Verlag:
Physikalisch-
Technische
Bundesanstalt

FZP1B

IsSsenschaft

peer reviewed

-
I
I
I
1
1
1
1
I
1
I

D i e Pe rfe kt e DIE JUNGFORSCHERIN
Reihenfolge

Sortierung mehrdimensionaler Objekte als
graphentheoretisches und algorithmisches Problem

© Stiftung Jugend forscht e.V.

Biicher nach der Farbe des Buchriickens zu sortieren und den
kiirzesten Weg zu finden, der verschiedene Orte verbindet,
haben eines gemeinsam: mehrdimensionale Sortierung. Die

Arbeit zeigt, dass die eindimensionale Sortierung ein Spezialfall Leo Blume (*2008)
n-dimensionaler Sortierung ist, dquivalent zum NP-schweren Gymnasium Essen-Werden
Problem des kiirzesten Hamilton-Pfads. Eine interaktive Eingang der Arbeit:
Webanwendung veranschaulicht den Beweis und erlaubt es, 10.9.2024

verschiedene mehrdimensionale Objekte mit unterschiedlichen Arbeit angenommen:

Algorithmen selbst zu sortieren. 2.2.2025

Seite 2

Die perfekte
Reihenfolge

Sortierung mehrdimensionaler Objekte als
graphentheoretisches und algorithmisches Problem

1. Einleitung, Fragestellung
und Vorgehensweise

Wie kann man Biicher nach Farben sortieren? Diese Frage
stellte ich mir an einem regnerischen Spitsommertag, wih-
rend ich mein Zimmer aufriumte und feststellte, dass meine
Mathematikbiicher kaum nach einer anderen Kategorie ein-
zuteilen waren.

Die eindimensionale Sortierung, die auf einem Vergleich von
Elementen basiert, funktioniert nicht - die Frage, ob Oliv-
griin grofler als Karmesinrot ist, ergibt keinen Sinn. Zu-
néchst versuchte ich, die Farben numerisch einzuteilen: nach
ihrer Helligkeit oder ihrem Buntton. Beide Methoden erziel-
ten nicht das gewiinschte Ergebnis: So kénnte im ersten Fall
ein Rot direkt zwischen zwei subtil unterschiedlichen Griin-
tonen stehen, wiahrend im zweiten Fall ein Pastellblau zwi-
schen Laubgriin und Bordeauxviolett (zwei sehr dunkle Far-
ben) eingeordnet wurde.

Mit dem Ziel, das Regal dennoch farblich dsthetisch zu sortie-
ren, was (fiir mich) bedeutet, Farbkontraste zwischen neben-
einanderstehenden Biichern zu minimieren, war die Idee fiir
ein Projekt geboren - die vergleichsbasierte, d.h. eindimensi-

onale Sortierung auf mehrdimensionale
Objekte wie Farben zu erweitern und zu
generalisieren. In diesem Projekt gehe
ich den Fragestellungen nach, inwiefern
mehrdimensionale Sortierung moglich
und effizient losbar ist, welche Rolle da-
bei die Graphentheorie spielt und wel-
che Anwendungen sie neben dem (unter
dem Gesichtspunkt der Kontrastmini-
mierung) asthetischsten Biicherregal
hat (siehe Abb. 1).

Dabei gehe ich zu Beginn meiner Arbeit
zunéchst auf die theoretischen Grund-
lagen der mehrdimensionalen Sortie-
rung ein (Kap. 2.1), beweise, dass es
sich bei der angestrebten um eine Ge-
neralisierung der bekannten eindimen-
sionalen Sortierung handelt (Kap. 2.2)
und erldutere die dquivalente graphen-
theoretische Darstellung des Problems
(Kap. 3). Nach der Prisentation der al-
gorithmischen Komplexitidt (Kap. 4.1)
und der implementierten Algorithmen
stelle ich im Anschluss meine Entwick-
lung einer interaktiven Webanwen-
dung vor (Kap. 5), in der man selbst
verschiedene n-dimensionale Objekte
sortieren kann - von abstrakten Vekto-
ren (Kap. 5.4) iber geografische Punk-
te (Kap. 5.5) bis hin zu visuellen Far-
ben (Kap. 5.6). Diese Webanwendung visualisiert zudem die
Funktionsweise der implementierten Algorithmen anschau-
lich und erméglicht die praktische Sortierung auch grofierer
Datenmengen.

2. Beweisflihrung

In diesem Abschnitt soll bewiesen werden, dass es sich bei der
im Folgenden definierten Kettensortierung um eine Genera-
lisierung der vergleichsbasierten Sortierung auf mehrere Di-
mensionen handelt. Dabei werden zunachst auf der Zerme-
lo-Fraenkel-Mengenlehre ([39],[92]) beruhende Definitionen
formuliert und im zweiten Teil wird mittels vollstindiger In-
duktion [72] ein Beweis aufgestellt. Dieser Beweis liefert die
Grundlage fiir die anschliefende Ausarbeitung, da sich die
anschlieflend ausgearbeiteten Verfahren ohne ihn nicht als n-
dimensionale Sortierung, sondern nur als beliebigen andere
Algorithmus auf Listen von Vektoren bezeichnen kénnten.

2.1 Definitionen
Eine Liste der Lange n € N ist zum Zwecke dieser Arbeit

eine injektive Abbildung I, die als Eingabe eine natiirliche
Zahl i (den Index) im Definitionsbereich {1, ...,n}, folglich als

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-01.jpg

Seite 3

IAN STEWART P[E

Abb. 1: Meine Mathematikbticher: links lexikographisch nach Nachname der Autor*innen,

rechts nach perzeptueller Farbe mittels Simulated Annealing (Kap. 4.4.5) sortiert

D bezeichnet, erhdlt und ein Element der Eingabemenge U
zuriickgibt. Der Wert von [an der Stelle i wird als [notiert.
Der Teilabschnitt von p bis ¢, p,q € ID,p < g beschreibt die
(g — p + 1)-lange Liste [lp, lp+1’lq_l, lq] und wird als IM notiert.
Die Bildmenge Y meint die ungeordnete Menge aller in [vor-
kommenden Elemente, durch Injektivitit gilt |Y] = [II.

Das Vertauschen ,,Swap“ meint:

1, falls i=m

Swap(l,m,n), = {lm falls i=n

1; sonst

Die Menge der Permutationen ,,Perm® einer
Liste [wird definiert als:

Perm(l) := {l' | I = l,(;),0 : D — D bijektiv} o)

Eine Liste [, deren Zielmenge Teil einer strikten Totalord-
nung (T,>) mit Ordnungsrelation (>) ist, heiflt genau dann
sortiert, wenn gilt:

VieD\{n}:l > ©)

Die Kettenlinge d, (I) einer Liste I, deren Zielmenge Teil
eines metrischen Raums (T,d) mit Distanzfunktion d ist,
wird definiert durch:

n—1
d (1) := Zd<li7li+1) 3
=1

Eine solche Liste wird als kettensortiert bezeichnet, wenn gilt:

dL(l> = d]L<l/> 4)

min
l’€ Perm(l)

2.2 Beweis: Jede sortierte
Liste ist kettensortiert

Neben der abbildenden Definition der Liste kann eine Liste
reeller Zahlen (also U C R) dquivalent auch induktiv defi-

niert werden. Hierbei repréasentiere I die Menge aller solcher
Listen, ¢ die leere Liste mit Lange 0. € bezeichne die struktu-
relle Konkatenation zweier Listen bzw. einer Liste und einem
Element, welches als einelementige Liste interpretiert wird.
Die Definition erfolgt wie folgt:

eel ®)
leLAan=|l|NecUAVie[l,n]:e>1
= Vi°¢ € Ins(l,e) : I° € L 6)
Dabei wird die Einfiigemenge ,,Ins“ definiert als:
Ins(l,e) :={l¢ | n=|l],7 € [1,n + 1],
=l 1®edl;,} 7)

Es gibt keine weiteren Listen.

Die Menge der sortierten Listen L, bezeichnet dabei:

geLsort (8)
lelyyAn=||NecUAVie[l,n]:e>1
Sldeel,, ©)

(e > I wire an dieser Stelle dquivalent, jedoch wird hier, um
die Definitionen analog zu halten, die lingere Variante ge-
wihlt.)

Dabei gilt: L, C L, da es sich bei der Konstruktion von L,
um einen Spezialfall von L handelt, bei der Ins(l,e):= {Ie}.

Nebensatz. Jede Liste mit total geordneter Zielmenge nach
Kap. 2.1 ist Element von L.

Beweis. Man betrachte eine abbildende Liste I. Aus dieser
konstruiere man nun die L-Liste, w genannt, iterativ. So be-
ginne man mit der leeren Liste ¢ (nach (5) € L) und betrach-
te stets das kleinste nicht betrachtete Element e zusammen
mit seinem Index i. Existiert in [ein j < i, sodass . < I, so
ist [bereits in w und e wird am darauffolgenden Index ein-

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-01.jpg

Seite 4

gesetzt, ansonsten am Index 0. Da stets Vi € D : e > w,
(sofern w noch nicht i enthilt) und e an einer Stelle eingefiigt
(Ins) wird, ist (6) erfiillt und w eine Liste; da durch eindeutige
Zuordnung alle Elemente enthalten sind und die Reihenfolge
beibehalten wurde, teilen w und [alle Eigenschaften und sind
damit identisch. l

Somit ist die Konstruierbarkeit aus (5) und (6) als Eigenschaft
aller Listen festzuhalten.

Satz. Jede sortierte Liste reeller Zahlen ist unter der Betrags-
metrik kettensortiert.

Beweis. Die Definition anwendend, bedeutet dies:
VieLg,:d (l)= min

dy (U
'€ Perm(l)]L<)

(10)
Da das Minimum einer Menge das Element bedeutet, fiir das
kein kleineres Element existiert, ist eine gleichwertige Formu-
lierung, dass fiir keine sortierte Liste eine Permutation dieser
Liste existiert, die eine kleinere Kettenlange hat. Dabei ist die
Metrik d(a,b) = |a - bl.

Induktionsbeginn:

Liange 0: Die einzige Liste der Lange 0 ist &, somit ist der De-
finitionsbereich {}. Nach (8) ist ¢ € L. Somit kann keine
Funktion eine Anderung der Elemente vornehmen (da kei-
ne solchen existieren), und jede sortierte Liste der Lange 0 ist
sortiert und kettensortiert.

Lange 1: Eine sortierte Liste [der Lange 1 besteht aus einem
Element, also [= I. Der Definitionsbereich ist {1},die einzige
Permutationsfunktion o ist {(1,1)}. (Der Kiirze halber werden
Funktionen in diesem Abschnitt ihrer Definition zufolge als
Mengen notiert.) Da Vi:o(i) = i (Identitit), wird keine Ande-
rung der Elemente vorgenommen. Somit existiert keine Liste
mit kiirzerer Kettenldnge und jede sortierte Liste der Linge 1
ist kettensortiert.

Lange 2: Jede sortierte Liste | der Liange 2 erfillt
I = L, wobei I, > I. Die méglichen Permutationsfunk-
tionen sind{{(1,1), (2,2)},{(1,2), (2,1)}}. Beide indern die Ket-
tendistanz nicht, da die erste hier aufgefithrte die Identitit
ist und die zweite die Liste umkehrt, was durch Kommuta-
tivitat der Addition sowie Symmetrie der Metrik die Ketten-
distanz nicht dndert. Also ist auch jede sortierte Liste der
Lange 2 kettensortiert.

Induktionsschritt:

I sei eine sortierte und kettensortierte Liste der Linge
n € N,n > 2. Gemaf3 der induktiven Definition einer Lis-
te wird nun ein neues Element e € U, e > | an einer belie-
bigen Position i in die Liste, welche fortan [° genannt werde,
eingefiigt. Definitionsgemafl bleibt die Liste nur dann sor-

tiert, wenn i = n + 1, andernfalls wire [= < I und die Lis-
te unsortiert. Es wird nun bewiesen, dass beim Anfiigen eines

neuen Elements an genau dieser Stelle die Liste kettensortiert
bleibt.

Zunichst wird die Kettenldnge betrachtet, die sich ergibt, falls
i = n+ 1.In diesem Fall gilt:

dy (I°) = dp.(I) + d(l,,, €)
Die Differenz zwischen bisheriger und neuer Kettenldnge
dy (I°) = di (1) = d(l,, €)

wird als Aopt bezeichnet.

