährleisten, eher ein anderes in Webbrowsern mittlerweile universell implementiertes Protokoll: das Websocket-Protokoll[30]. Dieses baut auf einem dauerhaft aktiven TCP-Server auf und ermöglicht so bidirektionale zustandsbehaftete Kommunikation.

Server und Client tauschen JSON-Dokumente aus, die auf der Backend-Seite in Rust mithilfe von serde[84] und auf der Frontend-Seite in TypeScript mithilfe von zod[61] typensicher deserialisiert werden. In Code 2 wird gezeigt, wie eine solche Kommunikation aussehen kann: zunächst fragt der Client die Erstellung eines Pfads an und übergibt die gewünschte Konstruktionsmethode und Minimallatenz (Falls der Server zu viele Antworten in zu kurzer Zeit verschickt, kann dies zu Unresponsivität des Clients und einem potenziellen Speicherleck führen – aus diesem Grund kann die Latenz, die der Server zwischen Abschicken zweier Antworten mindestens wartet, hier konfiguriert werden) , daraufhin schickt der Server für jeden relevanten Schritt eine Antwort zurück, bis der vollständige Pfad ausgegeben wird. Im Fall von NN ist dies für die Responsivität noch nicht entscheidend; bei länger andauernden Prozessen wie mehrschrittigen Verbesserungsalgorithmen dagegen signifikant.

5.3. Zahlen sortieren
Auf der Seite /sort-integers können ganze Zahlen eingegeben und nach einem Sortierungsalgorithmus der Wahl (aktuell implementiert sind Bubble Sort, Insertion Sort, Selection Sort, Quick Sort und Merge Sort) aufsteigend sortiert werden. Dabei wird bei jedem durch den Server ausgeführten algorithmischen Schritt – etwa Vergleich zweier Werte, Vertauschen oder Einstufen als bereits sortiert – die Liste samt der aktuell ausgeführten Schritte zurückgegeben. Dabei kann die Liste neben der üblichen Darstellung ihrer Elemente auch in einem Balkendiagramm dargestellt werden. Abb. 9 zeigt ein solches Diagramm, das Quick Sort angewandt auf die ersten sechzehn Zahlen der OEIS-Sequenz A107833[73, 77] darstellt.
5.4. Vektoren sortieren
Die Seite /sort-vectors ermöglicht die Sortierung einer Liste von Vektoren beliebiger Dimension. Nach Festlegen einer Dimension können Vektoren hinzugefügt, ihre Komponenten modifiziert und anschließend mittels PathAlgorithms ein Pfad erzeugt werden. Da jede andere Seite ebenfalls n-dimensionale Objekte sortiert, die als Vektoren repräsentiert werden können, enthalten sie eine Weiterleitung auf diese Seite, welche die Vektoren als URL-Parameter übergibt.

Um die Daten zu visualisieren, wurde ein kraftgerichteter (force-directed) Graph-Layout-Algorithmus implementiert. Dieser enthält ein Partikelsystem, sodass jeder Vektor durch ein Partikel repräsentiert wird, auf welches physikalische Kräfte wirken. Dabei existiert zwischen jedem Paar von Vektoren eine Feder mit einer Ruhelänge der durch die gewählte Metrik gegebenen Distanz, sodass analog zum Hookeschen Gesetz[21] Kräfte auf die betroffenen Partikel wirken. So approximiert die euklidische Distanz zwischen den sehbaren Punkten die genannte Distanz zwischen den Vektoren und skaliert damit mehrdimensional. Im zweidimensionalen euklidischen Fall konvergiert der Graph bis auf Rotation, Skalierung und Spiegelung dabei zu den tatsächlichen Punkten. Durch einen einstellbaren Parameter der Initialgeschwindigkeit kann zwischen einer zeitintensiveren, genaueren Darstellung und einer schnelleren und damit ungenaueren Konvergenz gewählt werden.

5.5. Orte sortieren
Die Probleme des bilokal sesshaften, polylokal handelnden Händlers, der drohnenbasierten Paketzustellung sowie der optimalen U-Bahn-Strecke werden durch die Seite /sort-places lösbar. Dabei zeigt eine interaktive auf der Basis von Leaflet[2] und über OpenStreetMap[22] auch der Mercator-Projektion entwickelte Karte die Punkte sowie den Pfad an.

Als Beispiel wurden für Abb. 10 die Landeshauptstädte der Bundesländer Deutschlands ausgewählt, zwischen denen z.B. ein Paketdienst verkehren soll. Dazu wurden ihre geographischen Koordinaten auf der Website eingegeben und im Anschluss mittels ILP (Abschnitt 4.3.5) der kürzeste Pfad konstruiert. In diesem Fall beginnt die Strecke in Düsseldorf und endet in Dresden. Eine möglichst effizient entworfene Eisenbahnlinie mit dem Ziel, all diese Orte zu verbinden, sollte ebenfalls den genannten Start- und Zielpunkt nutzen.

5.6. Farben sortieren
Im Alltag gibt es viele Dinge, die nach Farben sortiert werden können – während Bücher zumeist alphabetisch oder nach Kategorien sortiert werden sollten, ist dies bei Malstiften jeglicher Art, farblicher Dekoration und womöglich auch Kleidung anders. Hier ergibt eine Farbsortierung Sinn, und die meisten Menschen haben eine intuitive Vorstellung davon, was das bedeutet: ähnliche Farben gehören nah zueinander und unterschiedliche auseinander – es scheint also eine quantifizierbare intuitive Distanz zwischen zwei Farben zu geben. Während Ästhetik subjektiv bleibt und daher nicht die ästhetischste Liste für jeden existieren kann, treffe ich die Annahme, dass die Kettensortierung einer Liste am ästhetischsten ist, da sie Farbunterschiede minimiert.

Menschen sind Trichromaten[16, 44], was bedeutet, dass sie drei verschiedene Arten von Zapfen besitzen, die jeweils für eine bestimmte Wellenlängenreichweite des sichtbaren Lichts empfindlich sind, dessen Intensität messen und die Information ans Gehirn weiterleiten. Abb. 11 zeigt ein Diagramm der Empfindlichkeit abhängig von der Wellenlänge. Im Gegensatz zu Fischen mit vier[17] und Hunden mit zwei[63] braucht es beim Menschen folglich drei Dimensionen, um jede Farbe verlustfrei repräsentieren zu können.
5.6.1. Farbräume
Dabei gibt es eine Vielzahl an Farbräumen[46, 79], die allesamt Farben als dreidimensionale Vektoren[23] enkodieren. Der womöglich bekannteste[6] ist sRGB, der eine Rot-, eine Grün- und eine Blau-Komponente enthält (und der in Abschnitt 4 bereits genutzt wurde, um Vektoren zu illustrieren). Daraus setzt sich jede auf einem Computerbildschirm darstellbare Farbe zusammen: jeder Pixel besteht aus drei Subpixeln, die jeweils R, G oder B in einer bestimmten Intensität anzeigen. Zur Auswahl von Farben eignet sich HSV[78] dagegen besser[25] – hier repräsentieren die Komponenten eines Vektors den Buntton (Hue), die Sättigung der Farbe sowie die Helligkeit (Value). Dieses Farbmodell deckt ebenfalls alle sRGB-Farben ab.

Beide können jedoch nicht dazu genutzt werden, um Farben nach ihrem Aussehen in der realen Welt zu vergleichen – in sRGB sind die Farben

⃗𝑐𝑐1 ≔
und

⃗𝑐𝑐2 ≔
genauso weit entfernt wie

⃗𝑐𝑐3 ≔
und

⃗𝑐𝑐4 ≔
, obwohl die ersten beiden viel ähnlicher erscheinen.

Aus diesem Grund (und weiteren) wurde das perzeptuelle OKLAB-Farbsystem[64] entwickelt. Perzeptuell bedeutet zum Zwecke dieser Arbeit, dass die euklische Distanz zwischen zwei OKLAB-Farbwerten den wahrgenommenen Abstand modelliert, und dass Eigenschaften wie Buntton, Sättigung und Helligkeit experimentellen Daten eher entsprechen[54]. LAB bezieht sich darauf, dass das Farbsystem Farben als Helligkeit (Luminosity) sowie zwei Bunttönen, a und b, repräsentiert. In diesem Farbsystem beträgt

16

 und

𝑑𝑑𝕃𝕃(𝑝𝑝′) < 𝑑𝑑𝕃𝕃(𝑝𝑝)
, wird mit

𝑝𝑝′
in jedem Fall weiterverfahren, ansonsten beträgt die Wahrscheinlichkeit dafür

𝑒𝑒−
𝑑𝑑𝕃𝕃(𝑝𝑝

′)−𝑑𝑑𝕃𝕃(𝑝𝑝)
𝑡𝑡

, sinkt also kontinuierlich mit der Temperatur.

𝑡𝑡
wird nun arithmetisch um eine Konstante

𝑘𝑘
verringert, je nach gewünschter Konvergenzgeschwindigkeit – für den Fall der Farbsortierung von

𝑛𝑛 ∈ [10, 50]
hat sich der Bereich um

𝑘𝑘 ≈ 10−10

bewährt, sodass 10 Millionen Iterationen stattfinden – mit

𝑡𝑡 → 0
findet kein Tausch mehr statt und der Algorithmus wird abgebrochen.

5. Webanwendung
Was nützen die besten Algorithmen, wenn sie nicht auf Daten aus der realen Welt angewandt werden können? Um dies und vieles mehr zu ermöglichen, habe ich eine interaktive Webanwendung entwickelt, die genutzt werden kann, um mehrdimensionale Daten verschiedener Kategorien zu sortieren. Im folgenden Abschnitt werden dabei zunächst die verwendeten Technologien grundlegend erklärt, bevor auf die einzelnen Unterseiten eingegangen wird. Dabei sticht der Abschnitt zur Sortierung von Farben hervor, da dieser meine ursprüngliche Fragestellung beantwortet: Wie können algorithmisch Bücher ästhetisch nach ihrer Farbe sortiert werden?
5.1. Grundlagen und Open-Source-Implementierung
Der Quelltext der gesamten Anwendung ist frei und unter der GNU GPL v3[80] veröffentlicht. Über GitHub ist der des Frontends unter [14]; der des Backends unter [13] zu erreichen.
5.1.1. Frontend
Das Frontend der Anwendung habe ich in Svelte[38] und TypeScript[11, 40] geschrieben; es verwaltet mittels SvelteKit[39] die Unterseiten. Dabei erfolgt die Modellierung nach dem Component-Prinzip – individuelle Components verwalten dabei sowohl einen Zustand als auch die dazugehörigen (reaktiven) DOM-Elemente. So existiert etwa ein PathProperties-Component, welches die Eigenschaften eines Pfades (wie Länge, Kettenlänge und Kettensortiertheit) anzeigt und selbst akquiriert, und analog ein PathAlgorithms-Component, das das Ausführen von Konstruktions- und Verbesserungsalgorithmen über die Serververbindung ermöglicht.

5.1.2. Backend
Um maximale (zeitliche) Effizienz der Algorithmen sowie Speicher- und Typensicherheit zu gewährleisten, habe ich mich dafür entschieden, für das Backend der Anwendung die Programmiersprache Rust[43, 59] zu nutzen. Ein Pfadkonstruktionsalgorithmus ist dabei beispielsweise eine Funktion fn(PathCreateContext) -> Path, wobei Path ein Typ ist, der eine Liste als Pfad repräsentiert und PathCreateContext als struct PathCreateContext { action: ActionContext, dim: u8, points: Points, metric: Metric } definiert ist.

Code 1 zeigt eine Implementierung von NN in Rust. Dabei wird an einen Pfad (wie in Abschnitt 4.3.3 beschrieben) stets der nächste nicht besuchte Nachbar angehängt. In der aktuellen Version wird dagegen stets die Adjazenzmatrix (siehe Tabelle 4) vollständig berechnet. Dies sorgt zwar (bei Dimension

𝑑𝑑
und Listenlänge

𝑛𝑛
) für

Ω(𝑑𝑑 ⋅ 𝑛𝑛2)
, doch

𝑑𝑑(𝑎𝑎, 𝑏𝑏) ∈ 𝒪𝒪(1)
statt

𝒪𝒪(𝑑𝑑)
(konstanter Aufruf der Lookup-Tabelle[29, 85]) überwiegt zumeist.

