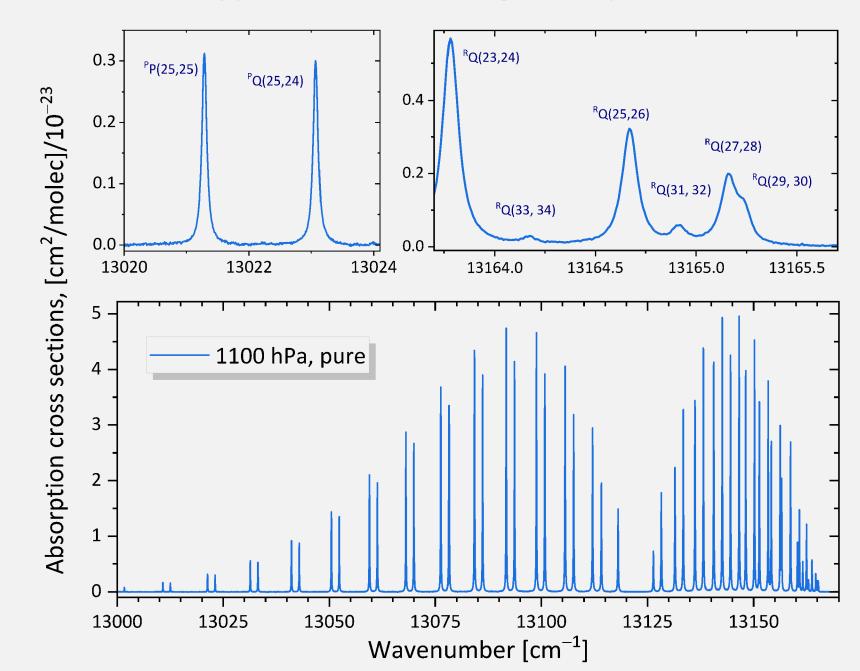


PRISPECTEMP PROJECT IN PROGRESS: NEW MEASUREMENTS OF A-BAND OF OXYGEN IN PURE GAS AND MIXTURES WITH NITROGEN

INTRODUCTION

This work is a part of European Partnership project 22IEM03 "Primary Spectroscopic Thermometry for Gases" (PriSpecTemp) [1]. The project aims to improve primary gas temperature measurements with a target uncertainty of 25 mK using existing spectroscopy capabilities.


Prispectemp

The main idea is to determine the optimal transitions for a number of 'sensor' molecules, such as O₂, CO and CO₂, for Rotational-Vibrational Spectroscopic Gas Thermometry method (RVSGT). The interval from 200 to 400 K is targeted. A cross-validation against other non-contact technique, such as Doppler broadening thermometry and two-line laser thermometry, is also planned.

Oxygen is one of the target molecules for this since it mixes uniformly in the atmosphere and it is used to calibrate intensities of spectra retrieved by satellites and ground-based instruments [2].

SPECTRUM OF A-BAND

The A-band of molecular oxygen arises from the $b^1\Sigma_a^+ \leftarrow X^3\Sigma_a^$ electronic transition. This transition is electric dipole and spin forbidden, and appears due to the magnetic dipole.

The A-band is particularly important because:

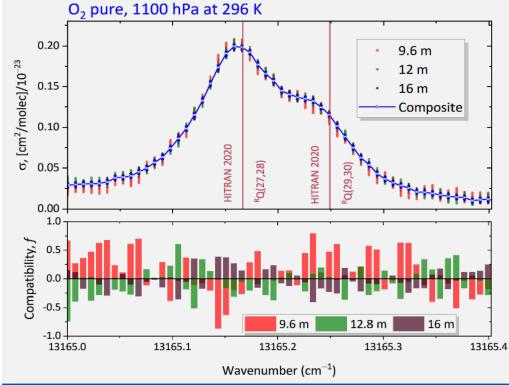
- Does not saturate over long pathlengths [3];
- Free from absorption of other atmospheric molecules.

EXPERIMENT

- All measurements were performed using Bruker IFS-125;
- spectra of pure O₂ and mixtures with nitrogen were recorded.