K sei nun die Menge aller Distanzen zwischen e und einem
Element / an Index i der Liste. e > [ist (wie auch e > 1) ge-
geben. Dai < n, folgt (durch Definition von L, und Transi-
tivitat von), dass li < l;1 < e. Deshalb gilt d(ln, e) =e— ln und
d(li,e) =e—1l,somit] <l < e-1 > e-1.Daibeliebig
gewdhlt wurde, ist die Distanz zwischen jedem Element und e
groBer als die zwischen I und e. Diese Distanz d(l, e) =A
ist folglich von allen Distanzen, die e involvieren, minimal.

opt

Nun wird jede Permutation von [betrachtet und /' genannt.
Da [kettensortiert ist, gilt:

dy (1) < dp (')

Auf Basis dieser Permutation wird eine neue Liste I konst-
ruiert, in die das Element e an einer Stelle i eingefiigt wur-
de, also

re=10,_,®edl;,

A= dy () — dy(I') (1)
Es soll gezeigt werden, dass fiir jede Permutation [’ gilt:
A= Aoy (12)
So dass durch dl‘(l’) > dll(l) die Kettendistanz

dp(°) = dp(I') + A > d (1) + Ay = dp (1)

ist und somit dL(I) tatsichlich die optimale Kettendistanz
ist, wodurch I° kettensortiert wire.

Es wird eine Fallunterscheidung zwischen solchen Permutati-
onen gemacht, bei denen e am Rand (Indexi=1Vi= n+1)
zu finden ist, und jenen, bei denen es zwischen zwei anderen
Elementen (i € [2,n]) vorliegt.

Falll.i = 1Vi=n+1

Da e am Rand eingefiigt wird, ist

dy () = di (I') + d(1;, €)

doi: 10.7795/320.202503

Seite b

fiir ein beliebiges i aus der Indexmenge von [. Die Distanz ist
dabei ein Element von K, da es eine Distanz zwischen e und
einem Element von [ist. Da A , das minimale Element aus K
ist, kann A= d(ll.,e) nicht geringer sein, sodass Ungleichung
(12) zutrifft.

Fall2.i € [2,n]

Hierbei liegt e zwischen zwei Elementen [/ | und [/ . Die neue
Kettenldnge setzt sich nun zusammen aus der alten Ketten-
lange minus der Distanz dieser beiden Elemente plus der Dis-
tanz jedes dieser Elemente mit dem neu eingefiigten:

A= d(lg—lv 6) + d(l;, e) - d(lg—lv l;)

dy (%) = dy,(I') + A (13)

Gegeben sind I < eund I < ¢ o. B. d. A. wird nun von

I;, <1 < e ausgegangen, der Beweis kann analog durch
Tauschen der beiden Elemente in der Ungleichung gefiihrt
werden. Explizit wird hier auf Eigenschaften der Betragsfunk-
tion zuriickgegriffen und mit

lo<li<e

gilt:

A= liy —el+ |l —el = [lioy = 1]
=(e—li)+(e—l) ——1iy)
=e—l_+e—U—U~+1_,

—ete—U—U—U_ +1,

—2.e—2.1
=2 (e—1))
=2~
—2.d(l},e) (14)

A ist folglich das Doppelte von d(l,»',e). Dabei handelt es sich
um ein Element aus K, sodass Ungleichung (12) erfallt ist.

Da keine Permutation der finalen Liste eine niedrigere Ket-
tendistanz als die von [° beim Anfiigen des hochsten Elements
erzielen kann, ist I~ und damit jede sortierte Liste — ketten-
sortiert. M

2.3 Generalisierung auf n-dimensionale
Vektorraume

Nun wurde bewiesen, dass die Sortierung einer Liste eindi-
mensionaler Objekte, in diesem Fall reprisentiert durch re-
elle Zahlen, auch einer Kettensortierung dieser entspricht.
Genauer: Jede sortierte Liste ist kettensortiert, jedoch nicht

zwangsldufig umgekehrt (aufgrund von Symmetrie der Ket-
tenldnge im Gegensatz zur Sortierung).

Da die vergleichsbasierte Sortierung nur auf Listen von Ele-
menten einer geordneten Menge ausfiithrbar ist, die distanz-
basierte Sortierung jedoch in jedem metrischen Raum an-
gewendet werden kann und die Betragsmetrik der reellen
Zahlen nur ein Sonderfall jeder durch eine p—Norm induzier-
ten Metrik [36] n-dimensionaler Vektorrdume ist [52], han-
delt es sich bei der Kettensortierung um eine Generalisierung
der vergleichsbasierten Sortierung in Bezug auf die Dimensi-
onalitat der Eingaben.

Somit kann nun im Folgenden die Eigenschaft ,sortiert® auch
auf Listen mehrdimensionaler Objekte angewandt werden, da
sie bis auf Umkehr der Liste die gleiche Bedeutung wie ,ket-
tensortiert hat. Als Metrik wird sich aufgrund ihrer Genera-
lisierungsfahigkeit von nun an auf eine durch eine p—Norm
induzierte Metrik beschrinkt, 0.B.d.A. wird fiir die folgen-
den Beispiele die euklidische Metrik (gegeben durch p = 2)
gewahlt.

3. Graphentheoretische Grundlagen
3.1 Definitionen

Ein Graph G ist zum Zwecke dieser Arbeit ein Paar
(V,E),E C V* mit Knotenmenge V und Kantenmenge E. Ist
E = V? so wird er als vollstandig bezeichnet. Zusammen mit
einer Kantengewichtsfunktion d:E +— R gilt der Graph als
kantengewichtet (kurz gewichtet), der Wert dieser Funktion
fiir eine Kante ist ihr Gewicht.

Ein Weg ist eine Sequenz p = v v,..v paarweise ver-
schiedener Knoten. Ein Weg ist ein Pfad, wenn gilt:
Vi € [Ln—1]yp,p,,) € E. Das Gewicht eines solchen

Pfades bezeichnet die Summe der Gewichte aller
verbindenden Kanten:
-1
dp = ZZ;O d(pi’pi-&-l)
Ein Pfad wird Hamilton-Pfad genannt, sofern n = |V| zu-

trifft, der Pfad also alle Knoten erreicht. Ein Hamilton-Pfad
ist minimal, sofern kein Hamilton-Pfad des Graphen mit
niedrigerem Gewicht existiert.

3.2 Anwendungen auf die Fragestellung

Um die Kettensortierung einer Liste ! mit Eingabemen-
ge U C R",n € N als graphentheoretisches Problem auf-
zufassen, betrachte man zunéchst deren Bildmenge Y. Fiir
diese konstruiere man nun den gewichteten Distanzgra-
phen G = (V,E) = (Y,Y*)mit Kantengewichtsfunktion
d<2,[3> = ” Z - [_;)” Der Graph ist vollstindig.

doi: 10.7795/320.202503

GE

enschaft

Innerhalb dieses Graphen ist die Liste ein Hamilton-Pfad,
denn zwischen jedem Paar aufeinanderfolgender Elemente
existiert eine Kante (durch Vollstindigkeit) und die Liste ent-
halt alle Knoten (durch Konstruktion aus Bildmenge und Ein-
deutigkeit der Elemente der Liste). Die Kettendistanz der Liste
ist gleich dem Gewicht dieses Pfads.

Da sich die Bildmenge durch Vertauschen von Elementen
nicht dndert, ist auch jede Permutation der Liste ein valider
Hamilton-Pfad, dessen Gewicht gleich der Kettenldnge der
Liste ist (d, (p) = dp). Aus der Definition der Kettensortiert-
heit folgt, dass eine Liste genau dann kettensortiert ist, wenn
ihr zugehoriger Hamilton-Pfad im Graphen der Bildmenge
minimal ist. Somit kann mithilfe eines Algorithmus, der fiir
einen Graphen dessen minimalen Hamilton-Pfad ermitteln
kann, eine mehrdimensionale Liste sortiert werden.

4. Algorithmen

Fiir den Fall der eindimensionalen Sortierung existieren zahl-
reiche vergleichsbasierte Sortieralgorithmen, die sich in Ei-
genschaften wie asymptotischen Komplexititen von Raum
und Zeit, Stabilitit und Vorgehensweise unterscheiden [3].
(Da die Elemente in einer Liste nicht mehrmals vorkom-
men konnen, spielt Stabilitat fiir die Listen dieser Arbeit kei-
ne Rolle. Um Listen mit doppelten Werten dennoch sortieren
zu konnen, sortiere man die deduplizierte Liste und fiige die
entfernten Werte an den Stellen nach dem gleichwertigen Ele-
ment ein.) Bubble Sort, Insertion Sort und Selection Sort ge-
horen zu den simpleren Verfahren, die jedoch aufgrund ih-
rer hoheren Komplexitit ineflizienter arbeiten; Merge Sort,
Quick Sort [44] und Heap Sort dagegen werden auch in der
Praxis genutzt [58], teils mit praktischen Anpassungen wie
bei Timsort [8] (Python) oder Pattern-Defeating Quicksort
[68] (Rust). Zwei Eigenschaften, die diese Sortieralgorithmen
definieren, sind Monotonizitit der Ausgabe (im eindimensio-
nalen Fall gleich der in Kap. 2.1 definierten Sortiertheit) und
Invarianz der Zielmenge.

Nun konnte ein mehrdimensionaler Sortieralgorithmus defi-
niert werden als einer, der eine Liste als Eingabe erhalt und
eine kettensortierte Liste gleicher Elemente zuriickgibt.

In diesem Abschnitt wird zunichst erldutert, warum eine
derartige Definition sich fiir das Problem dieser Arbeit eher
nicht eignet und stattdessen in zwei das Problem im allgemei-
nen Fall nicht 16sende, aber dennoch in der Praxis sehr niitz-
liche Arten von Algorithmen aufgeteilt werden muss. Im An-
schluss werden Verfahren genannt, die ich zum Zweck dieser
Arbeit auch in Rust [45] implementiert habe.

Abb. 2: Auch die Spielbaumtraversierung bis
Tiefe n ist im Schach hartnackig, da
exponentiell [13] (S. 6-8).

4.1 Komplexitat

Da die tatsdchlich messbare Laufzeit eines Algorithmus von
zu vielen algorithmisch irrelevanten Faktoren wie Hardware,
Eingabestruktur und Ressourcenverfiigbarkeit abhangt, wird
in der theoretischen Informatik eine andere Methode ge-
wiahlt, um Algorithmen beziiglich ihres Zeitverbrauchs nur
abhingig von der Eingabeldnge vergleichen zu kénnen: die
Landau-Symbole [10], [73], [88] oder auch O-Notation [28],
[57], [85]. Diese bezeichnen das asymptotische Verhalten ei-
ner Funktion fiir beliebig grofler werdende Eingaben. Wenn
die Anzahl der Schritte, die ein Algorithmus fiir eine Liste
der Eingabeldnge n ausfiihrt, nun durch eine Funktion f be-
schrieben werden kann, so liegt der Algorithmus in O, falls f
asymptotisch nicht schneller wichst als g, und in 6(g), falls f
asymptotisch genauso schnell wachst wie g.

Die zu Beginn dieses Abschnitts genannten vergleichsba-
sierten Sortieralgorithmen wurden dabei nach ihrer Zeit-
komplexitdt sortiert: Die als ,simpel‘ bezeichneten Algo-
rithmen liegen in O(n?), wihrend die ,praktischeren‘ in
O(n - log(n)) liegen. Erstere werden daher als quadratisch,
letztere als linearithmisch (ein Kofferwort aus ,linear’ und
Jogarithmisch®) bezeichnet. Entscheidend ist im Folgenden
allerdings eine andere Unterscheidung, die sich nur darauf
bezieht, ob g durch ein Polynom beschreibbar ist oder nicht:
polynomiell oder nicht-polynomiell. Erstere werden als in P
und effizient beschrieben, wihrend letztere ineffizient sind.

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-02.jpg

Seite 7

Abb. 3: Ein Beispiel fir den Graphen G

In der theoretischen Informatik werden die Komplexitats-
klassen als Mengen dargestellt, die Entscheidungsprobleme
beinhalten. P ist die Menge aller Probleme, die sich durch
eine deterministische Turingmaschine in einer polynomiel-
len Anzahl von Schritten (,effizient®) 16sen lassen, wahrend
NP die umfasst, die eine nichtdeterministische Turingma-
schine effizient l6sen kann. Da jedes in P losbare Problem
auch in NP losbar ist, gilt P C NP. (Obwohl in der prakti-
schen Anwendung davon ausgegangen wird, dass P # NP
[53] (S. 465), bleibt dies ein ungeldstes Problem der Informa-
tik [84]). Dagegen miissen NP-schwere Probleme nicht in NP
liegen, sondern die ,Schwierigkeit* dieser Klasse nur iibertref-
fen.