5.2. Server-Client-Kommunikation
In bisherigen Projekten (wie [12]) nutzte ich das HTTP-Protokoll, um mit dem Server zu kommunizieren. Dieses zeichnet sich durch ein Request-Response-Schema aus, bei dem auf eine Anfrage (Request) des Clients genau eine Antwort (Response) des Servers erfolgen soll, die idealerweise nur auf den Daten der Anfrage beruht.

Während einige Methoden entwickelt wurden, um diese Einschränkungen aufzuheben oder ihre negativen Auswirkungen zu mindern (dazu zählt das wiederholte Anfragen einer Ressource vom Server oder das in HTTP/2 implementierte Server Push-Verfahren[91]; während erstere negative Auswirkungen auf die Performanz der Anwendung hat, ist zweitere nicht universell nutzbar und keine Alternative für den gewählten Servertyp), eignet sich für diese derartig dynamische Anwendung, bei der eine einzige Anfrage hunderte Status-Antworten zur Folge haben sollte, um Responsivität zu gewährleisten, eher ein anderes in Webbrowsern mittlerweile universell implementiertes Protokoll: das Websocket-Protokoll[30]. Dieses baut auf einem dauerhaft aktiven TCP-Server auf und ermöglicht so bidirektionale zustandsbehaftete Kommunikation.

Server und Client tauschen JSON-Dokumente aus, die auf der Backend-Seite in Rust mithilfe von serde[84] und auf der Frontend-Seite in TypeScript mithilfe von zod[61] typensicher deserialisiert werden. In Code 2 wird gezeigt, wie eine solche Kommunikation aussehen kann: zunächst fragt der Client die Erstellung eines Pfads an und übergibt die gewünschte Konstruktionsmethode und Minimallatenz (Falls der Server zu viele Antworten in zu kurzer Zeit verschickt, kann dies zu Unresponsivität des Clients und einem potenziellen Speicherleck führen – aus diesem Grund kann die Latenz, die der Server zwischen Abschicken zweier Antworten mindestens wartet, hier konfiguriert werden) , daraufhin schickt der Server für jeden relevanten Schritt eine Antwort zurück, bis der vollständige Pfad ausgegeben wird. Im Fall von NN ist dies für die Responsivität noch nicht entscheidend; bei länger andauernden Prozessen wie mehrschrittigen Verbesserungsalgorithmen dagegen signifikant.

5.3. Zahlen sortieren
Auf der Seite /sort-integers können ganze Zahlen eingegeben und nach einem Sortierungsalgorithmus der Wahl (aktuell implementiert sind Bubble Sort, Insertion Sort, Selection Sort, Quick Sort und Merge Sort) aufsteigend sortiert werden. Dabei wird bei jedem durch den Server ausgeführten algorithmischen Schritt – etwa Vergleich zweier Werte, Vertauschen oder Einstufen als bereits sortiert – die Liste samt der aktuell ausgeführten Schritte zurückgegeben. Dabei kann die Liste neben der üblichen Darstellung ihrer Elemente auch in einem Balkendiagramm dargestellt werden. Abb. 9 zeigt ein solches Diagramm, das Quick Sort angewandt auf die ersten sechzehn Zahlen der OEIS-Sequenz A107833[73, 77] darstellt.
5.4. Vektoren sortieren
Die Seite /sort-vectors ermöglicht die Sortierung einer Liste von Vektoren beliebiger Dimension. Nach Festlegen einer Dimension können Vektoren hinzugefügt, ihre Komponenten modifiziert und anschließend mittels PathAlgorithms ein Pfad erzeugt werden. Da jede andere Seite ebenfalls n-dimensionale Objekte sortiert, die als Vektoren repräsentiert werden können, enthalten sie eine Weiterleitung auf diese Seite, welche die Vektoren als URL-Parameter übergibt.

Um die Daten zu visualisieren, wurde ein kraftgerichteter (force-directed) Graph-Layout-Algorithmus implementiert. Dieser enthält ein Partikelsystem, sodass jeder Vektor durch ein Partikel repräsentiert wird, auf welches physikalische Kräfte wirken. Dabei existiert zwischen jedem Paar von Vektoren eine Feder mit einer Ruhelänge der durch die gewählte Metrik gegebenen Distanz, sodass analog zum Hookeschen Gesetz[21] Kräfte auf die betroffenen Partikel wirken. So approximiert die euklidische Distanz zwischen den sehbaren Punkten die genannte Distanz zwischen den Vektoren und skaliert damit mehrdimensional. Im zweidimensionalen euklidischen Fall konvergiert der Graph bis auf Rotation, Skalierung und Spiegelung dabei zu den tatsächlichen Punkten. Durch einen einstellbaren Parameter der Initialgeschwindigkeit kann zwischen einer zeitintensiveren, genaueren Darstellung und einer schnelleren und damit ungenaueren Konvergenz gewählt werden.

5.5. Orte sortieren
Die Probleme des bilokal sesshaften, polylokal handelnden Händlers, der drohnenbasierten Paketzustellung sowie der optimalen U-Bahn-Strecke werden durch die Seite /sort-places lösbar. Dabei zeigt eine interaktive auf der Basis von Leaflet[2] und über OpenStreetMap[22] auch der Mercator-Projektion entwickelte Karte die Punkte sowie den Pfad an.

Als Beispiel wurden für Abb. 10 die Landeshauptstädte der Bundesländer Deutschlands ausgewählt, zwischen denen z.B. ein Paketdienst verkehren soll. Dazu wurden ihre geographischen Koordinaten auf der Website eingegeben und im Anschluss mittels ILP (Abschnitt 4.3.5) der kürzeste Pfad konstruiert. In diesem Fall beginnt die Strecke in Düsseldorf und endet in Dresden. Eine möglichst effizient entworfene Eisenbahnlinie mit dem Ziel, all diese Orte zu verbinden, sollte ebenfalls den genannten Start- und Zielpunkt nutzen.

5.6. Farben sortieren
Im Alltag gibt es viele Dinge, die nach Farben sortiert werden können – während Bücher zumeist alphabetisch oder nach Kategorien sortiert werden sollten, ist dies bei Malstiften jeglicher Art, farblicher Dekoration und womöglich auch Kleidung anders. Hier ergibt eine Farbsortierung Sinn, und die meisten Menschen haben eine intuitive Vorstellung davon, was das bedeutet: ähnliche Farben gehören nah zueinander und unterschiedliche auseinander – es scheint also eine quantifizierbare intuitive Distanz zwischen zwei Farben zu geben. Während Ästhetik subjektiv bleibt und daher nicht die ästhetischste Liste für jeden existieren kann, treffe ich die Annahme, dass die Kettensortierung einer Liste am ästhetischsten ist, da sie Farbunterschiede minimiert.

Menschen sind Trichromaten[16, 44], was bedeutet, dass sie drei verschiedene Arten von Zapfen besitzen, die jeweils für eine bestimmte Wellenlängenreichweite des sichtbaren Lichts empfindlich sind, dessen Intensität messen und die Information ans Gehirn weiterleiten. Abb. 11 zeigt ein Diagramm der Empfindlichkeit abhängig von der Wellenlänge. Im Gegensatz zu Fischen mit vier[17] und Hunden mit zwei[63] braucht es beim Menschen folglich drei Dimensionen, um jede Farbe verlustfrei repräsentieren zu können.
5.6.1. Farbräume
Dabei gibt es eine Vielzahl an Farbräumen[46, 79], die allesamt Farben als dreidimensionale Vektoren[23] enkodieren. Der womöglich bekannteste[6] ist sRGB, der eine Rot-, eine Grün- und eine Blau-Komponente enthält (und der in Abschnitt 4 bereits genutzt wurde, um Vektoren zu illustrieren). Daraus setzt sich jede auf einem Computerbildschirm darstellbare Farbe zusammen: jeder Pixel besteht aus drei Subpixeln, die jeweils R, G oder B in einer bestimmten Intensität anzeigen. Zur Auswahl von Farben eignet sich HSV[78] dagegen besser[25] – hier repräsentieren die Komponenten eines Vektors den Buntton (Hue), die Sättigung der Farbe sowie die Helligkeit (Value). Dieses Farbmodell deckt ebenfalls alle sRGB-Farben ab.

Beide können jedoch nicht dazu genutzt werden, um Farben nach ihrem Aussehen in der realen Welt zu vergleichen – in sRGB sind die Farben

⃗𝑐𝑐1 ≔
und

⃗𝑐𝑐2 ≔
genauso weit entfernt wie

⃗𝑐𝑐3 ≔
und

⃗𝑐𝑐4 ≔
, obwohl die ersten beiden viel ähnlicher erscheinen.

Aus diesem Grund (und weiteren) wurde das perzeptuelle OKLAB-Farbsystem[64] entwickelt. Perzeptuell bedeutet zum Zwecke dieser Arbeit, dass die euklische Distanz zwischen zwei OKLAB-Farbwerten den wahrgenommenen Abstand modelliert, und dass Eigenschaften wie Buntton, Sättigung und Helligkeit experimentellen Daten eher entsprechen[54]. LAB bezieht sich darauf, dass das Farbsystem Farben als Helligkeit (Luminosity) sowie zwei Bunttönen, a und b, repräsentiert. In diesem Farbsystem beträgt

16

genauso weit entfernt wie

𝑑𝑑𝕃𝕃(𝑝𝑝′) < 𝑑𝑑𝕃𝕃(𝑝𝑝)
, wird mit

𝑝𝑝′
in jedem Fall weiterverfahren, ansonsten beträgt die Wahrscheinlichkeit dafür

𝑒𝑒−
𝑑𝑑𝕃𝕃(𝑝𝑝

′)−𝑑𝑑𝕃𝕃(𝑝𝑝)
𝑡𝑡

, sinkt also kontinuierlich mit der Temperatur.

𝑡𝑡
wird nun arithmetisch um eine Konstante

𝑘𝑘
verringert, je nach gewünschter Konvergenzgeschwindigkeit – für den Fall der Farbsortierung von

𝑛𝑛 ∈ [10, 50]
hat sich der Bereich um

𝑘𝑘 ≈ 10−10

bewährt, sodass 10 Millionen Iterationen stattfinden – mit

𝑡𝑡 → 0
findet kein Tausch mehr statt und der Algorithmus wird abgebrochen.

5. Webanwendung
Was nützen die besten Algorithmen, wenn sie nicht auf Daten aus der realen Welt angewandt werden können? Um dies und vieles mehr zu ermöglichen, habe ich eine interaktive Webanwendung entwickelt, die genutzt werden kann, um mehrdimensionale Daten verschiedener Kategorien zu sortieren. Im folgenden Abschnitt werden dabei zunächst die verwendeten Technologien grundlegend erklärt, bevor auf die einzelnen Unterseiten eingegangen wird. Dabei sticht der Abschnitt zur Sortierung von Farben hervor, da dieser meine ursprüngliche Fragestellung beantwortet: Wie können algorithmisch Bücher ästhetisch nach ihrer Farbe sortiert werden?
5.1. Grundlagen und Open-Source-Implementierung
Der Quelltext der gesamten Anwendung ist frei und unter der GNU GPL v3[80] veröffentlicht. Über GitHub ist der des Frontends unter [14]; der des Backends unter [13] zu erreichen.
5.1.1. Frontend
Das Frontend der Anwendung habe ich in Svelte[38] und TypeScript[11, 40] geschrieben; es verwaltet mittels SvelteKit[39] die Unterseiten. Dabei erfolgt die Modellierung nach dem Component-Prinzip – individuelle Components verwalten dabei sowohl einen Zustand als auch die dazugehörigen (reaktiven) DOM-Elemente. So existiert etwa ein PathProperties-Component, welches die Eigenschaften eines Pfades (wie Länge, Kettenlänge und Kettensortiertheit) anzeigt und selbst akquiriert, und analog ein PathAlgorithms-Component, das das Ausführen von Konstruktions- und Verbesserungsalgorithmen über die Serververbindung ermöglicht.