Parameter	Description
Resolution / apodization	0.016 cm ⁻¹ / Boxcar
Detector	RT-Si diode
Source	Tungsten lamp
Beamsplitter	Quartz VIS
Optical filter	Bandpass CW 776nm, FW 24
Commercial multi-pass cell with changeable path	KBr windows Base length: 0.8 m Varied 3.2 – 32 m
Temperature (secondary calibration)	4 Pt-100 sensors along the cell
Pressure (primary calibration)	1300 hPa INFICON
Thermostate	JULABO HighTech FP-89 (water)
Gas mixer (NPL calibrated)	Sonimix 2106-512 (<u>www.lni-swissgas.eu</u>)
Gases (from Linde)	O_2 (5.0), N_2 (7.0) Synthetic air: 20.0(2) cmol/mol O_2

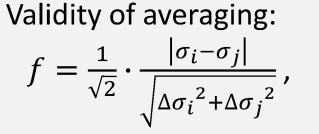
COMPOSITE SPECTRUM


Several samples were recorded at various path lengths to obtain composite spectra (see our recent articles [11,12]).

EFFECT OF TEMPERATURE

PQ(11,10)

Wavenumber (cm⁻¹)


Low J-lines gain, and high J loose the intensity upon cooling.

A few spectra were recorded

in the range of 290 – 300 K.

Wavenumber (cm⁻¹)

metrological compatibility, where $\Delta \sigma_{\chi}$ are the uncertainties of σ_{χ} . $f \in [-1, 1] \rightarrow \text{comparable.}$

> ---- 290 K vs 300 K — Pure O₂ at 300 K

> > 13150

13100

Wavenumber (cm⁻¹)

PURE OXYGEN

Pure O₂: weighted average 2.25(3) \cdot 10⁻²² cm/molec (1.3 %, k = 2), similar uncertainties as in later studies.

The data from Ref. [2] stands out, being the most precise, namely $(2.2547(2) \cdot 10^{-22} \text{ cm/molec}).$

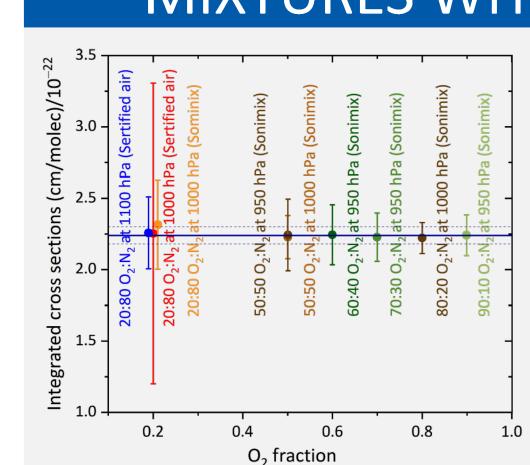
Quote: ent and these affect the relative intensities at a fine level.

related by Eq. (4) and a very high absolute precision ($< 1 \times$ 10⁻⁴) is attained. There have been many determinations of the intensity of the oxygen A band, and Table 3 outlines a - 1000 vs. 450 1000 vs. 750 1000 vs. 900

13050

Wavenumber (cm⁻¹)

13000

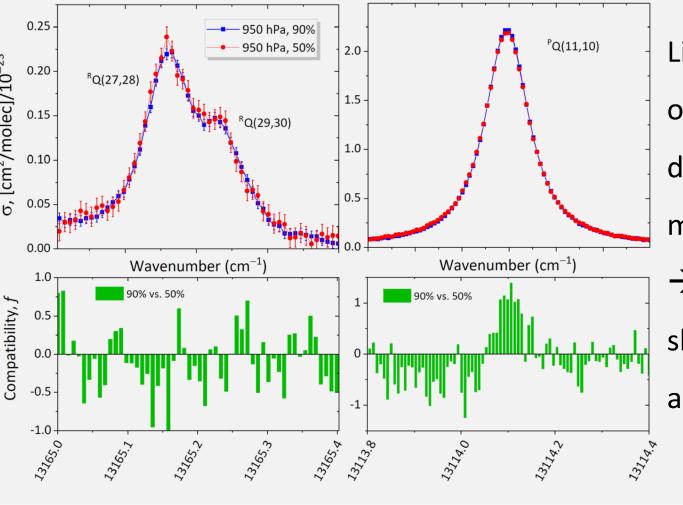

With only one adjusted parameter, the relative intensities

and the uncertainties of the intensities are all strictly

Mean average for O₂:N₂ mixtures 400 500 600 700 800 900 1000 1100 Pressure of O₂ (hPa)