4.1.1 Effiziente Losbarkeit und Hartnackigkeit

Probleme, die in P liegen, werden als effizient lésbar, sol-
che, die unter Annahme von P # NP auflerhalb von P lie-
gen, als hartnackig bezeichnet (s. Abb. 2). Der Grund liegt in
der unterschiedlichen Steigung der Terme fiir wachsende n:
bei einem Polynom wird stets ein von n abhéngiger Term ad-
diert, bei einer Exponentialfunktion (die haufigste Form ei-
nes nicht-polynomiellen Terms) multipliziert.

4.1.2 Beweis der Hartnackigkeit durch Reduktion

Um zu beweisen, dass ein Problem P hartnickig ist, wird
in der theoretischen Informatik eine Reduktion eines be-
kanntermaflen NP-schweren Problems P auf das Problem
P, durchgefiihrt [53] (S. 452-454). Man zeigt, dass sich jede
Instanz von P in polynomieller Zeit in eine Instanz von P,
transformieren lasst. Im Folgenden wird das Problem des mi-
nimalen Hamilton-Pfads im Fall vollstindiger Graphen auf
das bewiesenermaflen NP-schwere Hamilton-Pfad-Problem
[53] (S. 474-479) [38], [43] reduziert, welches aus der Frage
besteht, ob zu einem beliebigen gegebenen Graphen ein Ha-
milton-Pfad existiert.

Abb. 4: Der fiir G neu erstellte Graph G’. Schwarze
Kanten sind in E, graue nicht.

Dazu wird die Hypothese aufgestellt, es gibe einen Algorith-
mus A, der das Problem fiir jeden vollstindigen Graphen in
polynomieller Zeit abhdngig von der Anzahl der Knoten 16-
sen konnte. Man betrachte nun jeden moéglichen (insbeson-
dere unvollstandigen) Graphen G = (V,E) (s. Abb. 3). Man
konstruiere nun einen neuen vollstindigen gewichteten Gra-
phen (siehe Abb. 4) G'= (V, E’,d), wobei E' = V?und

__ [0 falls (a,b)eE
d(a, b) = {1 falls (a,b)¢ E

Nun fithre man A mit der Eingabe G aus und erhalte den mi-
nimalen Hamilton-Pfad P_ .
Anhand dieser Ausgabe kann das Hamilton-Pfad-Prob-
lem fiir den Graphen G gelost werden: ist das Gewicht von
P_ = 0, so existiert fiir G ein Hamilton-Pfad, andernfalls
nicht. Dies folgt daraus, dass A stets den minimalen Hamil-
ton-Pfad auswihlt - existiert einer im originalen Graphen, so
kann dieser nur aus Kanten mit Gewicht 0 gebildet werden,
sonst nicht.

Der Beweis basiert auf [53] (S. 479) und [51] und wurde hier
statt auf das Travelling-Salesman-Problem auf das gegebene
Problem des minimalen Hamilton-Pfads angewandt. Dies be-
stitigt erneut die Ahnlichkeit der beiden Probleme.

Somit entsteht ein Widerspruch: Die Aussagen, dass das Ha-
milton-Pfad-Problem NP-schwer ist, und, dass der in P lie-
gende Algorithmus A es 16sen kann, widersprechen sich. So-
mit ist die Hypothese falsch, A notwendigerweise ineffizient
und das Problem NP-schwer. Es wurde bisher nur gezeigt,
dass das Problem des minimalen Hamilton-Pfads auf beliebi-
gen Graphen NP-schwer sein muss; fiir die im weiteren Ver-
lauf dieser Arbeit betrachteten Distanzgraphen koénnte das
Problem immer noch in P liegen. Ein Beweis der NP-Schwe-
re (hier ausgelassen) involviert die durch Translationsinva-
rianz von d gegebene metrische Universalkonstruierbarkeit,
die eine Reduktion ermdglicht.

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-03.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-04.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-02.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-03.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-04.jpg

Seite 8

4.2 Heuristik

Wie bereits in Kap. 4.1.1 gezeigt wurde, kann die Kettensor-
tierung im Allgemeinfall nicht in einer sinnvollen Zeitspanne
gelost werden. Aus diesem Grund werden auch andere Algo-
rithmen betrachtet: Heuristiken. Eine Heuristik ist dabei ein
effizienter Algorithmus, der ein hartnickiges Problem nicht
vollstandig 16st, sondern nur eine ungefidhre Losung liefert.

Im Fall der Sortierung mehrdimensionaler Objekte bedeutet
dies, dass ein derartiger Algorithmus strategisch versucht, die
Kettenldnge zu reduzieren, jedoch nicht zwangsldufig das glo-
bale Minimum (welches der Sortierung der Liste entspriche)
findet.

Zudem ist eine weitere auf graphentheoretischer Grundla-
ge beruhende Dichotomie der im Folgenden erlduterten Al-
gorithmen sinnvoll: Konstruktionsalgorithmen auf der einen
und Verbesserungsalgorithmen auf der anderen Seite. Dabei
erhalten erstere als Eingabe eine Liste und geben einen Pfad
zuriick, wahrend letztere versuchen, die Kettenldnge eines be-
stehenden Pfades zu verringern. In Bezug auf die verwende-
ten Datenstrukturen ist dies unerheblich, da auch Pfade als
Listen représentiert werden; die Nutzerfreundlichkeit der
Oberfliche nimmt allerdings zu, da Kombinationen des Aus-
fithrens von Algorithmen, die zu einer Anndherung an die
Kettensortierung nicht beitragen, verhindert bzw. disincen-
tiviert werden.

Ein Beispiel dafiir ist, dass es keinen Sinn ergibt, nach dem
Ausfiihren des Greedy-Algorithmus einen anderen Konstruk-
tionsalgorithmus wie Nearest Neighbor zu nutzen, da dieser
die vorherigen Ergebnisse nicht beriicksichtigt. Diese somit
zu limitieren (engl. constrain), wird als universeller Design-
Grundsatz [55] verstanden.

Grundlegend betrachten Konstruktionsalgorithmen die Liste
also eher als ungeordnete Menge, wihrend sie bei Verbesse-
rungsalgorithmen als geordneter Pfad interpretiert wird.

4.3 Pfadkonstruktion

Um die folgenden Konstruktionsalgorithmen anwenden zu
konnen, wird eine Beispielliste I gewéhlt, welche sich aus
sechs zweidimensionalen Vektoren zusammensetzt, folglich
auch durch Farben im RGB-Farbraum dargestellt. Dabei re-
prasentieren die Komponenten des Vektors jeweils den Rot-
und Blauwert der Farbe im Intervall [0,1], der Griinwert wird
auf 0 festgelegt:

[(53): (03): (61 (02): (03). (3)] - o0 @@@@

Abb. 5: Der durch / gegebene triviale Pfad.

Um einen Pfad sowie die darin enthaltenen Vektoren zu vi-
sualisieren, habe ich fiir die Abb. 5 und 11-13 ein Programm
mittels der JavaScript-Bibliothek p5.js [62] entwickelt, welches
die Listenelemente und ihre Farben in einem zweidimensio-
nalen kartesischen Koordinatensystem darstellt. Die genann-
ten Abbildungen entspringen diesem.

4.3.1 Triviale Pfadkonstruktion

Die triviale Pfadkonstruktion gibt die Eingabeliste unveran-
dert zuriick - in diesem Fall entstiinde der in Abb. 5 erkenn-
bare Pfad. Dieser Algorithmus ermdglicht es, beliebige Pfade
selbst zu erstellen und zu verdndern, ohne dabei an eine be-
stimmte Heuristik gebunden zu sein. Zudem konnen so die
Verbesserungsalgorithmen teils besser dargestellt werden.
Eine Alternative dieses Verfahrens ist, die Liste vorher zufil-
lig zu mischen.

4.3.2 Brute Force

Der Brute-Force-Algorithmus kann tatsdchlich eine Lis-
te mehrdimensional sortieren, also das Minimum aller Per-
mutationen finden, indem jede dieser Permutationen auf ihre
Kettenldnge iiberpriift und jene mit der minimalen zurtickge-
geben wird (siehe Abb. 6)

Die Zeitkomplexitit dieses Algorithmus liegt in O(n!), wéchst
also proportional zur Fakultit der Eingabeldnge, da diese zu-
gleich die Anzahl der Permutationen einer derartigen Liste
beschreibt. In der Praxis zeigt sich, dass das Verfahren fiir Lis-
ten mit zehn oder weniger Elementen durchaus nutzbar ist, je-

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-05.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-11.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-13.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-05.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-06.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-05.jpg

Seite 9

min
3.43
3.07

P
1 900000
9

000000
(233

dp, (P)
3.43

3.07

weitere)

000000
(483

236 1.88 |1.88

weitere)
713 00000® | 3.07 |1.83
19 00000® | 3.43 |1.83

Abb. 6: Brute Force liberpriift jede Permutation

doch ab einer Lange von 14 Elementen mit einem geschitzten
Zeitaufwand von zwei Stunden keine Option mehr darstellt

(siehe auch Kap. 4.1.1)

4.3.3 Nachster Nachbar

Beim Nichster-Nachbar-Algorithmus (engl. nearest neighbor,
kurz NN) handelt es sich um ein sog. naives gieriges Verfah-
ren. Dabei wird vom ersten Punkt der Liste aus begonnen
und stets der Punkt ausgewahlt und folglich betrachtet, des-
sen Distanz zum aktuell betrachteten minimal ist und noch
nicht im zu erstellenden Pfad enthalten ist, bis alle Punkte im
Pfad enthalten sind (s. Abb. 7).

Da es stets einen konkreten Bezugspunkt gibt, von dem aus
vorgegangen wird, ist der Algorithmus einfach zu verstehen
und zu visualisieren. Fiir die praktische Anwendung reicht
er nicht, da stets nur das nichste Element beriicksichtigt und
der restliche Kontext vernachlissigt wird - so kommt es ins-
besondere am Ende des Pfades meist zu besonders langen
Kanten hin zu Knoten, die unter Reduzierung der Kettenlan-
ge bereits vorher hétten besucht werden konnen, es allerdings
nicht wurden, da andere Knoten unmittelbar ndher lagen. Die
Komplexitat ist quadratisch, da fiir jeden hinzuzufiigenden
Knoten jeder andere Knoten éiberpriift wird.

Da stets beim ersten Punkt dieser Liste begonnen wird, ist der
Algorithmus anordnungsabhéngig. Abb. 8 zeigt die verschie-
denen erzeugten Pfade im Fall von I (14) - aufgrund des uni-
direktionalen Auswahlverfahrens weisen sie alle eine unter-
schiedliche Kettenldnge auf.

Pfad Nachbarn
(dlL(P% VOn Py
() ®032@®0.36

(0) @040 ®0.54
Q071

(Y) @03 ®0.41
(0.32) ®042@0.45
000 ®032@0.70
(0.68) @073
0000 Q0.73@055
(0.99)

Q051

Abb. 7: Stets wird vom aktuellen Punkt aus der
nachste Nachbar gesucht

(%)

Um den NN-Algorithmus unabhingig vom ersten Element
der Liste zu gestalten, kann auf Kosten der nun kubischen
Laufzeitkomplexitat der bisherige Algorithmus fiir alle Rota-
tionen der Originalliste ausgefiithrt werden und das Ergebnis
geringster Kettenlinge ausgewahlt werden. Eine alternative
kubische Generalisierung ist die Aufhebung der Beschrén-
kung des Anfiigens am Ende auf eine optimale Einfiigetaktik
an einer beliebigen Stelle.

4.3.4 Greedy

Der Greedy-Algorithmus (auch Multiple Fragments [49])
enumeriert alle Kanten und sortiert sie nach ihrem Gewicht
aufsteigend. Diese werden in einem Stapel abgelegt und stets
wird die erste Kante ausgewdhlt, entfernt sowie dem Pfad
angefiigt, die die Validitdt nicht verletzt, also keine bereits
zweifach verbundenen Knoten besucht oder Zyklen erstellt
(s. Abb.9).