5.1.2. Backend
Um maximale (zeitliche) Effizienz der Algorithmen sowie Speicher- und Typensicherheit zu gewährleisten, habe ich mich dafür entschieden, für das Backend der Anwendung die Programmiersprache Rust[43, 59] zu nutzen. Ein Pfadkonstruktionsalgorithmus ist dabei beispielsweise eine Funktion fn(PathCreateContext) -> Path, wobei Path ein Typ ist, der eine Liste als Pfad repräsentiert und PathCreateContext als struct PathCreateContext { action: ActionContext, dim: u8, points: Points, metric: Metric } definiert ist.

Code 1 zeigt eine Implementierung von NN in Rust. Dabei wird an einen Pfad (wie in Abschnitt 4.3.3 beschrieben) stets der nächste nicht besuchte Nachbar angehängt. In der aktuellen Version wird dagegen stets die Adjazenzmatrix (siehe Tabelle 4) vollständig berechnet. Dies sorgt zwar (bei Dimension

𝑑𝑑
und Listenlänge

𝑛𝑛
) für

Ω(𝑑𝑑 ⋅ 𝑛𝑛2)
, doch

𝑑𝑑(𝑎𝑎, 𝑏𝑏) ∈ 𝒪𝒪(1)
statt

𝒪𝒪(𝑑𝑑)
(konstanter Aufruf der Lookup-Tabelle[29, 85]) überwiegt zumeist.

5.2. Server-Client-Kommunikation
In bisherigen Projekten (wie [12]) nutzte ich das HTTP-Protokoll, um mit dem Server zu kommunizieren. Dieses zeichnet sich durch ein Request-Response-Schema aus, bei dem auf eine Anfrage (Request) des Clients genau eine Antwort (Response) des Servers erfolgen soll, die idealerweise nur auf den Daten der Anfrage beruht.

Während einige Methoden entwickelt wurden, um diese Einschränkungen aufzuheben oder ihre negativen Auswirkungen zu mindern (dazu zählt das wiederholte Anfragen einer Ressource vom Server oder das in HTTP/2 implementierte Server Push-Verfahren[91]; während erstere negative Auswirkungen auf die Performanz der Anwendung hat, ist zweitere nicht universell nutzbar und keine Alternative für den gewählten Servertyp), eignet sich für diese derartig dynamische Anwendung, bei der eine einzige Anfrage hunderte Status-Antworten zur Folge haben sollte, um Responsivität zu gewährleisten, eher ein anderes in Webbrowsern mittlerweile universell implementiertes Protokoll: das Websocket-Protokoll[30]. Dieses baut auf einem dauerhaft aktiven TCP-Server auf und ermöglicht so bidirektionale zustandsbehaftete Kommunikation.

Server und Client tauschen JSON-Dokumente aus, die auf der Backend-Seite in Rust mithilfe von serde[84] und auf der Frontend-Seite in TypeScript mithilfe von zod[61] typensicher deserialisiert werden. In Code 2 wird gezeigt, wie eine solche Kommunikation aussehen kann: zunächst fragt der Client die Erstellung eines Pfads an und übergibt die gewünschte Konstruktionsmethode und Minimallatenz (Falls der Server zu viele Antworten in zu kurzer Zeit verschickt, kann dies zu Unresponsivität des Clients und einem potenziellen Speicherleck führen – aus diesem Grund kann die Latenz, die der Server zwischen Abschicken zweier Antworten mindestens wartet, hier konfiguriert werden) , daraufhin schickt der Server für jeden relevanten Schritt eine Antwort zurück, bis der vollständige Pfad ausgegeben wird. Im Fall von NN ist dies für die Responsivität noch nicht entscheidend; bei länger andauernden Prozessen wie mehrschrittigen Verbesserungsalgorithmen dagegen signifikant.

5.3. Zahlen sortieren
Auf der Seite /sort-integers können ganze Zahlen eingegeben und nach einem Sortierungsalgorithmus der Wahl (aktuell implementiert sind Bubble Sort, Insertion Sort, Selection Sort, Quick Sort und Merge Sort) aufsteigend sortiert werden. Dabei wird bei jedem durch den Server ausgeführten algorithmischen Schritt – etwa Vergleich zweier Werte, Vertauschen oder Einstufen als bereits sortiert – die Liste samt der aktuell ausgeführten Schritte zurückgegeben. Dabei kann die Liste neben der üblichen Darstellung ihrer Elemente auch in einem Balkendiagramm dargestellt werden. Abb. 9 zeigt ein solches Diagramm, das Quick Sort angewandt auf die ersten sechzehn Zahlen der OEIS-Sequenz A107833[73, 77] darstellt.
5.4. Vektoren sortieren
Die Seite /sort-vectors ermöglicht die Sortierung einer Liste von Vektoren beliebiger Dimension. Nach Festlegen einer Dimension können Vektoren hinzugefügt, ihre Komponenten modifiziert und anschließend mittels PathAlgorithms ein Pfad erzeugt werden. Da jede andere Seite ebenfalls n-dimensionale Objekte sortiert, die als Vektoren repräsentiert werden können, enthalten sie eine Weiterleitung auf diese Seite, welche die Vektoren als URL-Parameter übergibt.

Um die Daten zu visualisieren, wurde ein kraftgerichteter (force-directed) Graph-Layout-Algorithmus implementiert. Dieser enthält ein Partikelsystem, sodass jeder Vektor durch ein Partikel repräsentiert wird, auf welches physikalische Kräfte wirken. Dabei existiert zwischen jedem Paar von Vektoren eine Feder mit einer Ruhelänge der durch die gewählte Metrik gegebenen Distanz, sodass analog zum Hookeschen Gesetz[21] Kräfte auf die betroffenen Partikel wirken. So approximiert die euklidische Distanz zwischen den sehbaren Punkten die genannte Distanz zwischen den Vektoren und skaliert damit mehrdimensional. Im zweidimensionalen euklidischen Fall konvergiert der Graph bis auf Rotation, Skalierung und Spiegelung dabei zu den tatsächlichen Punkten. Durch einen einstellbaren Parameter der Initialgeschwindigkeit kann zwischen einer zeitintensiveren, genaueren Darstellung und einer schnelleren und damit ungenaueren Konvergenz gewählt werden.

5.5. Orte sortieren
Die Probleme des bilokal sesshaften, polylokal handelnden Händlers, der drohnenbasierten Paketzustellung sowie der optimalen U-Bahn-Strecke werden durch die Seite /sort-places lösbar. Dabei zeigt eine interaktive auf der Basis von Leaflet[2] und über OpenStreetMap[22] auch der Mercator-Projektion entwickelte Karte die Punkte sowie den Pfad an.

Als Beispiel wurden für Abb. 10 die Landeshauptstädte der Bundesländer Deutschlands ausgewählt, zwischen denen z.B. ein Paketdienst verkehren soll. Dazu wurden ihre geographischen Koordinaten auf der Website eingegeben und im Anschluss mittels ILP (Abschnitt 4.3.5) der kürzeste Pfad konstruiert. In diesem Fall beginnt die Strecke in Düsseldorf und endet in Dresden. Eine möglichst effizient entworfene Eisenbahnlinie mit dem Ziel, all diese Orte zu verbinden, sollte ebenfalls den genannten Start- und Zielpunkt nutzen.

5.6. Farben sortieren
Im Alltag gibt es viele Dinge, die nach Farben sortiert werden können – während Bücher zumeist alphabetisch oder nach Kategorien sortiert werden sollten, ist dies bei Malstiften jeglicher Art, farblicher Dekoration und womöglich auch Kleidung anders. Hier ergibt eine Farbsortierung Sinn, und die meisten Menschen haben eine intuitive Vorstellung davon, was das bedeutet: ähnliche Farben gehören nah zueinander und unterschiedliche auseinander – es scheint also eine quantifizierbare intuitive Distanz zwischen zwei Farben zu geben. Während Ästhetik subjektiv bleibt und daher nicht die ästhetischste Liste für jeden existieren kann, treffe ich die Annahme, dass die Kettensortierung einer Liste am ästhetischsten ist, da sie Farbunterschiede minimiert.

Menschen sind Trichromaten[16, 44], was bedeutet, dass sie drei verschiedene Arten von Zapfen besitzen, die jeweils für eine bestimmte Wellenlängenreichweite des sichtbaren Lichts empfindlich sind, dessen Intensität messen und die Information ans Gehirn weiterleiten. Abb. 11 zeigt ein Diagramm der Empfindlichkeit abhängig von der Wellenlänge. Im Gegensatz zu Fischen mit vier[17] und Hunden mit zwei[63] braucht es beim Menschen folglich drei Dimensionen, um jede Farbe verlustfrei repräsentieren zu können.
5.6.1. Farbräume
Dabei gibt es eine Vielzahl an Farbräumen[46, 79], die allesamt Farben als dreidimensionale Vektoren[23] enkodieren. Der womöglich bekannteste[6] ist sRGB, der eine Rot-, eine Grün- und eine Blau-Komponente enthält (und der in Abschnitt 4 bereits genutzt wurde, um Vektoren zu illustrieren). Daraus setzt sich jede auf einem Computerbildschirm darstellbare Farbe zusammen: jeder Pixel besteht aus drei Subpixeln, die jeweils R, G oder B in einer bestimmten Intensität anzeigen. Zur Auswahl von Farben eignet sich HSV[78] dagegen besser[25] – hier repräsentieren die Komponenten eines Vektors den Buntton (Hue), die Sättigung der Farbe sowie die Helligkeit (Value). Dieses Farbmodell deckt ebenfalls alle sRGB-Farben ab.

Beide können jedoch nicht dazu genutzt werden, um Farben nach ihrem Aussehen in der realen Welt zu vergleichen – in sRGB sind die Farben

⃗𝑐𝑐1 ≔
und

⃗𝑐𝑐2 ≔
genauso weit entfernt wie

⃗𝑐𝑐3 ≔
und

⃗𝑐𝑐4 ≔
, obwohl die ersten beiden viel ähnlicher erscheinen.

Aus diesem Grund (und weiteren) wurde das perzeptuelle OKLAB-Farbsystem[64] entwickelt. Perzeptuell bedeutet zum Zwecke dieser Arbeit, dass die euklische Distanz zwischen zwei OKLAB-Farbwerten den wahrgenommenen Abstand modelliert, und dass Eigenschaften wie Buntton, Sättigung und Helligkeit experimentellen Daten eher entsprechen[54]. LAB bezieht sich darauf, dass das Farbsystem Farben als Helligkeit (Luminosity) sowie zwei Bunttönen, a und b, repräsentiert. In diesem Farbsystem beträgt

16

 und

𝑑𝑑𝕃𝕃(𝑝𝑝′) < 𝑑𝑑𝕃𝕃(𝑝𝑝)
, wird mit

𝑝𝑝′
in jedem Fall weiterverfahren, ansonsten beträgt die Wahrscheinlichkeit dafür

𝑒𝑒−
𝑑𝑑𝕃𝕃(𝑝𝑝

′)−𝑑𝑑𝕃𝕃(𝑝𝑝)
𝑡𝑡

, sinkt also kontinuierlich mit der Temperatur.

𝑡𝑡
wird nun arithmetisch um eine Konstante

𝑘𝑘
verringert, je nach gewünschter Konvergenzgeschwindigkeit – für den Fall der Farbsortierung von

𝑛𝑛 ∈ [10, 50]
hat sich der Bereich um

𝑘𝑘 ≈ 10−10

bewährt, sodass 10 Millionen Iterationen stattfinden – mit

𝑡𝑡 → 0
findet kein Tausch mehr statt und der Algorithmus wird abgebrochen.