Strong dependence on sample pressure \rightarrow reliable determination of broadening and shifting coefficients for N_2 and O_2 . Line shifts are bathochromic (red shift).

MIXTURES WITH NITROGEN

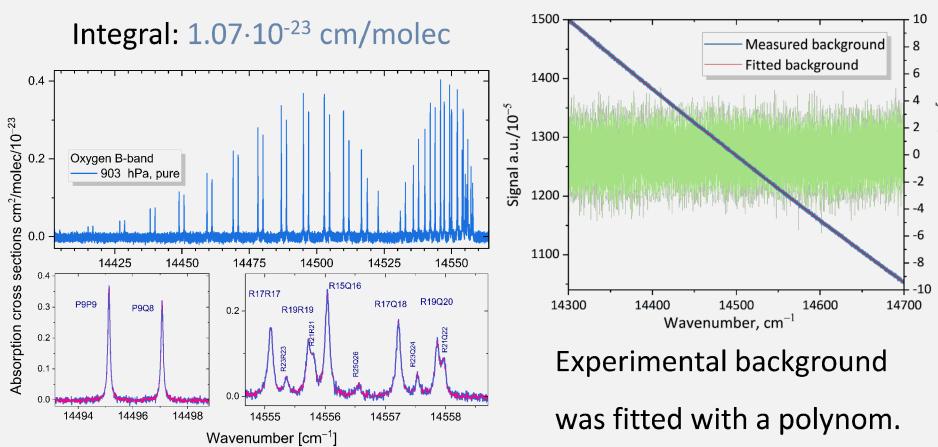


Samples:

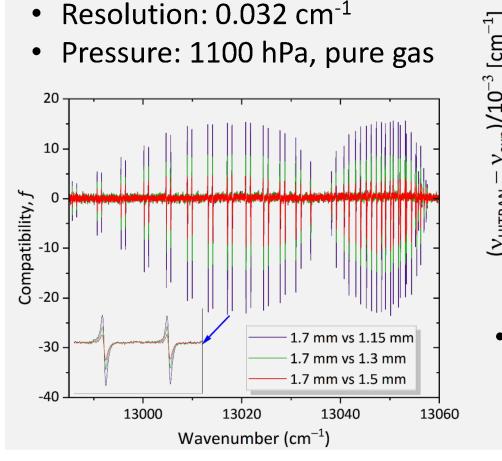
- certified air from Linde;
- mixtures were prepared by Sonimix.

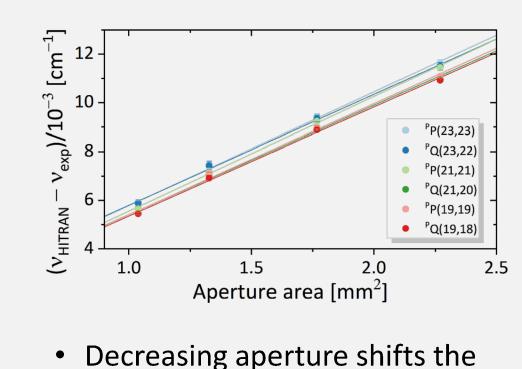
Integrated intensities over the whole band agree for all recorded spectra.