Sobald die Lange dieser Liste von Kanten gleich der der Ein-
gabe minus eins ist, ist ein valider Pfad gefunden, da die
Validitat nicht verletzt wurde und alle Knoten besucht wer-
den. Zudem existiert stets ein solcher Pfad, da von der
Vollstindigkeit des Graphen ausgegangen wird. Bei Wahl
zweckmafliger Datenstrukturen liegt die Zeitkomplexitat in
O(n? - log(n)).

Die Fragmentierung kann analog zu Kap. 4.3.3 zum Schluss
zu suboptimalen Kanten fiihren, jedoch wird das Problem der
Nichtberiicksichtigung von ,,Auflenseitern” zumeist umgan-
gen, da auch der Weg von einem solchen zu einem beliebigen
anderen Knoten zumeist kiirzer ist als ein anderer, der zwi-
schen ,,Clustern® wechselt.

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-07.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-08.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-09.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-06.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-07.jpg

Seite 10

D dp, (P)
000000 22

000000 22
000000 !
000000 >
000000 !
000000 >0

000 0 o-

Abb. 8: Die NN-Pfade abhangig
vom Anfangspunkt

4.3.5 Ganzzahlige lineare Optimierung
und Branch-and-Bound

Um die optimale Losung zu finden, ohne jede Permutati-
on iberpriifen zu miissen, eignet sich die Neuformulierung
des Problems in Begriffen der ganzzahligen linearen Opti-
mierung (ILP). Fiir eine Instanz der Lange n, einen als Ad-
jazenzmatrix A reprasentierten Distanzgraphen ((V,E),d)
und eine den Pfad p reprisentierenden {0,1}-wertigen Relati-
onsmatrix X, = (V, V) € p habe ich das folgende ILP (naiv
n? + 3n + 1Nebenbedingungen) erarbeitet:

min Zj:] 27:1 XZ] N Aij7S.t.

AVi e [1,n]:2?:1X--<1

1] —

A Vie[lLn]: 3T X<l

/\Z::,L:1 Z;LZI X;;=n—1

A Yie[ln]:Vjie(ln]: X;+X, <1

Jeder Eintrag der Matrix X ist eine Variable des ILP. Mini-
miert wird dabei das Gewicht des Pfads, unter den Bedingun-
gen, dass jeder Knoten erreicht wird, in jeder Zeile und jeder
Spalte der Matrix hochstens eine Kante Teil des Pfads ist, ins-
gesamt n — 1 Kanten enthalten sind und keine Kante und ihre
Gegenkante gewdhlt wird (dies verhindert auch Schlingen).

Eine alternative und TSP-dhnlichere Modellierung kénnte
(durch Symmetrie) nur Kanten oberhalb der Hauptdiagona-
le betrachten. So wire das ILP effizienter (da kleiner), jedoch
wiirden die ersten beiden Nebenbedingungen deutlich kom-
plexer, da giiltige Losungen pro Zeile und Spalte 0 bis 2 Kan-
ten auswihlen konnten und eine neue Validititseinschrén-
kung formuliert werden muss. In meiner Arbeit verzichte ich
auf diese Optimierung.

Eine zulédssige Losung [76] ist dabei nicht zwangsldufig eine va-
lide Permutation, da Zyklen nicht betrachtet werden: Sie miis-
sen nach Ermitteln einer invaliden Losung als neue Nebenbe-
dingungen hinzugefiigt werden. Da der Beweis in Kap. 4.1.2
zutrifft, ist auch dieses ILP (bzw. dessen azyklische Variati-
on) hartnédckig; allerdings kénnen die konstanten Faktoren
mit einem geeigneten Algorithmus stark gesenkt werden. Fo-
kus meiner Arbeit ist dabei ein Branch-and-Bound-Verfahren
[64]: Zunichst wird (mithilfe einer externen Bibliothek) das
effizient losbare bedingungsgleiche in X reellwertige LP ge-
16st (da statt diskreten Werten kontinuierliche ermittelt wer-
den, handelt es sich dabei um eine Relaxierung), um die Men-
ge moglicher Losungen einzugrenzen; im Anschluss werden
die kontinuierlichen Werte durch Aufspalten der Werteberei-
che der Variablen fixiert. Das genaue Verfahren, z.B. in [50]
und [83] fiir das symmetrische TSP oder in [60] fiir allgemei-
ne ILP beschrieben, wird hier der Kiirze halber ausgespart; je-
doch schafft es meine Implementierung in der Praxis, Instan-
zen bis n = 50 in hinnehmbarer Zeit zu l6sen.

4.4 Pfadverbesserung

Die Pfadverbesserungsalgorithmen werden im Folgenden am
Beispiel des eben durch NN (bei Start am ersten Element der

@
(0)
71
.36
40
54
32

o
71
(0)
85
51
70
45

o
.36

85
(0)
73
32
41

®
40

51
73
(0)
78
42

L
54

70
32
78
(0)
.36

®
32

45
41
42
.36

(0)

Abb. 9: Adjazenzmatrix A € R”¥*: A = d(d,d)
des Graphen der Bildmenge von /

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-08.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-09.jpg

Seite 11

ec FE
| Bl)
[Bl)
| B
[Bl)
| Bl)
| B

d(eg,e;) | e € p?
0.32 ja
0.36 ja
0.32 ja
0.73 ja
0.51 ja
0.71

QU [WIN =[O s,

nein

Abb. 10: Alle im Pfad vorkommenden Distanzen
sowie die ausgelassene

Liste) erstellten Pfads,

r-— 000000

erklart (siehe Abb. 11).
4.4.1 Rotation

Mit einer linearen Laufzeit ist die Rotation das algorithmisch
einfachste Verfahren aus dieser Liste. Dabei wird das Maxi-
mum der Kantengewichte aller Kanten des Pfads sowie der
nicht beriicksichtigten Kante zwischen Start und Ziel des
Pfads ermittelt. Falls diese ein hoheres Gewicht als alle im
Pfad enthaltenen aufweist, so ist der Pfad bereits rotations-
optimal und kann nicht optimiert werden. Ansonsten wird
die maximale Kante aus dem Pfad entfernt und die neue Kan-
te hinzugefiigt. Durch Erweitern auf sequenzielle Teilpfade
konnen asthetische lokale Minima gefunden werden.

Abb. 10 zeigt die Anwendung der Rotation auf den Beispiel-
pfad. Hierbei zeigt sich, dass eine im Pfad vorkommende
Kante (@ — @) ein hoheres Gewicht als die ausgelasse-
ne (@ — @) aufweist. Somit kann durch eine Rotation der
den Pfad repréisentierenden Liste die Kettenldnge (in diesem
Fall jedoch nur um 0,73 — 0,71 = 0,02 Einheiten) reduziert
werden.

4.4.2 Swap

Swap betrachtet den Pfad als Liste und uiberpriift, ob das Tau-
schen (,,Swap“ nach Kap. 2.1) zweier Elemente zu einem Pfad
mit geringerer Kettenlinge fithrt. Bei Konstruktion mit-
tels einer nicht-trivialen Heuristik (wie auch hier) ist dies al-
lerdings selten der Fall, weshalb das Verfahren eher nur als
Grundlage fiir andere wie Kap. 4.4.3 und 4.4.5 dient.

4.4.3 Das 2-opt-Verfahren

Das 2-opt-Verfahren [29] beruht auf der folgenden geome-
trischen Erkenntnis: Sobald sich in der zweidimensiona-
len geometrischen Reprisentation eines Pfads zwei als Stre-
cken représentierte Kanten schneiden, kann die Kettenlidnge
des Pfades optimiert werden, indem der Schnittpunkt wie in
Abb. 12 durch Tauschen zweier Kanten entfernt wird. Diese
Pfadmodifikation wird als 2-opt-Tausch bezeichnet.

Dabei wird die Kettenlidnge stets reduziert, da die neue Stre-
cke zwei Punkte direkt verbindet, statt einen ,Umweg’ zu ent-
halten. In Bezug auf einen Pfad als Liste bedeutet ein 2-opt-
Tausch dabei, eine Teilliste dieser umzukehren. Durch
Ungerichtetheit des Graphen dndert sich die Kettenlinge der
Teilliste nicht.

Wihrend die Existenz eines solchen Schnittpunkts im zwei-
dimensionalen kartesischen Koordinatensystem mithilfe ei-
nes Sweepline-Algorithmus in linearithmischer Laufzeit er-
mittelbar ist [9], existiert ein solches Verfahren fiir héhere
Dimensionen nicht. Aus diesem Grund ist die Laufzeit im all-
gemeinen Fall pro Optimierungsschritt quadratisch, da jede
Kante mit jeder weiteren Kante auf Tauschbarkeit tiberpriift
wird, die auch nicht mehr nur auf Schnittpunkten basiert,
sondern die Kettendistanzen vergleicht.

Wihrend das Auflésen aller Uberschneidungen im Pessimal-
fall eine Laufzeitkomplexitit von O(n'°)(die Tilde signali-
siert die Vernachldssigung logarithmischer Faktoren) [7] be-
notigt, konvergiert der Algorithmus meist schneller. Ist kein
2-opt-Tausch mehr ausfiithrbar, wird der Pfad 2-opt-optimal
genannt.

?

b—

Abb. 11: Beispielpfad p

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-11.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-10.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-12.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-10.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-11.jpg

Abb. 12: Der 2-opt-optimale Pfad p” nach
2-opt-Tausch von /, und /,

4.4.4 3-opt und k-opt Verfahren

Ahnlich funktioniert das 3-opt-Verfahren: Hierbei werden
allerdings zwei statt drei Kanten getauscht. Da kein exaktes
geometrisches Aquivalent existiert, wird die Liste betrachtet.
Fiir einen 3-opt-Swap des Pfads p an den paarweise verschie-
denen Indizes i,j,k € ID existieren dabei vier Moglichkei-
ten, die verschiedene Teillisten dabei umzukehren oder nicht,
wenn die Permutationen der Identitat und des 2-opt-Tausches
vernachldssigt werden, sonst acht. 3-opt generalisiert im
letzteren Fall 2-opt, auch eine Generalisierung auf beliebige
k € N,k = 2 ist moglich [22]. Effizient gelost werden kann
das Problem jedoch durch beliebig ansteigende k nicht, denn
die Auswahl aller méglichen Kanten liegt in O(k!).

4.4.5 Simulated Annealing

Simulated Annealing ist ein Verfahren, welches auf der physi-
kalischen Kristallisierung von Materialien beruht [54]. Dabei
wird das Swap-Verfahren so erweitert, dass nicht nur solche
Kommutationen ausgefithrt werden, die kiirzere Kettenlan-
gen erzeugen, sondern zu Beginn auf Basis einer Zufallsvari-
able auch solche, die es nicht tun. Im Laufe der Zeit wird die
Wahrscheinlichkeit dafiir kontinuierlich reduziert, bis zum
Schluss ein swap-optimaler Pfad gefunden wurde - da je-
doch ein grofierer Teil der moglichen Pfade abgedeckt werden
kann, untertrifft er den des Swap-Verfahrens zumeist stark.
Im Fall von p (siehe Abb. 13) konnte sogar der optimale Pfad
gefunden werden.

Algorithmisch wird dabei eine Starttemperatur t € [0,1]

festgelegt und ein Eingabepfad p erhalten. Man betrachte nun
in einem Graphen mit

G = (Perm(p), {(p’,p") | i,j € D,p’ € Perm(p),
p” == Swap(p’,i,7)})

die Nachbarn von p und wihle ein zufilliges p’ aus, dies ge-
schieht durch Wahl von i und i # j und Tauschen der Ele-
mente. Falls nun

d(p’) < dy(p)

wird mit p’ in jedem Fall weiterverfahren, ansonsten betragt
die Wahrscheinlichkeit dafiir
. dp,(p”)—dy(p)

e t

sinkt also kontinuierlich mit der Temperatur. t wird nun arith-
metisch um eine Konstante k verringert, je nach gewiinschter
Konvergenzgeschwindigkeit - fiir den Fall der Farbsortierung
von n € [10,50] hat sich der Bereich um k ~ 107" bewihrt,
sodass 10 Millionen Iterationen stattfinden — mit ¢t > 0 fin-

det kein Tausch mehr statt und der Algorithmus wird abge-
brochen.