5. Webanwendung
Was nützen die besten Algorithmen, wenn sie nicht auf Daten aus der realen Welt angewandt werden können? Um dies und vieles mehr zu ermöglichen, habe ich eine interaktive Webanwendung entwickelt, die genutzt werden kann, um mehrdimensionale Daten verschiedener Kategorien zu sortieren. Im folgenden Abschnitt werden dabei zunächst die verwendeten Technologien grundlegend erklärt, bevor auf die einzelnen Unterseiten eingegangen wird. Dabei sticht der Abschnitt zur Sortierung von Farben hervor, da dieser meine ursprüngliche Fragestellung beantwortet: Wie können algorithmisch Bücher ästhetisch nach ihrer Farbe sortiert werden?
5.1. Grundlagen und Open-Source-Implementierung
Der Quelltext der gesamten Anwendung ist frei und unter der GNU GPL v3[80] veröffentlicht. Über GitHub ist der des Frontends unter [14]; der des Backends unter [13] zu erreichen.
5.1.1. Frontend
Das Frontend der Anwendung habe ich in Svelte[38] und TypeScript[11, 40] geschrieben; es verwaltet mittels SvelteKit[39] die Unterseiten. Dabei erfolgt die Modellierung nach dem Component-Prinzip – individuelle Components verwalten dabei sowohl einen Zustand als auch die dazugehörigen (reaktiven) DOM-Elemente. So existiert etwa ein PathProperties-Component, welches die Eigenschaften eines Pfades (wie Länge, Kettenlänge und Kettensortiertheit) anzeigt und selbst akquiriert, und analog ein PathAlgorithms-Component, das das Ausführen von Konstruktions- und Verbesserungsalgorithmen über die Serververbindung ermöglicht.

5.1.2. Backend
Um maximale (zeitliche) Effizienz der Algorithmen sowie Speicher- und Typensicherheit zu gewährleisten, habe ich mich dafür entschieden, für das Backend der Anwendung die Programmiersprache Rust[43, 59] zu nutzen. Ein Pfadkonstruktionsalgorithmus ist dabei beispielsweise eine Funktion fn(PathCreateContext) -> Path, wobei Path ein Typ ist, der eine Liste als Pfad repräsentiert und PathCreateContext als struct PathCreateContext { action: ActionContext, dim: u8, points: Points, metric: Metric } definiert ist.

Code 1 zeigt eine Implementierung von NN in Rust. Dabei wird an einen Pfad (wie in Abschnitt 4.3.3 beschrieben) stets der nächste nicht besuchte Nachbar angehängt. In der aktuellen Version wird dagegen stets die Adjazenzmatrix (siehe Tabelle 4) vollständig berechnet. Dies sorgt zwar (bei Dimension

𝑑𝑑
und Listenlänge

𝑛𝑛
) für

Ω(𝑑𝑑 ⋅ 𝑛𝑛2)
, doch

𝑑𝑑(𝑎𝑎, 𝑏𝑏) ∈ 𝒪𝒪(1)
statt

𝒪𝒪(𝑑𝑑)
(konstanter Aufruf der Lookup-Tabelle[29, 85]) überwiegt zumeist.

5.2. Server-Client-Kommunikation
In bisherigen Projekten (wie [12]) nutzte ich das HTTP-Protokoll, um mit dem Server zu kommunizieren. Dieses zeichnet sich durch ein Request-Response-Schema aus, bei dem auf eine Anfrage (Request) des Clients genau eine Antwort (Response) des Servers erfolgen soll, die idealerweise nur auf den Daten der Anfrage beruht.

Während einige Methoden entwickelt wurden, um diese Einschränkungen aufzuheben oder ihre negativen Auswirkungen zu mindern (dazu zählt das wiederholte Anfragen einer Ressource vom Server oder das in HTTP/2 implementierte Server Push-Verfahren[91]; während erstere negative Auswirkungen auf die Performanz der Anwendung hat, ist zweitere nicht universell nutzbar und keine Alternative für den gewählten Servertyp), eignet sich für diese derartig dynamische Anwendung, bei der eine einzige Anfrage hunderte Status-Antworten zur Folge haben sollte, um Responsivität zu gewährleisten, eher ein anderes in Webbrowsern mittlerweile universell implementiertes Protokoll: das Websocket-Protokoll[30]. Dieses baut auf einem dauerhaft aktiven TCP-Server auf und ermöglicht so bidirektionale zustandsbehaftete Kommunikation.

Server und Client tauschen JSON-Dokumente aus, die auf der Backend-Seite in Rust mithilfe von serde[84] und auf der Frontend-Seite in TypeScript mithilfe von zod[61] typensicher deserialisiert werden. In Code 2 wird gezeigt, wie eine solche Kommunikation aussehen kann: zunächst fragt der Client die Erstellung eines Pfads an und übergibt die gewünschte Konstruktionsmethode und Minimallatenz (Falls der Server zu viele Antworten in zu kurzer Zeit verschickt, kann dies zu Unresponsivität des Clients und einem potenziellen Speicherleck führen – aus diesem Grund kann die Latenz, die der Server zwischen Abschicken zweier Antworten mindestens wartet, hier konfiguriert werden) , daraufhin schickt der Server für jeden relevanten Schritt eine Antwort zurück, bis der vollständige Pfad ausgegeben wird. Im Fall von NN ist dies für die Responsivität noch nicht entscheidend; bei länger andauernden Prozessen wie mehrschrittigen Verbesserungsalgorithmen dagegen signifikant.

5.3. Zahlen sortieren
Auf der Seite /sort-integers können ganze Zahlen eingegeben und nach einem Sortierungsalgorithmus der Wahl (aktuell implementiert sind Bubble Sort, Insertion Sort, Selection Sort, Quick Sort und Merge Sort) aufsteigend sortiert werden. Dabei wird bei jedem durch den Server ausgeführten algorithmischen Schritt – etwa Vergleich zweier Werte, Vertauschen oder Einstufen als bereits sortiert – die Liste samt der aktuell ausgeführten Schritte zurückgegeben. Dabei kann die Liste neben der üblichen Darstellung ihrer Elemente auch in einem Balkendiagramm dargestellt werden. Abb. 9 zeigt ein solches Diagramm, das Quick Sort angewandt auf die ersten sechzehn Zahlen der OEIS-Sequenz A107833[73, 77] darstellt.
5.4. Vektoren sortieren
Die Seite /sort-vectors ermöglicht die Sortierung einer Liste von Vektoren beliebiger Dimension. Nach Festlegen einer Dimension können Vektoren hinzugefügt, ihre Komponenten modifiziert und anschließend mittels PathAlgorithms ein Pfad erzeugt werden. Da jede andere Seite ebenfalls n-dimensionale Objekte sortiert, die als Vektoren repräsentiert werden können, enthalten sie eine Weiterleitung auf diese Seite, welche die Vektoren als URL-Parameter übergibt.

Um die Daten zu visualisieren, wurde ein kraftgerichteter (force-directed) Graph-Layout-Algorithmus implementiert. Dieser enthält ein Partikelsystem, sodass jeder Vektor durch ein Partikel repräsentiert wird, auf welches physikalische Kräfte wirken. Dabei existiert zwischen jedem Paar von Vektoren eine Feder mit einer Ruhelänge der durch die gewählte Metrik gegebenen Distanz, sodass analog zum Hookeschen Gesetz[21] Kräfte auf die betroffenen Partikel wirken. So approximiert die euklidische Distanz zwischen den sehbaren Punkten die genannte Distanz zwischen den Vektoren und skaliert damit mehrdimensional. Im zweidimensionalen euklidischen Fall konvergiert der Graph bis auf Rotation, Skalierung und Spiegelung dabei zu den tatsächlichen Punkten. Durch einen einstellbaren Parameter der Initialgeschwindigkeit kann zwischen einer zeitintensiveren, genaueren Darstellung und einer schnelleren und damit ungenaueren Konvergenz gewählt werden.

5.5. Orte sortieren
Die Probleme des bilokal sesshaften, polylokal handelnden Händlers, der drohnenbasierten Paketzustellung sowie der optimalen U-Bahn-Strecke werden durch die Seite /sort-places lösbar. Dabei zeigt eine interaktive auf der Basis von Leaflet[2] und über OpenStreetMap[22] auch der Mercator-Projektion entwickelte Karte die Punkte sowie den Pfad an.

Als Beispiel wurden für Abb. 10 die Landeshauptstädte der Bundesländer Deutschlands ausgewählt, zwischen denen z.B. ein Paketdienst verkehren soll. Dazu wurden ihre geographischen Koordinaten auf der Website eingegeben und im Anschluss mittels ILP (Abschnitt 4.3.5) der kürzeste Pfad konstruiert. In diesem Fall beginnt die Strecke in Düsseldorf und endet in Dresden. Eine möglichst effizient entworfene Eisenbahnlinie mit dem Ziel, all diese Orte zu verbinden, sollte ebenfalls den genannten Start- und Zielpunkt nutzen.

5.6. Farben sortieren
Im Alltag gibt es viele Dinge, die nach Farben sortiert werden können – während Bücher zumeist alphabetisch oder nach Kategorien sortiert werden sollten, ist dies bei Malstiften jeglicher Art, farblicher Dekoration und womöglich auch Kleidung anders. Hier ergibt eine Farbsortierung Sinn, und die meisten Menschen haben eine intuitive Vorstellung davon, was das bedeutet: ähnliche Farben gehören nah zueinander und unterschiedliche auseinander – es scheint also eine quantifizierbare intuitive Distanz zwischen zwei Farben zu geben. Während Ästhetik subjektiv bleibt und daher nicht die ästhetischste Liste für jeden existieren kann, treffe ich die Annahme, dass die Kettensortierung einer Liste am ästhetischsten ist, da sie Farbunterschiede minimiert.

Menschen sind Trichromaten[16, 44], was bedeutet, dass sie drei verschiedene Arten von Zapfen besitzen, die jeweils für eine bestimmte Wellenlängenreichweite des sichtbaren Lichts empfindlich sind, dessen Intensität messen und die Information ans Gehirn weiterleiten. Abb. 11 zeigt ein Diagramm der Empfindlichkeit abhängig von der Wellenlänge. Im Gegensatz zu Fischen mit vier[17] und Hunden mit zwei[63] braucht es beim Menschen folglich drei Dimensionen, um jede Farbe verlustfrei repräsentieren zu können.
5.6.1. Farbräume
Dabei gibt es eine Vielzahl an Farbräumen[46, 79], die allesamt Farben als dreidimensionale Vektoren[23] enkodieren. Der womöglich bekannteste[6] ist sRGB, der eine Rot-, eine Grün- und eine Blau-Komponente enthält (und der in Abschnitt 4 bereits genutzt wurde, um Vektoren zu illustrieren). Daraus setzt sich jede auf einem Computerbildschirm darstellbare Farbe zusammen: jeder Pixel besteht aus drei Subpixeln, die jeweils R, G oder B in einer bestimmten Intensität anzeigen. Zur Auswahl von Farben eignet sich HSV[78] dagegen besser[25] – hier repräsentieren die Komponenten eines Vektors den Buntton (Hue), die Sättigung der Farbe sowie die Helligkeit (Value). Dieses Farbmodell deckt ebenfalls alle sRGB-Farben ab.

Beide können jedoch nicht dazu genutzt werden, um Farben nach ihrem Aussehen in der realen Welt zu vergleichen – in sRGB sind die Farben

⃗𝑐𝑐1 ≔
und

⃗𝑐𝑐2 ≔
genauso weit entfernt wie

⃗𝑐𝑐3 ≔
und

⃗𝑐𝑐4 ≔
, obwohl die ersten beiden viel ähnlicher erscheinen.

Aus diesem Grund (und weiteren) wurde das perzeptuelle OKLAB-Farbsystem[64] entwickelt. Perzeptuell bedeutet zum Zwecke dieser Arbeit, dass die euklische Distanz zwischen zwei OKLAB-Farbwerten den wahrgenommenen Abstand modelliert, und dass Eigenschaften wie Buntton, Sättigung und Helligkeit experimentellen Daten eher entsprechen[54]. LAB bezieht sich darauf, dass das Farbsystem Farben als Helligkeit (Luminosity) sowie zwei Bunttönen, a und b, repräsentiert. In diesem Farbsystem beträgt

16

obwohl die ersten beiden viel ähnlicher erscheinen.