 O_2 in mixtures with nitrogen: 2.24(6) $\cdot 10^{-22}$ cm/molec (2.7 %, k = 2)



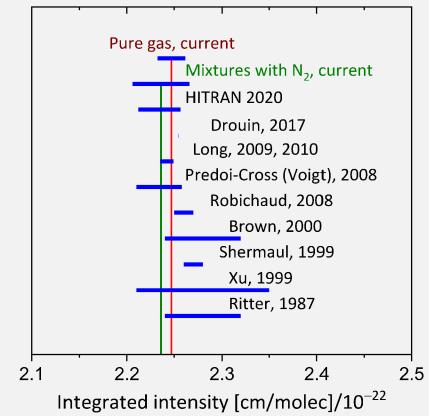
Line profiles show only a weak dependence on the mixture composition → broadening and


shifts for N₂ and O₂ are very similar.


SIDE PRODUCT: B-BAND

13000

TECHNICALITIES: APERTURE


lines to higher wavenumbers.

CONCLUSIONS AND OUTLOOK

13150

- Spectra of O₂ and its mixtures with nitrogen are recorded primarily at 296 K, but a few at slightly different temperatures;
- Uncertainties for every wavenumber are evaluated;

13100

← Overall agreement of averaged values with literature sources.

NB: most of the literature values are a sum over intensities of fitted lines, whereas ours are a direct integration. Integration has a larger uncertainty.

PriSpecTemp further development:

- Line-by-line analysis in progress (in collaboration with Dr. Ha Tran and Dr. Le Cong Tuong).
- Potential yields are pressure broadening and line shift coefficients together with the rotationless magnetic dipole moment and Hermann-Wallis factors.
- CO₂ measurements are ongoing.

REFERENCES

- [1] Primary Spectrometric Thermometry for Gases European Partnership project 22IEM03 PriSpecTemp https://www.prispectemp.ptb.de/
- [2] B. J. Drouin, et. al., "Multispectrum analysis of the oxygen A-band", JQSRT 186, 118– 138 (2017). <u>10.1016/j.jqsrt.2016.03.037</u>
- [3] D.A. Long, et. al., "O₂ A-band line parameters to support atmospheric remote sensing", JQSRT 111(14), 2021–2036 (2010). 10.1016/j.jqsrt.2010.05.011.
- [4] D. J. Robichaud, et. al., "Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy", J. Mol. Spectrosc. **248**(1), 1–13 (2008). <u>10.1016/j.jms.2007.10.010</u>
- [5] D.K. Havey, et. al., "Ultra-sensitive optical measurements of high-J transitions in the (2009).Lett. **483**(1–3), Chem. 10.1016/j.cplett.2009.10.067
- [6] A. Predoi-Cross, K. Hambrook, R. Keller, et. al., "Spectroscopic lineshape study of the self-perturbed oxygen A-band", J. Mol. Spectrosc. 248(2), 85–110 (2008). 10.1016/j.jms.2007.11.007
- [7] L.R. Brown, C. Plymate, "Experimental line parameters of the oxygen A band at 760 nm", J. Mol. Spectrosc. 199, 166–179 (2000). 10.1006/jmsp.1999.8012
- [8] R. Schermaul, R.C.M. Learne, "Precise line parameters and transition probability of the atmospheric A band of molecular oxygen ¹⁶O₂", JQSRT **61**, 781–794 (1999). 10.1016/S0022-4073(98)00066-1
- [9] S. Xu, D. Dai, J. Xie, et. al., "Quantitative measurements of O_2 b \leftarrow X(2,1,0 \leftarrow 0) bands by using cavity ring-down spectroscopy", Chem. Phys Lett. 303(1-2), 171-175 (1999). <u>10.1016/S0009-2614(99)00192-X</u>
- [10] K.J. Ritter, T.D. Wilkerson, "High-resolution spectroscopy of the oxygen A band", J. Mol. Spectrosc **121**, 1—19 (1987). <u>10.1016/0022-2852(87)90167-6</u>
- [11] A.V. Domanskaya, et al., JQSRT **311**, 108790 (2023). <u>10.1016/j.jqsrt.2023.108790</u>
- [12] A.V. Domanskaya, et al., JQSRT **317**, 108922 (2024). <u>10.1016/j.jqsrt.2024.108922</u>

he project has received funding from the European

nion's Horizon Europe Research and Innovation

Programme and by the Participating States.

artnership on Metrology, co-financed from the European

PARTNERSHIP

EUROPEAN