5. Webanwendung

Was niitzen die besten Algorithmen, wenn sie nicht auf Daten
aus der realen Welt angewandt werden kénnen? Um dies und
vieles mehr zu erméglichen, habe ich eine interaktive Weban-
wendung entwickelt, die genutzt werden kann, um mehrdi-
mensionale Daten verschiedener Kategorien zu sortieren. Im

Abb. 13: Simulated Annealing

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-13.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-12.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-13.jpg

Seite 13

folgenden Abschnitt werden dabei zundchst die verwendeten
Technologien grundlegend erklirt, bevor auf die einzelnen
Unterseiten eingegangen wird. Dabei sticht der Abschnitt zur
Sortierung von Farben hervor, da dieser meine urspriingliche
Fragestellung beantwortet: Wie konnen algorithmisch Biicher
asthetisch nach ihrer Farbe sortiert werden?

5.1 Grundlagen und
Open-Source-Implementierung

Der Quelltext der gesamten Anwendung ist frei und unter
der GNU GPL v3 [82] verdffentlicht. Uber GitHub ist der des
Frontends unter [16]; der des Backends unter [15] zu erreichen.

5.1.1 Frontend

Das Frontend der Anwendung habe ich in Svelte [40] und Ty-
peScript [12], [42] geschrieben; es verwaltet mittels Svelte-
Kit [41] die Unterseiten. Dabei erfolgt die Modellierung nach
dem Component-Prinzip - individuelle Components verwal-
ten dabei sowohl einen Zustand als auch die dazugehérigen
(reaktiven) DOM-Elemente. So existiert etwa ein PathPro-
perties-Component, welches die Eigenschaften eines Pfa-
des (wie Lange, Kettenldnge und Kettensortiertheit) anzeigt
und selbst akquiriert, und analog ein PathAlgorithms-
Component, das das Ausfithren von Konstruktions- und Ver-
besserungsalgorithmen iiber die Serververbindung ermég-
licht.

5.1.2 Backend

Um maximale (zeitliche) Effizienz der Algorithmen sowie
Speicher- und Typensicherheit zu gewahrleisten, habe ich
mich dafiir entschieden, fiir das Backend der Anwendung
die Programmiersprache Rust [45], [61] zu nutzen. Ein Pfad-
konstruktionsalgorithmus ist dabei beispielsweise eine Funk-
tion fn(PathCreateContext) -> Path, wobei Path
ein Typ ist, der eine Liste als Pfad représentiert und Path-
CreateContext als struct
{action: ActionContext,
Points, Metric } definiert ist.

PathCreateContext

dim: u8, points:

metric:

Der Code in Abb. 14 zeigt eine Implementierung von NN in
Rust. Dabei wird an einen Pfad (wie in Kap. 4.3.3 beschrie-
ben) stets der ndchste nicht besuchte Nachbar angehdngt. In
der aktuellen Version wird dagegen stets die Adjazenzmatrix
(sieche Abb. 9) vollstindig berechnet. Dies sorgt zwar (bei Di-
mension d und Listenlinge n) fiir Q(d - n?), doch auf die Dis-
tanz zweier Elemente in Konstantzeit zugreifen zu kénnen
(d(a,b) € O(1) statt O(d)) [31], [87], ist zumeist laufzeittech-
nisch vorteilhaft.

pub fn nearest neighbor(ctx: PathCreateContext)
-> Path {
let PathCreateContext {
action, dim, points: values, norm
} = ctx;

let mut visited = HashSet::new();
let mut path = Path::try_new(
vec![values[0].clone()],
dim) .expect("invalid dimension");
while path.len() !'= values.len() {
let last = &path[path.len() - 11;
visited.insert(last.clone());

let min = values

Liter()

.filter(|&point]|
lvisited.contains(point))

.min_by key(|point]|
point.comparable dist(

last, norm

)

)

.unwrap();

path.push(min.clone());
action.send(

PathCreation::from path(

path.clone()
) .progress(path.len() as f32
/ values.len() as f32),
)5
}

path

Abb. 14: NN als Rust-Programm. Alle anderen
aus Kap. 4 implementierten Verfahren sind tiber
GitHub (siehe Kap. 5.1) ersichtlich.

5.2 Server-Client-Kommunikation

In bisherigen Projekten (wie [14]) nutzte ich das HTTP-Pro-
tokoll, um mit dem Server zu kommunizieren. Dieses zeich-
net sich durch ein Request-Response-Schema aus, bei dem auf
eine Anfrage (Request) des Clients genau eine Antwort (Res-
ponse) des Servers erfolgen soll, die idealerweise nur auf den
Daten der Anfrage beruht.

Wihrend einige Methoden entwickelt wurden, um diese Ein-
schrinkungen aufzuheben oder ihre negativen Auswirkun-
gen zu mindern (dazu zdhlt das wiederholte Anfragen einer
Ressource vom Server oder das in HTTP/2 implementierte
Server-Push-Verfahren [93]; wahrend erstere negative Aus-
wirkungen auf die Performanz der Anwendung hat, ist zwei-
tere nicht universell nutzbar und keine Alternative fiir den
gewihlten Servertyp), eignet sich fiir diese derartig dynami-
sche Anwendung, bei der eine einzige Anfrage hunderte Sta-
tus-Antworten zur Folge haben sollte, um Responsivitit zu
gewihrleisten, eher ein anderes in Webbrowsern mittlerweile
universell implementiertes Protokoll: das Websocket-Proto-

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-14.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-09.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-14.jpg

Seite 14

{"type":"action", "latency":100,
"action":{"type":"createPath",
"method":
{"type":"nearestNeighbor"},
"dimensions":3, "values":[[0.6,
0.2], [0.1, 0.7]1, [0.9, 0.4],
[0.2, 0.2], [0.5, 0.5], [0.8,
0.711}}

{"type":"pathCreation",
"currentEdges":[[[0.6, 0.2], [0.5,
0.5]11, "progress":0.33333334}
{"type":"pathCreation",
"currentEdges":[[[0.6, 0.2], [0.5,
0.511, [[0.5, 0.5], [0.8, 0.7111,
"progress":0.5}
{"type":"pathCreation",
"currentEdges":[[[0.6, 0.2], [0.5,
0.511, [[0.5, 0.5], [0.8, 0.711,
[[6.8, 0.7], [0.9, 0.4]111,
"progress":0.6666667}
{"type":"pathCreation",
"donePath":[[0.6, 0.2], [0.5,
0.5], [0.8, 0.7]1, [0.9, 0.4],
[0.2, 0.2], [0.1, 0.711,
"currentEdges":[[[0.6, 0.2], [0.5,
0.511, [[0.5, 0.5], [0.8, 0.711,
[[06.8, 0.7], [0.9, 0.411, [[0.9,
0.4]1, [0.2, 0.211, [[0.2, 0.2],
[60.1, 0.7]1]1], "progress":1.0}

Abb. 15: Eine Anfrage (nach Kap. 4.3.3) und
die funf darauffolgenden Antworten.

koll [32]. Dieses baut auf einem dauerhaft aktiven TCP-Server
auf und ermoglicht so bidirektionale zustandsbehaftete Kom-
munikation.

Server und Client tauschen JSON-Dokumente aus, die auf der
Backend-Seite in Rust mithilfe von serde [86] und auf der
Frontend-Seite in TypeScript mithilfe von zod [63] typensi-
cher deserialisiert werden. Im Code in Abb. 15 wird gezeigt,
wie eine solche Kommunikation aussehen kann: zunéchst
fragt der Client die Erstellung eines Pfads an und iibergibt
die gewiinschte Konstruktionsmethode und Minimallatenz.
(Falls der Server zu viele Antworten in zu kurzer Zeit ver-
schickt, kann dies zu Unresponsivitit des Clients und einem
potenziellen Speicherleck fiihren - aus diesem Grund kann
die Latenz, die der Server zwischen Abschicken zweier Ant-
worten mindestens wartet, hier konfiguriert werden), darauf-
hin schickt der Server fiir jeden relevanten Schritt eine Ant-
wort zuriick, bis der vollstindige Pfad ausgegeben wird. Im
Fall von NN ist dies fiir die Responsivitat noch nicht entschei-
dend; bei linger andauernden Prozessen wie mehrschrittigen
Verbesserungsalgorithmen dagegen signifikant.

5.3 Zahlen sortieren

Auf der Seite /sort-integers kénnen ganze Zahlen ein-
gegeben und nach einem Sortierungsalgorithmus der Wahl
(aktuell implementiert sind Bubble Sort, Insertion Sort, Se-
lection Sort, Quick Sort und Merge Sort) aufsteigend sortiert
werden. Dabei wird bei jedem durch den Server ausgefithrten
algorithmischen Schritt — etwa Vergleich zweier Werte, Ver-
tauschen oder Einstufen als bereits sortiert — die Liste samt
der aktuell ausgefithrten Schritte zuriickgegeben. Dabei kann
die Liste neben der iiblichen Darstellung ihrer Elemente auch
in einem Balkendiagramm dargestellt werden. Abb. 16 zeigt
ein solches Diagramm, das Quick Sort angewandt auf die ers-
ten sechzehn Zahlen der OEIS-Sequenz A107833 [75], [79]
darstellt.

5.4 Vektoren sortieren

Die Seite /sort-vectors ermdglicht die Sortierung einer
Liste von Vektoren beliebiger Dimension. Nach Festlegen einer
Dimension kénnen Vektoren hinzugefiigt, ihre Komponenten
modifiziert und anschlieflend mittels PathAlgorithms
ein Pfad erzeugt werden. Da jede andere Seite ebenfalls n
-dimensionale Objekte sortiert, die als Vektoren représen-
tiert werden konnen, enthalten sie eine Weiterleitung auf die-
se Seite, welche die Vektoren als URL-Parameter iibergibt.

Um die Daten zu visualisieren, wurde ein kraftgerichteter
(force-directed) Graph-Layout-Algorithmus implementiert.
Dieser enthélt ein Partikelsystem, sodass jeder Vektor durch
ein Partikel représentiert wird, auf welches physikalische
Krifte wirken. Dabei existiert zwischen jedem Paar von Vek-
toren eine Feder mit einer Ruheldnge der durch die gewahl-
te Metrik gegebenen Distanz, sodass analog zum Hook'schen
Gesetz [23] Krifte auf die betroffenen Partikel wirken. So ap-
proximiert die euklidische Distanz zwischen den sehbaren
Punkten die genannte Distanz zwischen den Vektoren und
skaliert damit mehrdimensional. Im zweidimensionalen eu-
klidischen Fall konvergiert der Graph bis auf Rotation, Ska-
lierung und Spiegelung dabei zu den tatsichlichen Punkten.
Durch einen einstellbaren Parameter der Initialgeschwindig-
keit kann zwischen einer zeitintensiveren, genaueren Darstel-
lung und einer schnelleren und damit ungenaueren Konver-
genz gewdhlt werden.

5.5 Orte sortieren

Die Probleme des bilokal sesshaften, polylokal handelnden
Hindlers, der drohnenbasierten Paketzustellung sowie der
optimalen U-Bahn-Strecke werden durch die Seite /sort-
places losbar. Dabei zeigt eine interaktive auf der Basis von
Leaflet [2] und OpenStreetMap [24] entwickelte Karte die
Punkte sowie den Pfad an.

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-16.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-15.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-15.jpg

Seite 15

Abb. 16: Quick Sort partitioniert die Teilliste

Als Beispiel wurden fiir Abb. 17 die Landeshauptstadte der
Bundeslander Deutschlands ausgewéhlt, zwischen denen z. B.
ein Paketdienst verkehren soll. Dazu wurden ihre geographi-
schen Koordinaten auf der Website eingegeben und im An-
schluss mittels ILP (Kap. 4.3.5) der kiirzeste Pfad konstruiert.
In diesem Fall beginnt die Strecke in Diisseldorf und endet in
Dresden. Eine moglichst effizient entworfene Eisenbahnlinie
mit dem Ziel, all diese Orte zu verbinden, sollte ebenfalls den
genannten Start- und Zielpunkt nutzen.