Aus diesem Grund (und weiteren) wurde das perzeptuel-
le OKLAB-Farbsystem [66] entwickelt. Perzeptuell bedeutet

Als Beispiel wurden für Abb. 17 die Landeshauptstädte der
Bundesländer Deutschlands ausgewählt, zwischen denen z. B.
ein Paketdienst verkehren soll. Dazu wurden ihre geographi-
schen Koordinaten auf der Website eingegeben und im An-
schluss mittels ILP (Kap. 4.3.5) der kürzeste Pfad konstruiert.
In diesem Fall beginnt die Strecke in Düsseldorf und endet in
Dresden. Eine möglichst effizient entworfene Eisenbahnlinie
mit dem Ziel, all diese Orte zu verbinden, sollte ebenfalls den
genannten Start- und Zielpunkt nutzen.

5.6	 Farben sortieren

Im Alltag gibt es viele Dinge, die nach Farben sortiert werden
können – während Bücher zumeist alphabetisch oder nach
Kategorien sortiert werden sollten, ist dies bei Malstiften jeg-
licher Art, farblicher Dekoration und womöglich auch Klei-
dung anders. Hier ergibt eine Farbsortierung Sinn, und die
meisten Menschen haben eine intuitive Vorstellung davon,
was das bedeutet: Ähnliche Farben gehören nah zueinander
und unterschiedliche auseinander – es scheint also eine quan-
tifizierbare intuitive Distanz zwischen zwei Farben zu geben.
Während Ästhetik subjektiv bleibt und daher nicht die ästhe-
tischste Liste für jeden existieren kann, treffe ich die Annah-
me, dass die Kettensortierung einer Liste am ästhetischsten
ist, da sie Farbunterschiede minimiert.

Menschen sind Trichromaten [18], [46], was bedeutet, dass
sie drei verschiedene Arten von Augenzapfen besitzen, die je-
weils für eine bestimmte Wellenlängenreichweite des sichtba-
ren Lichts empfindlich sind, dessen Intensität messen und die
Information ans Gehirn weiterleiten. Abb. 18 zeigt ein Dia-
gramm der Empfindlichkeit abhängig von der Wellenlänge.
Im Gegensatz zu Fischen mit vier [19] und Hunden mit zwei
[65] braucht es beim Menschen folglich drei Dimensionen,
um jede Farbe verlustfrei repräsentieren zu können.

Server und Client tauschen JSON-Dokumente aus, die auf der Backend-Seite in Rust mithilfe von serde[86] und auf der Frontend-Seite in TypeScript mithilfe von zod[63] typensicher deserialisiert werden. In Abb. 15 wird gezeigt, wie eine solche Kommunikation aussehen kann: zunächst fragt der Client die Erstellung eines Pfads an und übergibt die gewünschte Konstruktionsmethode und Minimallatenz (Falls der Server zu viele Antworten in zu kurzer Zeit verschickt, kann dies zu Unresponsivität des Clients und einem potenziellen Speicherleck führen – aus diesem Grund kann die Latenz, die der Server zwischen Abschicken zweier Antworten mindestens wartet, hier konfiguriert werden) , daraufhin schickt der Server für jeden relevanten Schritt eine Antwort zurück, bis der vollständige Pfad ausgegeben wird. Im Fall von NN ist dies für die Responsivität noch nicht entscheidend; bei länger andauernden Prozessen wie mehrschrittigen Verbesserungsalgorithmen dagegen signifikant.

5.3. Zahlen sortieren
Auf der Seite /sort-integers können ganze Zahlen eingegeben und nach einem Sortierungsalgorithmus der Wahl (aktuell implementiert sind Bubble Sort, Insertion Sort, Selection Sort, Quick Sort und Merge Sort) aufsteigend sortiert werden. Dabei wird bei jedem durch den Server ausgeführten algorithmischen Schritt – etwa Vergleich zweier Werte, Vertauschen oder Einstufen als bereits sortiert – die Liste samt der aktuell ausgeführten Schritte zurückgegeben. Dabei kann die Liste neben der üblichen Darstellung ihrer Elemente auch in einem Balkendiagramm dargestellt werden. Abb. 16 zeigt ein solches Diagramm, das Quick Sort angewandt auf die ersten sechzehn Zahlen der OEIS-Sequenz A107833[75, 79] darstellt.

Abb. 16: Quick
Sort partitioniert

die Teilliste.

17

Abb. 16: Quick Sort partitioniert die Teilliste

5.4. Vektoren sortieren
Die Seite /sort-vectors ermöglicht die Sortierung einer Liste von Vektoren beliebiger Dimension. Nach Festlegen einer Dimension können Vektoren hinzugefügt, ihre Komponenten modifiziert und anschließend mittels PathAlgorithms ein Pfad erzeugt werden. Da jede andere Seite ebenfalls n-dimensionale Objekte sortiert, die als Vektoren repräsentiert werden können, enthalten sie eine Weiterleitung auf diese Seite, welche die Vektoren als URL-Parameter übergibt.

Um die Daten zu visualisieren, wurde ein kraftgerichteter (force-directed) Graph-Layout-Algorithmus implementiert. Dieser enthält ein Partikelsystem, sodass jeder Vektor durch ein Partikel repräsentiert wird, auf welches physikalische Kräfte wirken. Dabei existiert zwischen jedem Paar von Vektoren eine Feder mit einer Ruhelänge der durch die gewählte Metrik gegebenen Distanz, sodass analog zum Hookeschen Gesetz[23] Kräfte auf die betroffenen Partikel wirken. So approximiert die euklidische Distanz zwischen den sehbaren Punkten die genannte Distanz zwischen den Vektoren und skaliert damit mehrdimensional. Im zweidimensionalen euklidischen Fall konvergiert der Graph bis auf Rotation, Skalierung und Spiegelung dabei zu den tatsächlichen Punkten. Durch einen einstellbaren Parameter der Initialgeschwindigkeit kann zwischen einer zeitintensiveren, genaueren Darstellung und einer schnelleren und damit ungenaueren Konvergenz gewählt werden.

5.5. Orte sortieren
Die Probleme des bilokal sesshaften, polylokal handelnden Händlers, der drohnenbasierten Paketzustellung sowie der optimalen U-Bahn-Strecke werden durch die Seite /sort-places lösbar. Dabei zeigt eine interaktive auf der Basis von Leaflet[2] und über OpenStreetMap[24] auch der Mercator-Projektion entwickelte Karte die Punkte sowie den Pfad an.

Als Beispiel wurden für Abb. 17 die Landeshauptstädte der Bundesländer Deutschlands ausgewählt, zwischen denen z.B. ein Paketdienst verkehren soll. Dazu wurden ihre geographischen Koordinaten auf der Website eingegeben und im Anschluss mittels ILP (Abschnitt 4.3.5) der kürzeste Pfad konstruiert. In diesem Fall beginnt die Strecke in Düsseldorf und endet in Dresden. Eine möglichst effizient entworfene Eisenbahnlinie mit dem Ziel, all diese Orte zu verbinden, sollte ebenfalls den genannten Start- und Zielpunkt nutzen.

Abb. 17: Kürzester Pfad
entlang der 16

Landeshauptstädte
Deutschlands als

Kettensortierung einer
Liste ihrer Koordinaten.

18

Abb. 17: Kürzester Pfad entlang der 16
Landeshauptstädte Deutschlands als Ketten-
sortierung einer Liste ihrer Koordinaten

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-17.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-18.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-16.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-17.jpg

doi: 10.7795/320.202503

6.	 Fazit und Ausblick

In diesem Projekt ist es mir gelungen, die vergleichsbasier-
te Sortierung auf Listen ​n​-dimensionaler Daten zu generali-
sieren und im Anschluss eine Webanwendung zu entwickeln,
mithilfe derer diese Sortierung auch in der Praxis anwend-
bar wird.

Erstaunt war ich zunächst über die Komplexität des Problems.
Schließlich werden vergleichsbasierte Sortierungsalgorith-
men bereits jetzt universell eingesetzt und die verschiedenen
Ansätze sind – auch, wenn immer noch an Mikrooptimierun-
gen gefeilt wird [59] – mittlerweile im algorithmischen Re-
pertoire und der Fachliteratur etabliert [4]. Anders ist das bei
der mehrdimensionalen Sortierung, zu der (meiner Kenntnis
nach) keine Bibliotheken oder Methoden existieren, die sich
explizit zum Ziel setzen, eine Liste mehrdimensionaler Daten
zu sortieren. Die NP-Schwere ist nach Erkenntnis der Äqui-
valenz zum kürzesten Hamilton-Pfad einleuchtend; ohne das
Problem graphentheoretisch zu betrachten, hätte ich sie je-
doch nicht erkannt.

Besonders fasziniert und motiviert hat mich die Interdiszipli-
narität der Thematik bei Entwicklung und Ausarbeitung des
Projekts. Während ich mit einem rein mathematischen Prob-
lem begann, entwickelte es sich über die Graphentheorie hin
zu einem praktisch-algorithmischen der Informatik; in der
Visualisierung der Ansätze nutze ich das Hookesche Gesetz
aus der Physik (Kap. 5.4) und die Mercator-Projektion aus der
Kartographie (Kap. 5.5). Algorithmen beinhalten neben klas-
sischen Ansätzen der Informatik auch solche mit Bezug zur
Materialwissenschaft / Chemie (Simulated Annealing) und
in Zukunft womöglich ein Ameisenkolonieverfahren [26] auf
Basis biologischer Systeme und Bionik. Nicht zu vernachläs-
sigen sind auch Farbtheorie und -lehre, mit der sich seit der
Antike schon Aristoteles [21], [78], da Vinci [1], Newton [20],
[77], Werner [90], Goethe [20], [37], [70], Kant [47], [71] und
Wittgenstein [74], [89], [91], um nur einige zu nennen, bereits
auseinandergesetzt haben.

zum Zwecke dieser Arbeit, dass die euklidische Distanz zwi-
schen zwei OKLAB-Farbwerten den wahrgenommenen Ab-
stand modelliert, und dass Eigenschaften wie Buntton, Sätti-
gung und Helligkeit experimentellen Daten eher entsprechen
[56]. LAB bezieht sich darauf, dass das Farbsystem Farben
als Helligkeit (Luminosity) sowie zwei Bunttönen, a und b,
repräsentiert. In diesem Farbsystem beträgt ​​|​ → ​c​ 1​​​ − ​ → ​c​ 2​​​|​  ≈  0,39​,
während ​​|​ → ​c​ 3​​​ − ​ → ​c​ 4​​​|​  ≈  0,69​ .

In der Webanwendung habe ich diese und weitere (linear-
sRGB, CMY, HSL, HSV, XYZ und CIELAB) sowie die Kon-
version zwischen jeden zwei Farbräumen implementiert.

5.6.2	Farbauswahl

Um Farben hinzuzufügen, habe ich einen Farbauswahldi-
alog entworfen (siehe Abb. 19), der intuitiv nutzbar ist und
zugleich alle Möglichkeiten der Farbauswahl abdeckt. Jeder
Bestandteil ist interaktiv und reaktiv, passt sich also der aus-
gewählten Farbe direkt bei Veränderung an und ermöglicht
durch Auswahl des Farbraums, beliebige Komponenten der
Farbe zu verändern. Zudem können verschiedene Listen zur
Benennung der Liste ausgewählt werden, wie etwa HTML-,
X11- oder RAL-Farben.

5.6.3	Visualisierung

Die Farben werden dem gewählten Farbraum entsprechend in
einem dreidimensionalen Koordinatensystem mittels three.js
als Kugeln angezeigt, die Kanten des Pfads als zwischen die-
sen liegende Zylinder. Die Achsen repräsentieren die Bedeu-
tung der Koordinate. Der Projektionstyp ist einstellbar und
über die Maus kann die Darstellung skaliert und rotiert wer-
den. In Abb. 20 wird ein 3-opt-optimaler Pfad 18 zufälliger
Farben im OKLAB-Farbraum gezeigt; die Abb. 21 zeigt einen
Screenshot der vollständigen Anwendung [17] auf 100 Farben
in HSL.

5.6. Farben sortieren
Im Alltag gibt es viele Dinge, die nach Farben sortiert werden können – während Bücher zumeist alphabetisch oder nach Kategorien sortiert werden sollten, ist dies bei Malstiften jeglicher Art, farblicher Dekoration und womöglich auch Kleidung anders. Hier ergibt eine Farbsortierung Sinn, und die meisten Menschen haben eine intuitive Vorstellung davon, was das bedeutet: ähnliche Farben gehören nah zueinander und unterschiedliche auseinander – es scheint also eine quantifizierbare intuitive Distanz zwischen zwei Farben zu geben. Während Ästhetik subjektiv bleibt und daher nicht die ästhetischste Liste für jeden existieren kann, treffe ich die Annahme, dass die Kettensortierung einer Liste am ästhetischsten ist, da sie Farbunterschiede minimiert.

400 450 500 550 600 650 700
Wavelength (nm)

N
or

m
al

iz
ed

 c
on

e
re

sp
on

se
 (

lin
ea

r
en

er
gy

)

S M L

Abb. 18:
Empfindlichkeit

menschlicher
Zapfen. [11]

19

Abb. 18: Empfindlichkeit menschlicher
Augenzapfen [11]

Menschen sind Trichromaten[18, 46], was bedeutet, dass sie drei verschiedene Arten von Zapfen besitzen, die jeweils für eine bestimmte Wellenlängenreichweite des sichtbaren Lichts empfindlich sind, dessen Intensität messen und die Information ans Gehirn weiterleiten. Abb. 18 zeigt ein Diagramm der Empfindlichkeit abhängig von der Wellenlänge. Im Gegensatz zu Fischen mit vier[19] und Hunden mit zwei[65] braucht es beim Menschen folglich drei Dimensionen, um jede Farbe verlustfrei repräsentieren zu können.
5.6.1. Farbräume
Dabei gibt es eine Vielzahl an Farbräumen[48, 81], die allesamt Farben als dreidimensionale Vektoren[25] enkodieren. Der womöglich bekannteste[6] ist sRGB, der eine Rot-, eine Grün- und eine Blau-Komponente enthält (und der in Abschnitt 4 bereits genutzt wurde, um Vektoren zu illustrieren). Daraus setzt sich jede auf einem Computerbildschirm darstellbare Farbe zusammen: jeder Pixel besteht aus drei Subpixeln, die jeweils R, G oder B in einer bestimmten Intensität anzeigen. Zur Auswahl von Farben eignet sich HSV[80] dagegen besser[27] – hier repräsentieren die Komponenten eines Vektors den Buntton (Hue), die Sättigung der Farbe sowie die Helligkeit (Value). Dieses Farbmodell deckt ebenfalls alle sRGB-Farben ab.

Beide können jedoch nicht dazu genutzt werden, um Farben nach ihrem Aussehen in der realen Welt zu vergleichen – in sRGB sind die Farben ⃗𝑐𝑐1 ≔ und ⃗𝑐𝑐2 ≔ genauso weit entfernt wie ⃗𝑐𝑐3 ≔ und ⃗𝑐𝑐4 ≔ , obwohl die ersten beiden viel ähnlicher erscheinen.

Aus diesem Grund (und weiteren) wurde das perzeptuelle OKLAB-Farbsystem[66] entwickelt. Perzeptuell bedeutet zum Zwecke dieser Arbeit, dass die euklische Distanz zwischen zwei OKLAB-Farbwerten den wahrgenommenen Abstand modelliert, und dass Eigenschaften wie Buntton, Sättigung und Helligkeit experimentellen Daten eher entsprechen[56]. LAB bezieht sich darauf, dass das Farbsystem Farben als Helligkeit (Luminosity) sowie zwei Bunttönen, a und b, repräsentiert. In diesem Farbsystem beträgt | ⃗𝑐𝑐1 − ⃗𝑐𝑐2| ≈ 0.39, während | ⃗𝑐𝑐3 − ⃗𝑐𝑐4| ≈ 0.69.

In der Webanwendung habe ich diese und weitere (linear-sRGB, CMY, HSL, HSV, XYZ und CIELAB) sowie die Konversion zwischen jeden zwei Farbräumen implementiert.

5.6.2. Farbauswahl
Um Farben hinzuzufügen, habe ich einen Farbauswahldialog entworfen (Abb. 19), der intuitiv nutzbar ist und zugleich alle Möglichkeiten der Farbauswahl abdeckt. Jeder Bestandteil ist interaktiv und reaktiv, passt sich also der ausgewählten Farbe direkt bei Veränderung an und ermöglicht durch Auswahl des Farbraums, beliebige Komponenten der Farbe zu verändern. Zudem können verschiedene Listen zur Benennung der Liste ausgewählt werden, wie etwa HTML-, X11- oder RAL-Farben.
5.6.3. Visualisierung
Die Farben werden dem gewählten Farbraum entsprechend in einem dreidimensionalen Koordinatensystem mittels three.js als Kugeln angezeigt, die Kanten des Pfads als zwischen diesen liegende Zylinder. Die Achsen repräsentieren die Bedeutung der Koordinate. Der Projektionstyp ist einstellbar und über die Maus kann die Darstellung skaliert und rotiert werden. In Abb. 20 wird ein 3-opt-optimaler Pfad 18 zufälliger Farben im OKLAB-Farbraum gezeigt; die folgende Abb. zeigt einen Screenshot der vollständigen Anwendung[17] auf 100 Farben in HSL.

Abb. 19: Der Farbauswahldialog.
Aktuell ist Ockergelb im RGB-Farbraum

ausgewählt.

20

Abb. 19: Der Farbauswahldialog. Aktuell ist
Ockergelb im RGB-Farbraum ausgewählt.

Informatik | Seite 16

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-19.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-20.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-21.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-18.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-19.jpg

JUNGE wissenschaft 15 / 18 | Seite 17JUNGE wissenschaft 03 / 25 | Seite 17

doi: 10.7795/320.202503

Schließlich möchte ich auch allen Entwickler:innen der ge-
nutzten Open-Source-Bibliotheken danken, die die vorlie-
gende Ausarbeitung in ihrer aktuellen Form maßgeblich er-
leichtert haben.

Literatur

[1]	 Ackerman, J.S. 1980. „On early renaissance color theory and practice“.
Memoirs of the American Academy in Rome 35:11–44.

[2]	 Agafonkin, V., I.S. Ortega, D. Leaver, und andere. „Leaflet – a JavaScript
library for interactive maps“. [Online]. Verfügbar unter: https://leafletjs.
com/ [zuletzt geprüft: Januar 6, 2024].

[3]	 Akhter, N., M. Idrees, und Furqan-ur-Rehman. 2016. „Sorting Algorithms
– A Comparative Study“. International Journal of Computer Science and
Information Security, 14:930–936.

[4]	 Al-Kharabsheh, K.S., I.M. AlTurani, A.M.I. AlTurani, und N.I. Zanoon. 2013.
„Review on sorting algorithms a comparative study“. International Jour-
nal of Computer Science and Security (IJCSS) 7(3):120–126.

[5]	 Albrecht, M. 2024. „Nächster Stopp Landesfinale“. [Online]. Ver-
fügbar unter: https://gymnasium- essen-werden.de/ankuendigun-
gen/n%C3%A4chster-stopp-landesfinale.html [zuletzt geprüft: März 30,
2024].

[6]	 Anderson, M., R. Motta, S. Chandrasekar, und M. Stokes. 1996. „Propos-
al for a standard default color space for the internet—srgb“. In Color and
imaging conference. S. 238–245.

[7]	 Arora, S. 1998. „Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems“. Journal of the ACM
(JACM) 45(5):753–782.

[8]	 Auger, N., V. Jugé, C. Nicaud, und C. Pivoteau. 2019. „On the Worst-Case
Complexity of TimSort“.

[9]	 Balaban, I.J. 1995. „An optimal algorithm for finding segments intersec-
tions“. In Proceedings of the eleventh annual symposium on Computa-
tional geometry. S. 211–219.

[10]	 Beer, S. 2018. Vergleich und Analyse von Partitionierungsalgorithmen für
Quicksort.

[11]	 BenRG. 2009. „Cone fundamentals with srgb spectrum“. [Online]. Verfüg-
bar unter: https:// commons.wikimedia.org/wiki/File:Cone-fundamen-
tals-with-srgb-spectrum.svg [zuletzt geprüft: Januar 6, 2024].

Schon jetzt wird meine inzwischen ausgereifte Anwendung
[5] in der Praxis eingesetzt, um verschiedenste Gegenstände
nach Farben zu ordnen, Routen zu planen (ich plane beispiels-
weise, vor meinem Informatikstudium jede der 100 größten
Städte Deutschlands zu besuchen, und werde dabei einer von
meiner Anwendung errechneten Route folgen) und mithilfe
einer Word2Vec [69] -Einbettung [30], [67] Kategorien, Wör-
ter und Begriffe semantisch zu sortieren. In der Zukunft wer-
de ich auf der einen Seite weitere mathematische Eigenschaf-
ten der entwickelten Kettensortierung untersuchen und, falls
möglich, beweisen – auf der anderen Seite arbeite ich daran,
weitere praktische Anwendungsgebiete zu suchen und zu er-
schließen.

So sprach mich ein Vertreter von Thyssenkrupp an, der be-
stätigte, dass die mehrdimensionale Sortierung auch in der
Vorverarbeitung von Rohstoffen für industrielle Prozesse
einsetzbar ist – deshalb arbeite ich inzwischen an einer neu-
en Unterseite für ebendiese praktisch-industrielle Aufgabe,
welche die Vektorsortierungsseite spezialisiert. Zusätzlich
konnte ich Kontakt mit einem Vertreter der Textilindustrie
aufnehmen, der von der Bedeutung der Farbsortierung im
Bereich der Verarbeitung gefärbter Stoffe und des Marketings
sprach und ebenfalls die industrielle Relevanz meiner Arbeit
hervorhob. Diese Eindrücke motivieren mich, daran weiter-
zuarbeiten und das Projekt, das Modell sowie die Webanwen-
dung kontinuierlich zu verbessern.

Danksagung

Ich danke meinem langjährigen Projektbetreuer und Mentor
in der Informatik-AG, Michael Albrecht, für Motivation, wei-
terführende Ausarbeitungsideen und die Bereitstellung fach-
licher Literatur.

Zudem danke ich meinem Vater, Norman Wojak, für eine
sprachliche und gestalterische Überprüfung der Arbeit.

Abb. 20: 3D-Visualisierung.

21

Abb. 20: 3D-Visualisierung

22

Abb. 21: Ansicht der vollständigen Web-
anwendung bei Sortierung von 100 Farben
im HSV-Farbraum

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-20.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-21.jpg

doi: 10.7795/320.202503

[31]	 Fateman, R.J. 1989. „Lookup tables, recurrences and complexity“. In Pro-
ceedings of the ACM-SIGSAM 1989 international symposium on Symbolic
and algebraic computation. S. 68–73.

[32]	 Fette, I., und A. Melnikov. 2011. „The websocket protocol“.
[33]	 Gansner, E.R., E. Koutsofios, S.C. North, und K.-P. Yo. „A method for Draw-

ing Directed Graphs“. [Online]. Verfügbar unter: https://graphviz.org/do-
cumentation/TSE93.pdf [zuletzt geprüft: Januar 7, 2024].

[34]	 Gansner, E.R., und Y. Koren. „Improved Circular Layouts“. [Online]. Ver-
fügbar unter: https:// graphviz.org/documentation/GK06.pdf [zuletzt ge-
prüft: Januar 7, 2024].