5.6 Farben sortieren

Im Alltag gibt es viele Dinge, die nach Farben sortiert werden
konnen - wihrend Biicher zumeist alphabetisch oder nach
Kategorien sortiert werden sollten, ist dies bei Malstiften jeg-
licher Art, farblicher Dekoration und woméglich auch Klei-
dung anders. Hier ergibt eine Farbsortierung Sinn, und die
meisten Menschen haben eine intuitive Vorstellung davon,
was das bedeutet: Ahnliche Farben gehéren nah zueinander
und unterschiedliche auseinander - es scheint also eine quan-
tifizierbare intuitive Distanz zwischen zwei Farben zu geben.
Wihrend Asthetik subjektiv bleibt und daher nicht die dsthe-
tischste Liste fiir jeden existieren kann, treffe ich die Annah-
me, dass die Kettensortierung einer Liste am &sthetischsten
ist, da sie Farbunterschiede minimiert.

Menschen sind Trichromaten [18], [46], was bedeutet, dass
sie drei verschiedene Arten von Augenzapfen besitzen, die je-
weils fiir eine bestimmte Wellenldngenreichweite des sichtba-
ren Lichts empfindlich sind, dessen Intensitdt messen und die
Information ans Gehirn weiterleiten. Abb. 18 zeigt ein Dia-
gramm der Empfindlichkeit abhédngig von der Wellenldnge.
Im Gegensatz zu Fischen mit vier [19] und Hunden mit zwei
[65] braucht es beim Menschen folglich drei Dimensionen,
um jede Farbe verlustfrei repréasentieren zu konnen.

5.6.1 Farbrdume

Dabei gibt es eine Vielzahl an Farbraumen [48], [81], die al-
lesamt Farben als dreidimensionale Vektoren [25] enkodie-
ren. Der womoglich bekannteste [6] ist SRGB, der eine Rot-,
eine Griin- und eine Blau-Komponente enthilt (und der in
Kap. 4 bereits genutzt wurde, um Vektoren zu illustrieren).
Daraus setzt sich jede auf einem Computerbildschirm dar-
stellbare Farbe zusammen: Jeder Pixel besteht aus drei Subpi-
xeln, die jeweils Rot, Gelb oder Blau in einer bestimmten In-
tensitat anzeigen. Zur Auswahl von Farben eignet sich HSV
[80] dagegen besser [27] - hier représentieren die Komponen-
ten eines Vektors den Buntton (Hue), die Sattigung der Farbe
sowie die Helligkeit (Value). Dieses Farbmodell deckt eben-
falls alle sRGB-Farben ab.

Beide konnen jedoch nicht dazu genutzt werden, um Farben
nach ihrem Aussehen in der realen Welt zu vergleichen - in
sRGB sind die Farben

c;'=@undc, =@
genauso weit entfernt wie
Cy = @ und ¢, =

obwohl die ersten beiden viel ahnlicher erscheinen.

Aus diesem Grund (und weiteren) wurde das perzeptuel-
le OKLAB-Farbsystem [66] entwickelt. Perzeptuell bedeutet

Groningen
Oldenburg ¢
Gorzow

Assen Wielkopolski

Zwolle
Haarlem ;
) Osnabriick
Nederland
n:Haag

Prnhem Bislefeld

Munster

Zielana
_'Cottbus- Gora

{ Eindhoy i é
] Eindhoven » L

Leipzig

wol
Liberec o
Belgié/
Belgique /
Belgien

Létzebuergdel
$ Plzery

Saarbricken

Budéjovice

Freiburg 4
im Breisgau .

4 Monchen
Base|

Eert L A e
Ziirich Fehler melden | @ OpenStrestMap contributors

Abb. 17: Kiirzester Pfad entlang der 16
Landeshauptstadte Deutschlands als Ketten-
sortierung einer Liste ihrer Koordinaten

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-17.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-18.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-16.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-17.jpg

Seite 16

Normalized cone response (linear energy

400 450 500 550 600 650 700
Wavelength (nm)

Abb. 18: Empfindlichkeit menschlicher
Augenzapfen [11]

zum Zwecke dieser Arbeit, dass die euklidische Distanz zwi-
schen zwei OKLAB-Farbwerten den wahrgenommenen Ab-
stand modelliert, und dass Eigenschaften wie Buntton, Satti-
gung und Helligkeit experimentellen Daten eher entsprechen
[56]. LAB bezieht sich darauf, dass das Farbsystem Farben
als Helligkeit (Luminosity) sowie zwei Buntt"genéa und b,
reprasentjert. In diesem Farbsystem betrigt 11 —cz| ~ 0,39,
wahrend k—cJ = 0,69 .

In der Webanwendung habe ich diese und weitere (linear-
sRGB, CMY, HSL, HSV, XYZ und CIELAB) sowie die Kon-
version zwischen jeden zwei Farbrdumen implementiert.

5.6.2 Farbauswahl

Um Farben hinzuzufiigen, habe ich einen Farbauswahldi-
alog entworfen (siehe Abb. 19), der intuitiv nutzbar ist und
zugleich alle Moglichkeiten der Farbauswahl abdeckt. Jeder
Bestandteil ist interaktiv und reaktiv, passt sich also der aus-
gewidhlten Farbe direkt bei Veranderung an und ermdglicht
durch Auswahl des Farbraums, beliebige Komponenten der
Farbe zu verdndern. Zudem konnen verschiedene Listen zur
Benennung der Liste ausgewéhlt werden, wie etwa HTML-,
X11- oder RAL-Farben.

5.6.3 Visualisierung

Die Farben werden dem gewéhlten Farbraum entsprechend in
einem dreidimensionalen Koordinatensystem mittels three.js
als Kugeln angezeigt, die Kanten des Pfads als zwischen die-
sen liegende Zylinder. Die Achsen reprasentieren die Bedeu-
tung der Koordinate. Der Projektionstyp ist einstellbar und
tiber die Maus kann die Darstellung skaliert und rotiert wer-
den. In Abb. 20 wird ein 3-opt-optimaler Pfad 18 zufilliger
Farben im OKLAB-Farbraum gezeigt; die Abb. 21 zeigt einen
Screenshot der vollstindigen Anwendung [17] auf 100 Farben
in HSL.

6. Fazit und Ausblick

In diesem Projekt ist es mir gelungen, die vergleichsbasier-
te Sortierung auf Listen n-dimensionaler Daten zu generali-
sieren und im Anschluss eine Webanwendung zu entwickeln,
mithilfe derer diese Sortierung auch in der Praxis anwend-
bar wird.

Erstaunt war ich zunichst tiber die Komplexitit des Problems.
Schliefllich werden vergleichsbasierte Sortierungsalgorith-
men bereits jetzt universell eingesetzt und die verschiedenen
Ansitze sind - auch, wenn immer noch an Mikrooptimierun-
gen gefeilt wird [59] - mittlerweile im algorithmischen Re-
pertoire und der Fachliteratur etabliert [4]. Anders ist das bei
der mehrdimensionalen Sortierung, zu der (meiner Kenntnis
nach) keine Bibliotheken oder Methoden existieren, die sich
explizit zum Ziel setzen, eine Liste mehrdimensionaler Daten
zu sortieren. Die NP-Schwere ist nach Erkenntnis der Aqui-
valenz zum kiirzesten Hamilton-Pfad einleuchtend; ohne das
Problem graphentheoretisch zu betrachten, hitte ich sie je-
doch nicht erkannt.

Besonders fasziniert und motiviert hat mich die Interdiszipli-
naritdt der Thematik bei Entwicklung und Ausarbeitung des
Projekts. Wihrend ich mit einem rein mathematischen Prob-
lem begann, entwickelte es sich iiber die Graphentheorie hin
zu einem praktisch-algorithmischen der Informatik; in der
Visualisierung der Ansitze nutze ich das Hookesche Gesetz
aus der Physik (Kap. 5.4) und die Mercator-Projektion aus der
Kartographie (Kap. 5.5). Algorithmen beinhalten neben klas-
sischen Ansdtzen der Informatik auch solche mit Bezug zur
Materialwissenschaft / Chemie (Simulated Annealing) und
in Zukunft woméglich ein Ameisenkolonieverfahren [26] auf
Basis biologischer Systeme und Bionik. Nicht zu vernachlis-
sigen sind auch Farbtheorie und -lehre, mit der sich seit der
Antike schon Aristoteles [21], [78], da Vinci [1], Newton [20],
[77], Werner [90], Goethe [20], [37], [70], Kant [47], [71] und
Wittgenstein [74], [89], [91], um nur einige zu nennen, bereits
auseinandergesetzt haben.

Farbauswahl

Ockergelb

#b5a554

Abb. 19: Der Farbauswahldialog. Aktuell ist
Ockergelb im RGB-Farbraum ausgewahlt.

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-19.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-20.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-21.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-18.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-19.jpg

Seite 17

3D-Darstellung

23| § &

PERS ORTH

Abb. 20: 3D-Visualisierung

Schon jetzt wird meine inzwischen ausgereifte Anwendung
[5] in der Praxis eingesetzt, um verschiedenste Gegenstinde
nach Farben zu ordnen, Routen zu planen (ich plane beispiels-
weise, vor meinem Informatikstudium jede der 100 grofiten
Stadte Deutschlands zu besuchen, und werde dabei einer von
meiner Anwendung errechneten Route folgen) und mithilfe
einer Word2Vec [69] -Einbettung [30], [67] Kategorien, Wor-
ter und Begriffe semantisch zu sortieren. In der Zukunft wer-
de ich auf der einen Seite weitere mathematische Eigenschaf-
ten der entwickelten Kettensortierung untersuchen und, falls
moglich, beweisen - auf der anderen Seite arbeite ich daran,
weitere praktische Anwendungsgebiete zu suchen und zu er-
schlieSen.

So sprach mich ein Vertreter von Thyssenkrupp an, der be-
statigte, dass die mehrdimensionale Sortierung auch in der
Vorverarbeitung von Rohstoffen fiir industrielle Prozesse
einsetzbar ist — deshalb arbeite ich inzwischen an einer neu-
en Unterseite fiir ebendiese praktisch-industrielle Aufgabe,
welche die Vektorsortierungsseite spezialisiert. Zusatzlich
konnte ich Kontakt mit einem Vertreter der Textilindustrie
aufnehmen, der von der Bedeutung der Farbsortierung im
Bereich der Verarbeitung gefarbter Stoffe und des Marketings
sprach und ebenfalls die industrielle Relevanz meiner Arbeit
hervorhob. Diese Eindriicke motivieren mich, daran weiter-
zuarbeiten und das Projekt, das Modell sowie die Webanwen-
dung kontinuierlich zu verbessern.

Danksagung

Ich danke meinem langjahrigen Projektbetreuer und Mentor
in der Informatik-AG, Michael Albrecht, fiir Motivation, wei-
terfithrende Ausarbeitungsideen und die Bereitstellung fach-
licher Literatur.

Zudem danke ich meinem Vater, Norman Wojak, fiir eine
sprachliche und gestalterische Uberpriifung der Arbeit.

Farben sortieren
L L L L]

sorting the colors

i EEEER TEm
EESE0 e

Abb. 21: Ansicht der vollstandigen Web-
anwendung bei Sortierung von 100 Farben
im HSV-Farbraum

Schliefllich mdchte ich auch allen Entwickler:innen der ge-
nutzten Open-Source-Bibliotheken danken, die die vorlie-
gende Ausarbeitung in ihrer aktuellen Form maf3geblich er-
leichtert haben.

Literatur

[11 Ackerman, J.S. 1980.,0n early renaissance color theory and practice”.
Memoirs of the American Academy in Rome 35:11-44.

[2] Agafonkin, V., 1.S. Ortega, D. Leaver, und andere. ,Leaflet — a JavaScript
library for interactive maps”. [Online]. Verfiighar unter: https:/leaflet;s.
com/ [zuletzt gepriift: Januar 6, 2024].

[31 Akhter, N., M. Idrees, und Furgan-ur-Rehman. 2016. ,Sorting Algorithms
— A Comparative Study”. International Journal of Computer Science and
Information Security, 14:930-936.

[4] Al-Kharabsheh, K.S., .M. AlTurani, A.M.I. AlTurani, und N.I. Zanoon. 2013.
+Review on sorting algorithms a comparative study”. International Jour-
nal of Computer Science and Security (1JCSS) 7(3):120-126.

[5] Albrecht, M. 2024. ,Nachster Stopp Landesfinale”. [Online]. Ver-
fiighar unter: https://gymnasium- essen-werden.de/ankuendigun-
gen/n%C3%A4chster-stopp-landesfinale.html [zuletzt gepriift: Marz 30,
2024].

[6] Anderson, M., R. Motta, S. Chandrasekar, und M. Stokes. 1996. ,Propos-
al for a standard default color space for the internet—srgb”. In Color and
imaging conference. S. 238-245.