[35]	 Gansner, E.R., und S.C. North. 1999. „An open graph visualization system
and its applications to software engineering“. Software – Practice and Ex-
perience. [Online]. Verfügbar unter: https://graphviz.org/documentation/
GN99.pdf [zuletzt geprüft: Januar 7, 2024].

[36]	 Glaubitz, J., D. Rademacher, und T. Sonar. 2019. „Metrik, Norm, Topologie“.
In Lernbuch Analysis 1: Das Wichtigste ausführlich für Bachelor und Lehr-
amt. Wiesbaden: Springer Fachmedien Wiesbaden, S. 389–411. [Online].
Verfügbar unter: https://doi.org/10.1007/978-3-658- 26937-1_13.

[37]	 Goethe, J.W. von. 1810. „Zur Farbenlehre“. In Goethe – Die Schriften zur
Naturwissenschaft. Leopoldina-Ausgabe.

[38]	 Gurevich, Y., und S. Shelah. 1987. „Expected computation time for Hamil-
tonian path problem“. SIAM Journal on Computing 16(3):486–502.

[39]	 Halbeisen, L., und R. Krapf. 2020. „The Axioms of Set Theory (ZFC)“. In
Gödel’s Theorems and Zermelo’s Axioms: A Firm Foundation of Mathemat-
ics. Cham: Springer International Publishing, S. 153–171. [Online]. Verfüg-
bar unter: https://doi.org/10.1007/978-3-030-52279-7_13.

[40]	 Harris, R., A. Faubert, T.L. Hau, B. McCann, und andere. 2016. „Svelte – cy-
bernetically enhanced web apps“. [Online]. Verfügbar unter: https://svel-
te.dev/ [zuletzt geprüft: Januar 3, 2024].

[41]	 Harris, R., A. Faubert, T.L. Hau, B. McCann, und andere. „SvelteKit: Web
development, streamlined.“. [Online]. Verfügbar unter: https://kit.svelte.
dev/ [zuletzt geprüft: Januar 2, 2024].

[42]	 Hejlsberg, A. 2012. „TypeScript: JavaScript with types“. [Online]. Verfügbar
unter: https://www. typescriptlang.org/ [zuletzt geprüft: Januar 2, 2024].

[43]	 Held, M., und R. Karp. 1956. „The construction of discrete dynamic pro-
gramming algorithms“. IBM Systems Journal 4(2):136–147.

[44]	 Hoare, C.A.R. 1961. „Algorithm 64: Quicksort“. Communications of the
ACM 4(7):321.

[45]	 Hoare, G., und andere. 2015. „A language empowering everyone to
build to build reliable and efficient software.“. [Online]. Verfügbar unter:
https://www.rust-lang.org/ [zuletzt geprüft: Januar 3, 2024].

[46]	 Hofer, H., J. Carroll, J. Neitz, M. Neitz, und D.R. Williams. 2005. „Organi-
zation of the human trichromatic cone mosaic“. Journal of Neuroscience
25(42):9669–9679.

[47]	 Jahn, T. 2023. „Zwei mögliche Wege mit dem Dilemma umzugehen“. Die
Eigenarten der Farben:209–233.

[48]	 Joblove, G.H., und D. Greenberg. 1978. „Color spaces for computer graph-
ics“. In Proceedings of the 5th annual conference on Computer graphics
and interactive techniques. S. 20–25.

[49]	 Johnson, D.S., und L.A. McGeoch. 1997. „The traveling salesman problem:
A case study in local optimization“. Local search in combinatorial optimi-
zation 1(1):215–310.

[12]	 Bierman, G., M. Abadi, und M. Torgersen. 2014. „Understanding Type-
Script“. In European Conference on Object-Oriented Programming.
S. 257–281.

[13]	 Blume, L. 2021. „Effizienzanalyse des Minimax-Algorithmus im Bezug auf
Schach“. [Online]. Verfügbar unter: https://wv.jugend-forscht.de/me-
dia/2021/project_91120/description/description_ 2021-02-26_00-15-51.
pdf [zuletzt geprüft: Dezember 14, 2023].

[14]	 Blume, L. 2022. „Erweiterung klassischer Unterrichtsmedien durch intui-
tive Webserviceanwendung“. [Online]. Verfügbar unter: https://wv.ju-
gend-forscht.de/media/2021/project_93889/description/descripti-
on_2022-01-16_10-57-20.pdf [zuletzt geprüft: Dezember 16, 2023].

[15]	 Blume, L. 2024. „jufo2024-backend: Backend des Jugend forscht-Projekts
„sorting-the-colors: Dimensionsbezogene Generalisierung vergleichs-
basierter Sortierung““. [Online]. Verfügbar unter: https://github.com/
leo848/jufo2024-backend [zuletzt geprüft: März 28, 2024].

[16]	 Blume, L. 2024. „jufo2024-frontend: Frontend des Jugend forscht-Pro-
jekts: „sorting-the-colors: Dimensionsbezogene Generalisierung ver-
gleichsbasierter Sortierung““. [Online]. Verfügbar unter: https://github.
com/leo848/jufo2024-frontend [zuletzt geprüft: März 28, 2024].

[17]	 Blume, L. 2024. „sorting the colors: Farben sortieren“. [Online]. Verfügbar
unter: https://sorting- the-colors.vercel.app/sort-colors [zuletzt geprüft:
März 31, 2024].

[18]	 Bompas, A., G. Kendall, und P. Sumner. 2013. „Spotting fruit versus pick-
ing fruit as the selective advantage of human colour vision“. i-Perception
4(2):84–94.

[19]	 Bowmaker, J., und Y. Kunz. 1987. „Ultraviolet receptors, tetrachromatic co-
lour vision and retinal mosaics in the brown trout (Salmo trutta): age-de-
pendent changes“. Vision research 27(12):2101– 2108.

[20]	 Burwick, F. 2012. The damnation of Newton: Goethe’s color theory and ro-
mantic perception. Walter de Gruyter.

[21]	 Caston, V. 2018. „Aristotle on the Reality of Colors and Other Perciptible
Qualities“. Res Philosophica 95(1):35–68.

[22]	 Chandra, B., H. Karloff, und C. Tovey. 1999. „New results on the old k-opt
algorithm for the traveling salesman problem“. SIAM Journal on Compu-
ting 28(6):1998–2029.

[23]	 Chmelka, F., und E. Melan. 1972. „Spannung und Verformung. Das Hooke-
sche Gesetz“. Einführung in die Festigkeitslehre für Studierende des Bau-
wesens:26–31.

[24]	 Coast, S. 2004. „OpenStreetMap“. [Online]. Verfügbar unter: https://www.
openstreetmap.org/ [zuletzt geprüft: Januar 3, 2024].

[25]	 Cohen, J., und T.P. Friden. 1975. „The Euclidean nature of color space“. Bul-
letin of the Psychonomic Society 5(2):159–161.

[26]	 Dorigo, M., M. Birattari, und T. Stutzle. 2006. „Ant colony optimization“.
IEEE computational intelligence magazine 1(4):28–39.

[27]	 Douglas, S.A., und A.E. Kirkpatrick. 1999. „Model and representation: the
effect of visual feedback on human performance in a color picker inter-
face“. ACM Transactions on Graphics (TOG) 18(2):96–127.

[28]	 Dörn, S. 2016. „Entwicklung von Computerprogrammen“. Programmieren
für Ingenieure und Naturwissenschaftler: Grundlagen:95–115.

[29]	 Englert, M., H. Röglin, und B. Vöcking. 2014. „Worst case and probabilistic
analysis of the 2-Opt algorithm for the TSP“. Algorithmica 68(1):190–264.

[30]	 Fares, M., A. Kutuzov, S. Oepen, und E. Velldal. 2017. „Word vectors, reuse
and replicability: Towards a community repository of large-text resourc-
es“. In J. Tiedemann, Hrsg.

Informatik | Seite 18

JUNGE wissenschaft 15 / 18 | Seite 19JUNGE wissenschaft 03 / 25 | Seite 19

doi: 10.7795/320.202503

[71]	 Riley, C.A. 1995. Color codes: Modern theories of color in philosophy, pain-
ting and architecture, literature, music, and psychology. UPNE.

[72]	 Rollnik, S. 2022. „Vollständige Induktion“. Übungsbuch fürs erfolgreiche
Staatsexamen in der Mathematik: Aufgaben und Lösungen für angehende
Lehrkräfte der Sekundarstufe 1:45–50.

[73]	 Scherer, W. 2016. „Anhang C–Landau-Symbole“. Mathematik der Quan-
teninformatik: Eine Einführung:267–268.

[74]	 Schwarte, L. 2015. „Farbliche Evidenzerzeugung“. Pikturale Evi-
denz:131–143.

[75]	 Seidov, Z. 2005. „A107833“. [Online]. Verfügbar unter: https://oeis.org/
A107833 [zuletzt geprüft: Januar 6, 2024].

[76]	 Seiffart, E., und K. Manteuffel. 1974. Lineare Optimierung. Springer.
[77]	 Shapiro, A.E. 1994. „Artists’ colors and Newton’s colors“. Isis 85(4):600–

630.
[78]	 Silverman, A. 1989. „Color and color-perception in Aristotle’s De Anima“.

Ancient Philosophy 9(2):271–292.
[79]	 Sloane, N. 2024. „The On-Line Encyclopedia Of Integer Sequences“. [On-

line]. Verfügbar unter: http://oeis.org/ [zuletzt geprüft: Januar 6, 2024].
[80]	 Smith, A.R. 1978. „Color gamut transform pairs“. ACM Siggraph Computer

Graphics 12(3):12–19.
[81]	 Spencer, D.E. 1943. „Adaptation in color space“. JOSA 33(1):10–17.
[82]	 Stallman, R. 2007. „GNU General Public License“. [Online]. Verfügbar un-

ter: https://www.gnu. org/licenses/gpl-3.0.en.html [zuletzt geprüft: Ja-
nuar 6, 2024].

[83]	 Stützle, T. 2003. „The traveling salesman problem: state of the art“. In
TUD-SAP AG Workshop on Vehicle Routing.

[84]	 Tate, J., und M. Atiyah. 2022. „The Millennium Price Problems“. [Online].
Verfügbar unter: https://www.claymath.org/millennium-problems/
[zuletzt geprüft: Dezember 30, 2023].

[85]	 Thielemann, H. 2004. „Klein, aber O“.
[86]	 Tolnay, D., und andere. „Serde: Serialization framework for Rust“. [Online].

Verfügbar unter: https://serde.rs/ [zuletzt geprüft: Januar 4, 2024].
[87]	 Waite, W.M., und M. O‘Halloran. 1966. „Note on rapid instruction analysis

by table lookup“. The Computer Journal 9(3):248–249.
[88]	 Weitz, E. 2021. „Die Landau-Symbole“. Konkrete Mathematik (nicht nur)

für Informatiker: Mit vielen Grafiken und Algorithmen in Python:479–494.
[89]	 Wenning, W., W. Leinfellner, E. Kraemer, und J. Schänk. 1982. „Wittgen-

steins ‘Logik der Farbbegriffe’und die Geometrie des Farbraums“. In Lan-
guage and Ontology. Proceedings of the 6th International Wittgenstein
Symposium. Wien.

[90]	 Werner, A.G., und P. Syme. 1814. „Werners Nomenklatur der Farben: an-
gepasst an Zoologie, Botanik, Chemie, Mineralogie, Anatomie und die
Kunst“.

[91]	 Wittgenstein, L., und G.E.M. Anscombe. 1977. Bemerkungen über die Far-
ben.

[92]	 Zermelo, E. 1908. „Untersuchungen über die Grundlage der Mengenlehre“.
In Mathematische Annalen. Leipzig: Springer, S. 261–281.

[93]	 Zimmermann, T., J. Rüth, B. Wolters, und O. Hohlfeld. 2017. „How HTTP/2
pushes the web: An empirical study of HTTP/2 server push“. In 2017 IFIP
Networking Conference (IFIP Networking) and Workshops. S. 1–9.

[50]	 Kell, B. „Branch-and-bound algorithm for the traveling sales-
man problem“. [Online]. Verfügbar unter: https://www.math.cmu.
edu/~bkell/21257-2014f/tsp.pdf [zuletzt geprüft: März 30, 2024].

[51]	 Kingsford, C. „CMSC 451: SAT, Coloring, Hamiltonian Cycle, TSP“. [Online].
Verfügbar unter: https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/sat.
pdf [zuletzt geprüft: Januar 6, 2024].

[52]	 Kivinen, J., M.K. Warmuth, und B. Hassibi. 2006. „The p-norm generaliza-
tion of the LMS algorithm for adaptive filtering“. IEEE Transactions on Sig-
nal Processing 54(5):1782–1793.

[53]	 Kleinberg, J., und E. Tardos. 2005. Algorithm Design 1. Aufl. Pearson Edu-
cation, Inc.

[54]	 Van Laarhoven, P.J., und E.H. Aarts. 1987. Simulated Annealing. Springer.
[55]	 Lidwell, W., K. Holden, und J. Butler. 2010. „Constraint: A method of lim-

iting the actions that can be performed on a system“. In Universal princi-
ples of design, revised and updated: 125 ways to enhance usability, influ-
ence perception, increase appeal, make better design decisions, and teach
through design. Rockport Pub, S. 60–61.

[56]	 Lilley, C. 2023. „Color on the Web“. Fundamentals and Applications of Co-
lour Engineering:271– 291.

[57]	 Läuchli, P. 1991. „Komplexität“. Algorithmische Graphentheorie:17–24.
[58]	 Mahmoud, H.M. 2000. Sorting: A distribution theory. John Wiley & Sons.
[59]	 Mankowitz, D.J., A. Michi, A. Zhernov, M. Gelmi, M. Selvi, C. Paduraru, E.

Leurent, S. Iqbal, J.- B. Lespiau, A. Ahern, und andere. 2023. „Faster sor-
ting algorithms discovered using deep reinforcement learning“. Nature
618(7964):257–263.

[60]	 Margot, F. 2009. „Symmetry in integer linear programming“. 50 Years of
Integer Programming 1958-2008: From the Early Years to the State-of-
the-Art:647–686.

[61]	 Matsakis, N.D., und F.S. Klock II. 2014. „The Rust language“. In ACM SIGAda
Ada Letters. S. 103–104.

[62]	 McCarthy, L.L., Q. Ye, und D. Shiffman. „home | p5js.org“. [Online]. Verfüg-
bar unter: https://p5 js.org/ [zuletzt geprüft: Januar 7, 2024].

[63]	 McDonnell, C., und andere. „Typescript-first schema validation with sta-
tic type inference“. [Online]. Verfügbar unter: https://zod.dev/ [zuletzt ge-
prüft: Januar 4, 2024].

[64]	 Morrison, D.R., S.H. Jacobson, J.J. Sauppe, und E.C. Sewell. 2016. „Branch-
and-bound algorithms: A survey of recent advances in searching, bran-
ching, and pruning“. Discrete iv Optimization 19:79–102. [Online]. Ver-
fügbar unter: https://www.sciencedirect.com/science/article/ pii/
S1572528616000062.

[65]	 Neitz, J., T. Geist, und G.H. Jacobs. 1989. „Color vision in the dog“. Visual
neuroscience 3(2):119–125.

[66]	 Ottoson, B. 2020. „A perceptual color space for image processing“. [On-
line]. Verfügbar unter: https://bottosson.github.io/posts/oklab/ [zuletzt
geprüft: Januar 7, 2024].

[67]	 O A. „NLPL word embeddings repository“. [Online]. Verfügbar unter:
http://vectors.nlpl.eu/ repository/ [zuletzt geprüft: März 30, 2024].

[68]	 Peters, O.R.L. 2021. „Pattern-defeating Quicksort“.
[69]	 Rehurek, R., und P. Sojka. 2010. „models. word2vec–Word2vec embed-

dings“. Gensim.
[70]	 Ribe, N., und F. Steinle. 2002. „Exploratory experimentation: Goethe,

Land, and color theory“. Physics today 55(7):43–49.

Als Schüler*in wissen-
schaftlich publizieren
Wie auch aus deiner Wettbewerbsarbeit eine
zitierfähige Veröffentlichung wird

Was ist besonders an
einer wissenschaftlichen
Veröffentlichung?

Die Besonderheit eines echten, wissen-
schaftlichen Papers ist, dass es peer re-
viewed ist. Der Begriff setzt sich zusam-
men aus den englischen Wörtern peer
für „Kolleg*in“ und reviewed für „über-
prüft“ (review = die Überprüfung). Die
Arbeit wird also von einem / einer meist
anonymen Fachkolleg*in, der oder dem
referee, auf Schlüssigkeit überprüft. Die
Arbeit ist somit gecheckt und kann als
Basis für weitere Forschungsvorhaben
genutzt werden.

Wieso wissenschaftlich
publizieren?

Diese Papers dienen nicht nur dem
fachlichen Austausch, sondern auch
als Nachweis der erbrachten Leistun-
gen im jeweiligen Spezialgebiet. Wie ein
Lebenslauf informiert die Veröffentli-
chungsliste über den beruflichen Wer-
degang und wissenschaftlichen Erfolg.

Hast du Fragen? In den FAQs
auf der Seite „Für Autor*innen“
findest du Antworten.

www.junge-wissenschaft.
ptb.de/fuer-autorinnen

Hier könnte
der Titel deiner
Arbeit stehen

Hier könnte
der Titel deiner
Arbeit stehen

Einreichen

Peer-Review-Verfahren

www.junge-wissenschaft.ptb.de | www.instagram.com/ptb.bund

Was ist eine
wissenschaftliche
Veröffentlichung?

Wissenschaftliche Publikationen, soge-
nannte Papers, sind ein zentrales Ele-
ment wissenschaftlichen Arbeitens. In
Papers werden nicht nur Zeitpunkt und
Stand einer Erkenntnis öffentlich doku-
mentiert, sondern auch mit der Wissen-
schafts-Community geteilt. So lässt man
Kolleg*innen derselben Fachrichtung
an Ergebnissen teilhaben oder zeigt
progressive Forschungsansätze auf.

Was kostet die
Veröffentlichung?

Für die Autor*innen fallen keinerlei
Veröffentlichungsgebühren (page char-
ges) an. Alle Kosten z. B. für Redaktion,
Lektorat, Layout, Website und App tra-
gen Verlag und Sponsoren. Verlag ist die
Physikalisch-Technische Bundesanstalt
PTB, die das Projekt seit
Gründung begleitet.

https://www.junge-wissenschaft.ptb.de/fuer-autorinnen
https://www.junge-wissenschaft.ptb.de/fuer-autorinnen
https://www.junge-wissenschaft.ptb.de/

Wie geht das und wie viel
Arbeit muss ich investieren?

Die Junge Wissenschaft (JuWi) ist die
einzige Plattform, auf der bereits Schü-
ler*innen ein erstes Paper, peer reviewed,
veröffentlichen können. Das von der
JuWi-Chefredaktion eingeleitete und
begleitete Peer-Review-Verfahren macht
aus deinem Wettbewerbsbeitrag eine zi-
tierfähige Veröffentlichung. Ein JuWi-
Paper ist der Startschuss für deine per-
sönliche Veröffentlichungsliste. Und als
erfolgreiche Teilnehmer*in eines For-
schungswettbewerbs hast du den Lö-
wenanteil der Arbeit bereits erledigt.

Sende deine Arbeit und die Erst-
veröffentlichungserklärung an:

Chefredaktion
Junge Wissenschaft

Dr.-Ing. Sabine Walter
Paul-Ducros-Straße 7
30952 Ronnenberg

Tel: 05109 / 561508
Mail: sabine.walter@verlag-
jungewissenschaft.de

Lektorat

Satz & Layout

Veröffentlichung

www.junge-wissenschaft.ptb.de | www.instagram.com/ptb.bund

Wie geht es nach dem
Einreichen weiter?

Die Chefredakteurin sucht einen geeig-
neten Fachgutachter*in, der bzw. die, die
inhaltliche Richtigkeit der eingereichten
Arbeit überprüft und eine Empfehlung
ausspricht, ob sie veröffentlicht wer-
den kann (Peer-Review-Verfahren). Das
Gutachten wird dir zugeschickt und du
erhältst die Möglichkeit, Hinweise des
oder der Fachgutachter*in oder eigene
Änderungen einzuarbeiten. Die Erfah-
rung zeigt, dass Arbeiten, die z. B. im
Rahmen eines Wettbewerbs wie Jugend
forscht die Endrunde erreicht haben, die
besten Chancen haben, dieses Peer-Re-
view-Verfahren zu bestehen. Bis hierhin
hast du keinerlei Arbeit investiert.

Schließlich kommt die Arbeit in die Re-
daktion, wird für das Layout vorberei-
tet und und nach der Freigabe als Open-
Access-Beitrag, also für jedermann
zugänglich, veröffentlicht.

Was bringt es mir?

JuWi-Autor*innen erwerben in der
engen Zusammenarbeit mit der Redak-
tion Kenntnis über den Aufbau einer
wissenschaftlichen Arbeit, über wis-
senschaftlichen Schreibstil, worauf zu
achten ist und welche Schritte wann
notwendig sind. Autor*innen eines Ju-
Wi-Papers haben so sehr früh einen be-
deutenden Teil wissenschaftlichen Pub-
lizierens erlernt, noch bevor sie an die
Hochschule gehen.

Junge Wissenschaft
c/o Physikalisch-Technische
Bundesanstalt (PTB)
www.junge-wissenschaft.ptb.de

Redaktion
Dr.-Ing. Sabine Walter,
Chefredaktion Junge Wissenschaft
Paul-Ducros-Str. 7
30952 Ronnenberg
E-Mail: sabine.walter@verlag-
jungewissenschaft.de
Tel.: 05109 / 561 508

Sabine Siems, Verlag
E-Mail: sabine.siems@ptb.de
Tel.: 0531 / 592 8202

Design & Satz
Sebastian Baumeister
Art Director / stilsicher.design
E-Mail: baumeister@stilsicher.design
Tel.: 05142 / 302 99 04

Verlag
Dr. Dr. Jens Simon,
Pressesprecher der PTB
Bundesallee 100
38116 Braunschweig
E-Mail: jens.simon@ptb.de
Tel.: 0531 / 592 3006
(Sekretariat der PTB-Pressestelle)

Impressum

mailto:sabine.walter%40verlag-%0Ajungewissenschaft.de?subject=
mailto:sabine.walter%40verlag-%0Ajungewissenschaft.de?subject=
mailto:jens.simon%40ptb.de?subject=

BUNDESALLEE 100

Fahrkarten

Gratis
Preis:

1 Jungforscher*in

Fahrkarte
zum sofortigen
Reiseantritt

Für:

wissenschaftlich
publizieren

Nach:

peer reviewed
Über:

G
ratis

Preis:

1 Jungforscher*in
Fahrkarte

zum
 sofortigen

Reiseantritt

Für:

w
issenschaftlich

publizieren
N

ach:

peer review
ed

Ü
ber:

Gratis

Preis:

1 Jungforscher*in

Fahrkarte
zum sofortigen

Reiseantritt

Für:

wissenschaftlich

publizieren

Nach:

peer reviewed

Über:

Gratis
Preis:

1 Jungforscher*in

Fahrkarte

zum sofortigen

Reiseantritt

Für:

wissenschaftlich

publizieren
Nach:

peer reviewedÜber:

Dein Ticket zur �
 Wissenschaft

Gratis
Preis:

1 Jungforscher*in

Fahrkarte
zum sofortigen
Reiseantritt

Für:

wissenschaftlich publizieren

Nach:

peer reviewed

Über:

Jungforscher*innen publizieren
online |   peer reviewedpeer reviewed   |  original

www.junge-wissenschaft.ptb.de | www.instagram.com/ptb.bund

Die PTB ist jetzt auch
bei Instagram. Auf
dem Kanal @ptb.bund
findest du auch unsere
JuWi-Beiträge.