[7] Arora, S.1998. ,Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems”. Journal of the ACM
(JACM) 45(5):753-782.

(8] Auger, N., V. Jugé, C. Nicaud, und C. Pivoteau. 2019. ,0n the Worst-Case
Complexity of TimSort”.

[91 Balaban, 1.J. 1995. ,An optimal algorithm for finding segments intersec-
tions”. In Proceedings of the eleventh annual symposium on Computa-
tional geometry. S. 211-219.

[10] Beer, S.2018. Vergleich und Analyse von Partitionierungsalgorithmen fiir
Quicksort.

[11] BenRG. 2009. ,Cone fundamentals with srgb spectrum”, [Online]. Verfiig-
bar unter: https:// commons.wikimedia.org/wiki/File:Cone-fundamen-
tals-with-srgb-spectrum.svg [zuletzt gepriift: Januar 6, 2024].

doi: 10.7795/320.202503

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-20.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2025/03/JUWI-03-25-img-21.jpg

Seite 18

wissenschaft

[12] Bierman, G., M. Abadi, und M. Torgersen. 2014. ,Understanding Type-
Script”. In European Conference on Object-Oriented Programming.
S.257-281.

[13] Blume, L. 2021. ,Effizienzanalyse des Minimax-Algorithmus im Bezug auf
Schach”. [Online]. Verfiighar unter: https://wv.jugend-forscht.de/me-
dia/2021/project_91120/description/description_ 2021-02-26_00-15-51.
pdf [zuletzt gepriift: Dezember 14, 2023].

[14] Blume, L. 2022. ,Erweiterung klassischer Unterrichtsmedien durch intui-
tive Webserviceanwendung”. [Online]. Verfiighar unter: https://wv.ju-
gend-forscht.de/media/2021/project_93889/description/descripti-
on_2022-01-16_10-57-20.pdf [zuletzt gepriift: Dezember 16, 2023].

[15] Blume, L. 2024. ,jufo2024-backend: Backend des Jugend forscht-Projekts
L4sorting-the-colors: Dimensionshezogene Generalisierung vergleichs-
basierter Sortierung™”. [Online]. Verfiighar unter: https:/github.com/
leo848/jufo2024-backend [zuletzt gepriift: Mérz 28, 2024].

[16] Blume, L. 2024. ,jufo2024-frontend: Frontend des Jugend forscht-Pro-
jekts: ,sorting-the-colors: Dimensionshezogene Generalisierung ver-
gleichshasierter Sortierung”“. [Online]. Verfiigbar unter: https://github.
com/leo848/jufo2024-frontend [zuletzt gepriift: Mdrz 28, 2024].

[17] Blume, L. 2024. ,sorting the colors: Farben sortieren”. [Online]. Verfiigbar
unter: https:/sorting- the-colors.vercel.app/sort-colors [zuletzt gepriift:
Marz 31, 2024].

[18] Bompas, A., G. Kendall, und P. Sumner. 2013. ,Spotting fruit versus pick-
ing fruit as the selective advantage of human colour vision”, i-Perception
4(2):84-94.

[19] Bowmaker, J., und Y. Kunz. 1987. ,Ultraviolet receptors, tetrachromatic co-
lour vision and retinal mosaics in the brown trout (Salmo trutta): age-de-
pendent changes”. Vision research 27(12):2101- 2108.

[20] Burwick, F. 2012. The damnation of Newton: Goethe’s color theory and ro-
mantic perception. Walter de Gruyter.

[21] Caston, V.2018. ,Aristotle on the Reality of Colors and Other Perciptible
Qualities”. Res Philosophica 95(1):35-68.

[22] Chandra, B., H. Karloff, und C. Tovey. 1999. ,New results on the old k-opt
algorithm for the traveling salesman problem”, SIAM Journal on Compu-
ting 28(6):1998-2029.

[23] Chmelka, F., und E. Melan. 1972. ,Spannung und Verformung. Das Hooke-
sche Gesetz”. Einfiihrung in die Festigkeitslehre fiir Studierende des Bau-
wesens:26-31.

[24] Coast, S. 2004. ,OpenStreetMap”. [Online]. Verfiighar unter: https://www.
openstreetmap.org/ [zuletzt gepriift: Januar 3, 2024].

[25] Cohen, J., und T.P. Friden. 1975. ,The Euclidean nature of color space”. Bul-
letin of the Psychonomic Society 5(2):159-161.

[26] Dorigo, M., M. Birattari, und T. Stutzle. 2006. ,Ant colony optimization”.
IEEE computational intelligence magazine 1(4):28-39.

[27] Douglas, S.A., und A.E. Kirkpatrick. 1999. ,Model and representation: the
effect of visual feedback on human performance in a color picker inter-
face”. ACM Transactions on Graphics (T0G) 18(2):96-127.

[28] Dorn, S. 2016. ,Entwicklung von Computerprogrammen”. Programmieren
fiir Ingenieure und Naturwissenschaftler: Grundlagen:95-115.

[29] Englert, M., H. Roglin, und B. Vocking. 2014. ,Worst case and probabilistic
analysis of the 2-Opt algorithm for the TSP“. Algorithmica 68(1):190-264.

[30] Fares, M., A. Kutuzov, S. Oepen, und E. Velldal. 2017. ,Word vectors, reuse
and replicability: Towards a community repository of large-text resourc-
es”.In). Tiedemann, Hrsg.

[31] Fateman, R.J. 1989. ,Lookup tables, recurrences and complexity”. In Pro-
ceedings of the ACM-SIGSAM 1989 international symposium on Symbolic
and algebraic computation. S. 68—73.

[32] Fette, I, und A. Melnikov. 2011. ,The websocket protocol”.

[33] Gansner, E.R., E. Koutsofios, S.C. North, und K.-P. Yo. ,,A method for Draw-
ing Directed Graphs®“. [Online]. Verfiighar unter: https://graphviz.org/do-
cumentation/TSE93.pdf [zuletzt gepriift: Januar 7, 2024].

[34] Gansner, E.R., und Y. Koren. ,Improved Circular Layouts”. [Online]. Ver-
fiighar unter: https:// graphviz.org/documentation/GK06.pdf [zuletzt ge-
priift: Januar 7, 2024].

[35] Gansner, E.R., und S.C. North. 1999. ,An open graph visualization system
and its applications to software engineering”. Software — Practice and Ex-
perience. [Online]. Verfiigbar unter: https://graphviz.org/documentation/
GN99.pdf [zuletzt gepriift: Januar 7, 2024].

[36] Glaubitz, J., D. Rademacher, und T. Sonar. 2019. , Metrik, Norm, Topologie”.
In Lernbuch Analysis 1: Das Wichtigste ausfiihrlich fiir Bachelor und Lehr-
amt. Wiesbaden: Springer Fachmedien Wieshaden, S. 389—411. [Online].
Verfiigbar unter: https://doi.org/10.1007/978-3-658- 26937-1_13.

[37] Goethe, J.W.von. 1810. ,Zur Farbenlehre”. In Goethe — Die Schriften zur
Naturwissenschaft. Leopoldina-Ausgabe.

[38] Gurevich, Y., und S. Shelah. 1987. ,Expected computation time for Hamil-
tonian path problem”. SIAM Journal on Computing 16(3):486—502.

[39] Halbeisen, L., und R. Krapf. 2020. ,The Axioms of Set Theory (ZFC)“. In
Godel’s Theorems and Zermelo’s Axioms: A Firm Foundation of Mathemat-
ics. Cham: Springer International Publishing, S. 153—171. [Online]. Verfiig-
bar unter: https://doi.org/10.1007/978-3-030-52279-7_13.

[40] Harris, R., A. Faubert, T.L. Hau, B. McCann, und andere. 2016. ,Svelte — cy-
bernetically enhanced web apps”. [Online]. Verfiigbar unter: https://svel-
te.dev/ [zuletzt gepriift: Januar 3, 2024].

[41] Harris, R., A. Faubert, T.L. Hau, B. McCann, und andere. ,SvelteKit: Web
development, streamlined.”. [Online]. Verfiigbar unter: https:/kit.svelte.
dev/ [zuletzt gepriift: Januar 2, 2024].

[42] Hejlsherg, A.2012. ,TypeScript: JavaScript with types”. [Online]. Verfiighar
unter: https://www. typescriptlang.org/ [zuletzt gepriift: Januar 2, 2024].

[43] Held, M., und R. Karp. 1956. ,The construction of discrete dynamic pro-
gramming algorithms”. IBM Systems Journal 4(2):136—147.

[44] Hoare, C.A.R. 1961. ,Algorithm 64: Quicksort”. Communications of the
ACM 4(7):321.

[45] Hoare, G., und andere. 2015. ,A language empowering everyone to
build to build reliable and efficient software.”. [Online]. Verfiigbar unter:
https://www.rust-lang.org/ [zuletzt gepriift: Januar 3, 2024].

[46] Hofer, H., J. Carroll,). Neitz, M. Neitz, und D.R. Williams. 2005. ,Organi-
zation of the human trichromatic cone mosaic”. Journal of Neuroscience
25(42):9669-9679.

[47] Jahn, T.2023. ,Zwei mdgliche Wege mit dem Dilemma umzugehen”. Die
Eigenarten der Farben:209-233.

[48] Joblove, G.H., und D. Greenberg. 1978. ,Color spaces for computer graph-
ics”. In Proceedings of the 5th annual conference on Computer graphics
and interactive techniques. S. 20-25.

[49] Johnson, D.S., und L.A. McGeoch. 1997. ,The traveling salesman problem:
A case study in local optimization”. Local search in combinatorial optimi-
zation 1(1):215-310.

doi: 10.7795/320.202503

Seite 19

[50] Kell, B. ,Branch-and-bound algorithm for the traveling sales-
man problem”. [Online]. Verfiigbar unter: https://www.math.cmu.
edu/~bkell/21257-2014f/tsp.pdf [zuletzt gepriift: Mérz 30, 2024].

[51] Kingsford, C. ,CMSC451: SAT, Coloring, Hamiltonian Cycle, TSP“. [Online].
Verfiighar unter: https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/sat.
pdf [zuletzt gepriift: Januar 6, 2024].

[52] Kivinen, J., M.K. Warmuth, und B. Hassibi. 2006. ,The p-norm generaliza-
tion of the LMS algorithm for adaptive filtering”. IEEE Transactions on Sig-
nal Processing 54(5):1782-1793.

[53] Kleinberg, J., und E. Tardos. 2005. Algorithm Design 1. Aufl. Pearson Edu-
cation, Inc.

[54] Van Laarhoven, P.J., und E.H. Aarts. 1987. Simulated Annealing. Springer.

[55] Lidwell, W., K. Holden, und J. Butler. 2010. ,Constraint: A method of lim-
iting the actions that can be performed on a system”. In Universal princi-
ples of design, revised and updated: 125 ways to enhance usability, influ-
ence perception, increase appeal, make better design decisions, and teach
through design. Rockport Pub, S. 60—61.

[56] Lilley, C. 2023. ,Color on the Web”. Fundamentals and Applications of Co-
lour Engineering:271- 291.

[57] Lauchli, P. 1991. ,Komplexitdt”. Algorithmische Graphentheorie:17-24.

[58] Mahmoud, H.M. 2000. Sorting: A distribution theory. John Wiley & Sons.

[59]1 Mankowitz, D.J., A. Michi, A. Zhernov, M. Gelmi, M. Selvi, C. Paduraru, E.
Leurent, S. Igbal, J.- B. Lespiau, A. Ahern, und andere. 2023. ,Faster sor-
ting algorithms discovered using deep reinforcement learning”. Nature
618(7964):257-263.

[60] Margot, F. 2009. ,Symmetry in integer linear programming”. 50 Years of
Integer Programming 1958-2008: From the Early Years to the State-of-
the-Art:647-686.

[61] Matsakis, N.D., und F.S. Klock I1. 2014. ,The Rust language”. In ACM SIGAda
Ada Letters. S. 103-104.

[62] McCarthy, L.L., Q. Ye, und D. Shiffman. ,home | p5js.org”. [Online]. Verfiig-
bar unter: https://p5 js.org/ [zuletzt gepriift: Januar 7, 2024].

[63] McDonnell, C., und andere. ,Typescript-first schema validation with sta-
tic type inference”. [Online]. Verfiigbar unter: https:/zod.dev/ [zuletzt ge-
priift: Januar 4, 2024].

[64] Morrison, D.R., S.H. Jacobson, J.J. Sauppe, und E.C. Sewell. 2016. ,Branch-
and-bound algorithms: A survey of recent advances in searching, bran-
ching, and pruning”. Discrete iv Optimization 19:79-102. [Online]. Ver-
flighar unter: https://www.sciencedirect.com/science/article/ pii/
$1572528616000062.

[65] Neitz, J., T. Geist, und G.H. Jacobs. 1989. ,Color vision in the dog”. Visual
neuroscience 3(2):119-125.

[66] Ottoson, B. 2020. ,A perceptual color space for image processing”. [On-
line]. Verfiigbar unter: https://bottosson.github.io/posts/oklab/ [zuletzt
gepriift: Januar 7, 2024].

[67] O A. ,NLPL word embeddings repository”. [Online]. Verfiigbar unter:
http://vectors.nlpl.eu/ repository/ [zuletzt gepriift: Marz 30, 2024].

[68] Peters, 0.R.L. 2021. ,Pattern-defeating Quicksort”.

[69] Rehurek, R., und P. Sojka. 2010. ,models. word2vec—Word2vec embed-
dings”. Gensim.

[70] Ribe, N., und F. Steinle. 2002. ,Exploratory experimentation: Goethe,
Land, and color theory”. Physics today 55(7):43—49.

[71] Riley, C.A. 1995. Color codes: Modern theories of color in philosophy, pain-
ting and architecture, literature, music, and psychology. UPNE.

[72] Rollnik, S. 2022. ,Vollstindige Induktion”. Ubungsbuch fiirs erfolgreiche
Staatsexamen in der Mathematik: Aufgaben und Ldsungen fiir angehende
Lehrkréfte der Sekundarstufe 1:45-50.

[73] Scherer, W. 2016. ,Anhang (~Landau-Symbole”. Mathematik der Quan-
teninformatik: Eine Einfiihrung:267-268.

[74] Schwarte, L. 2015. ,Farbliche Evidenzerzeugung”. Pikturale Evi-
denz:131-143.

[75] Seidov, Z. 2005. ,A107833". [Online]. Verfiigbar unter: https://oeis.org/
A107833 [zuletzt gepriift: Januar 6, 2024].

[76] Seiffart, E., und K. Manteuffel. 1974. Lineare Optimierung. Springer.

[77] Shapiro, A.E. 1994. , Artists colors and Newton’s colors”. Isis 85(4):600—
630.

[78] Silverman, A. 1989. ,Color and color-perception in Aristotle’s De Anima”.
Ancient Philosophy 9(2):271-292.

[79] Sloane, N. 2024. ,The On-Line Encyclopedia Of Integer Sequences”. [On-
line]. Verfiigbar unter: http://oeis.org/ [zuletzt gepriift: Januar 6, 2024].

[80] Smith, A.R. 1978. ,Color gamut transform pairs”. ACM Siggraph Computer
Graphics 12(3):12-19.

[81] Spencer, D.E. 1943. ,Adaptation in color space”. JOSA 33(1):10-17.

[82] Stallman, R.2007. ,GNU General Public License”. [Online]. Verfiighar un-
ter: https://www.gnu. org/licenses/gpl-3.0.en.html [zuletzt gepriift: Ja-
nuar 6, 2024].

[83] Stiitzle, T. 2003. ,The traveling salesman problem: state of the art”. In
TUD-SAP AG Workshop on Vehicle Routing.

[84] Tate, J., und M. Atiyah. 2022. ,The Millennium Price Problems”. [Online].
Verfiighar unter: https://www.claymath.org/millennium-problems/
[zuletzt gepriift: Dezember 30, 2023].

[85] Thielemann, H. 2004. ,Klein, aber 0“.

[86] Tolnay, D., und andere. ,Serde: Serialization framework for Rust”. [Online].
Verfiigbar unter: https:/serde.rs/ [zuletzt gepriift: Januar 4, 2024].

[87] Waite, W.M., und M. 0'Halloran. 1966. ,Note on rapid instruction analysis
by table lookup”. The Computer Journal 9(3):248—-249.

[88] Weitz, E. 2021. ,Die Landau-Symbole”. Konkrete Mathematik (nicht nur)
fiir Informatiker: Mit vielen Grafiken und Algorithmen in Python:479—-494.

[89] Wenning, W., W. Leinfellner, E. Kraemer, und J. Schank. 1982. ,Wittgen-
steins ‘Logik der Farbbegriffe’'und die Geometrie des Farbraums”. In Lan-
guage and Ontology. Proceedings of the 6™ International Wittgenstein
Symposium. Wien.

[90] Werner, A.G., und P. Syme. 1814. ,Werners Nomenklatur der Farben: an-
gepasst an Zoologie, Botanik, Chemie, Mineralogie, Anatomie und die
Kunst”.

[91] Wittgenstein, L., und G.E.M. Anscombe. 1977. Bemerkungen iiber die Far-
ben.

[92] Zermelo, E. 1908. ,Untersuchungen iiber die Grundlage der Mengenlehre”.
In Mathematische Annalen. Leipzig: Springer, S. 261-281.

[93] Zimmermann, T., J. Riith, B. Wolters, und 0. Hohlfeld. 2017. ,How HTTP/2
pushes the web: An empirical study of HTTP/2 server push”. In 2017 IFIP
Networking Conference (IFIP Networking) and Workshops. S. 1-9.

doi: 10.7795/320.202503

Als Schuler*in wissen-
schaftlich publizieren

Wie auch aus deiner Wettbewerbsarbeit eine

zitierfahige Veroffentlichung wird

Was ist eine
wissenschaftliche
Veroffentlichung?

Wissenschaftliche Publikationen, soge-
nannte Papers, sind ein zentrales Ele-
ment wissenschaftlichen Arbeitens. In
Papers werden nicht nur Zeitpunkt und
Stand einer Erkenntnis 6ffentlich doku-
mentiert, sondern auch mit der Wissen-
schafts-Community geteilt. So lasst man
Kolleg*innen derselben Fachrichtung
an Ergebnissen teilhaben oder zeigt
progressive Forschungsansétze auf.

Was kostet die
Veroffentlichung?

Fir die Autor*innen fallen keinerlei
Vero6ftentlichungsgebiithren (page char-
ges) an. Alle Kosten z.B. fiir Redaktion,
Lektorat, Layout, Website und App tra-
gen Verlag und Sponsoren. Verlag ist die
Physikalisch-Technische Bundesanstalt
PTB, die das Projekt seit

Griindung begleitet.

www.junge-wissenschaft.ptb.de

Was ist besonders an
einer wissenschaftlichen
Veroffentlichung?

Die Besonderheit eines echten, wissen-
schaftlichen Papers ist, dass es peer re-
viewed ist. Der Begriff setzt sich zusam-
men aus den englischen Woértern peer
fir ,Kolleg*in® und reviewed fiir ,iiber-
priift* (review = die Uberpriifung). Die
Arbeit wird also von einem/ einer meist
anonymen Fachkolleg*in, der oder dem
referee, auf Schliissigkeit iiberpriift. Die
Arbeit ist somit gecheckt und kann als
Basis fiir weitere Forschungsvorhaben
genutzt werden.

Hier kénnte
der Titel deiner
Arbeit stehen

Hast du Fragen? In den FAQs
auf der Seite , Flir Autor*innen”
findest du Antworten.

www.junge-wissenschaft.
ptb.de/fuer-autorinnen

Wieso wissenschaftlich
publizieren?

Diese Papers dienen nicht nur dem
fachlichen Austausch,
als Nachweis der erbrachten Leistun-
gen im jeweiligen Spezialgebiet. Wie ein
Lebenslauf informiert die Veroffentli-
chungsliste iiber den beruflichen Wer-
degang und wissenschaftlichen Erfolg.

sondern auch

M < <

Peer-Review-Verfahren

www.instagram.com/ptb.bund

https://www.junge-wissenschaft.ptb.de/fuer-autorinnen
https://www.junge-wissenschaft.ptb.de/fuer-autorinnen
https://www.junge-wissenschaft.ptb.de/

Wie geht das und wie viel
Arbeit muss ich investieren?

Die Junge Wissenschaft (JuWi) ist die
einzige Plattform, auf der bereits Schii-
ler*innen ein erstes Paper, peer reviewed,
verdffentlichen kénnen. Das von der
JuWi-Chefredaktion eingeleitete und
begleitete Peer-Review-Verfahren macht
aus deinem Wettbewerbsbeitrag eine zi-
tierfahige Verdffentlichung. Ein JuWi-
Paper ist der Startschuss fiir deine per-
sonliche Veroffentlichungsliste. Und als
erfolgreiche Teilnehmer*in eines For-
schungswettbewerbs hast du den Lo-
wenanteil der Arbeit bereits erledigt.

Sende deine Arbeit und die Erst-
veroffentlichungserkldrung an:

Chefredaktion
Junge Wissenschaft

Dr.-Ing. Sabine Walter
Paul-Ducros-Straf3e 7
30952 Ronnenberg

Tel: 05109 / 561508
Mail: sabine.walter@verlag-
jungewissenschaft.de

o

[=
i
Z
._'ge:, 5
4

www.junge-wissenschaft.ptb.de

| Lokcorat

Wie geht es nach dem
Einreichen weiter?

Die Chefredakteurin sucht einen geeig-
neten Fachgutachter*in, der bzw. die, die
inhaltliche Richtigkeit der eingereichten
Arbeit tberprift und eine Empfehlung
ausspricht, ob sie verdffentlicht wer-
den kann (Peer-Review-Verfahren). Das
Gutachten wird dir zugeschickt und du
erhiltst die Moglichkeit, Hinweise des
oder der Fachgutachter*in oder eigene
Anderungen einzuarbeiten. Die Erfah-
rung zeigt, dass Arbeiten, die z.B. im
Rahmen eines Wettbewerbs wie Jugend
forscht die Endrunde erreicht haben, die
besten Chancen haben, dieses Peer-Re-
view-Verfahren zu bestehen. Bis hierhin
hast du keinerlei Arbeit investiert.

Schliefllich kommt die Arbeit in die Re-
daktion, wird fiir das Layout vorberei-
tet und und nach der Freigabe als Open-
Access-Beitrag, also fiir jedermann
zugdnglich, verdffentlicht.
Was bringt es mir?
JuWi-Autorfinnen erwerben in der
engen Zusammenarbeit mit der Redak-
tion Kenntnis tiber den Aufbau einer
wissenschaftlichen Arbeit, iber wis-
senschaftlichen Schreibstil, worauf zu
achten ist und welche Schritte wann
notwendig sind. Autor*innen eines Ju-
Wi-Papers haben so sehr friih einen be-
deutenden Teil wissenschaftlichen Pub-
lizierens erlernt, noch bevor sie an die
Hochschule gehen.

www.instagram.com/ptb.bund

c/o Physikalisch-Technische
Bundesanstalt (PTB)
www.junge-wissenschaft.ptb.de

547
Redaktion 3
Dr.-Ing. Sabine Walter, (“9
Chefredaktion Junge Wissenschaft
Paul-Ducros-Str. 7
30952 Ronnenberg
E-Mail: sabine.walter@verlag-
jungewissenschaft.de

Tel.: 05109 /561 508
A
»

Sabine Siems, Verlag & b

E-Mail: sabine.siems@ptb.de
Tel.: 0531 /592 8202

Design & Satz ‘r "

Sebastian Baumeister

Art Director / stilsicher.design
E-Mail: baumeister@stilsicher.design
Tel.: 05142/ 302 99 04

Verlag

Dr. Dr. Jens Simon,
Pressesprecher der PTB
Bundesallee 100

38116 Braunschweig
E-Mail: jens.simon@ptb.de
Tel.: 0531 /592 3006
(Sekretariat der PTB-Pressestelle)

mailto:sabine.walter%40verlag-%0Ajungewissenschaft.de?subject=
mailto:sabine.walter%40verlag-%0Ajungewissenschaft.de?subject=
mailto:jens.simon%40ptb.de?subject=

1

-/ L
wissenschaft

NGE

Fahrkarte V

2um sofortigen

Reiseantritt i
Wi

Dein Ticket zur i

TR

,.

peer reviewed

\2‘\

Nach:
wissenschaftlich

. Wissenschaft Lrs

BEPTB [oms

www.junge-wissenschaft.ptb.de = www.instagram.com/ptb.bund

