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Nomenclature
List of symbols and abbreviations used in this thesis.

Symbol Meaning Symbol Meaning
a Aperture N Number
aj, bj Fourier coefficients NA Numerical aperture
A, B, C, D Auxiliary variables p Dipole moment
A, B, C, D Rows of the nanoform sample P Polarizer
B⃗ Magnetic flux density PD Depolarization index
c Speed of light QSPP Plasmonic quality factor
d Diameter r Radius
dc Coating thickness rc Corner radius
dmin Minimum ridge distance r⃗ Position vector
E⃗ Electric field (strength) R Rotation matrix
E⃗0 Electric field amplitude vector Rs, Rp Reflection coefficient
E0 Electric field amplitude S⃗ Stokes vector
E0x, E0y Electric field amplitude components S0, S1, S2, S3 Stokes parameters
Ex, Ey, Ez Electric field components Sx,Sy Sobel operators
f Focal length t Time
g⃗ Grating vector T Transformation matrix
h Helicity T Temperature
H Humidity u, v Integers
I Intensity w Width
Iv Modified Bessel function of order v x, y, z Cartesian coordinates
j Integer
j⃗ Electric current density β Propagation constant
J⃗ Jones vector γ Gaussian distribution scale
k Wave number Γ Gamma function
k0 Vacuum wave number δd, δm SPP penetration depths
k⃗ Wave vector δSPP SPP propagation length
kx, ky, kz Wave vector components ∆ Ellipsometric phase difference
Kv Modified Bessel function of order v ε Permittivity
l Lens thickness / Waveguide length εr Relative permittivity
m Integer ε1, ..., ε5 Polarizer and retarder deviations
ma,i PSA Mueller matrix element θ Rotation angle
mij Mueller matrix elements λ Wavelength
M Mueller matrix λ0 Vacuum wavelength
MJ Jones matrix λc Critical wavelength
n⃗ Normal vector λSPP SPP wavelength
n Refractive index Λ Period
ne Electron number density µ Permeability
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Symbol Meaning Symbol Meaning
µr Relative permeability ϕ Phase
µuv Combined PSA-PSG matrix elements ψ Haar wavelet / function
ξd, ξm Auxiliary variable Ψ Ellipsometric amplitude component
Π Degree of polarization ω Angular frequency
ρ Electric charge density ωp Plasma frequency
σ Electric conductivity

Abbreviations

AFM Atomic Force Microscopy PSA Polarization State Analyzer
ALD Atomic Layer Deposition PSG Polarization State Generator
C Cylindrical lens PSO Particle Swarm Optimization
CAD Computer-Aided Design PTB Physikalisch-Technische Bundesanstalt
CCD Charge-Coupled Device RAM Random-Access Memory
CMI Czech Metrology Institute RMSE Root-Mean-Square Error
FEM Finite Element Method ROI Region Of Interest
FIB Focused Ion Beam s perpendicular (senkrecht)
FWHM Full Width at Half Maximum S Successive
IQR InterQuartile Range SEM Scanning Electron Microscopy
JCM James Clerk Maxwell SiO2 Silicon dioxide
LED Light-Emitting Diode SNOM Scanning Near-field Optical Microscopy
O Spherical lens SPM Scanning Probe Microscopy
p parallel SPP Surface Plasmon Polariton
P Periodic STED STimulated Emission Depletion
PCSA Polarizer, Compensator, Sample, Analyzer TE Transverse-Electric
PCSCA Pol., Comp., Sample, Compensator, Analyzer TM Transverse-Magnetic
PMMA PolyMethylMethAcrylat TSOM Through-focus Scanning Optical Microscopy

Constants

Vacuum speed of light c0 = 299792458 m
s

Elementary charge e = 1.60217663 · 10−19 C

Electron mass me = 9.10938370 · 10−31 kg
Vacuum permittivity ε0 = 8.85418781 · 10−12 As

Vm

Vacuum permeability µ0 = 1.25663706 · 10−6 Vs
Am

Pi π ≈ 3.14159265...

Euler’s number e ≈ 2.71828183...

Imaginary unit i =
√
−1
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1
Motivation

Once, when I was little, I had a Tamagotchi. A digital friend in form of a
little device in my pocket that would beep at me when it needed my attention.
Tamagotchis as popular in the 1990s (compare Figure 1.1(a)) contained simple 4-

bit single chip microcomputers, running at 2 MHz maximum and bundled with 640 words
of RAM [1, 2, 3]. Little has changed since then. I still have a device in my pocket that alerts
me when one of my friends wants my attention. Just the numbers are different: Instead of
only one digital friend, I now have close to 200 real-life contacts stored in my smartphone
(see Figure 1.1(b)). With 8 GB of RAM, it has about as much memory as my laptop, and its
Kirin 980 chip features eight cores running at up to 2.6 GHz, while being only half the size
of the chip in a Tamagotchi. Its 6.9 billion transistors fit into only 1 cm2, thanks to it being
fabricated within the scope of the so-called 7 nm process technology node [4, 5, 6, 7]. Even
if ’7 nm’ nowadays is more of a marketing term, transistors made with this technology
are as small as a few tens of nanometers only [8]. As of writing this thesis, transistor
technologies have even reached the 3 nm node, with the 2 nm node being expected in the
near future [9, 10, 11, 12].

(a) Tamagotchi, image from [13]. (b) My current smartphone.

Figure 1.1 – A 1997 Tamagotchi (a) and my current smartphone, a 2019 Huawei P30 Pro (b).
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Advances in the fabrication of novel technologies also require the reliable and accurate
characterization of the fabricated structures. Thus, nanometrology has to keep pace with
the progress in nanotechnology. For measurements at the nanometer scale, atomic force
microscopy (AFM) and scanning electron microscopy (SEM), inter alia, have proven them-
selves. AFM is regarded as a highly accurate technique, but fails to characterize large struc-
tured areas due to its low speed. SEM faces the issues of being potentially destructive to
the sample while requiring specific measurement conditions [14, 15, 16]. For these rea-
sons, optical techniques are usually preferred. They are faster than tactile methods and
at the same time non-invasive and scalable, making them easy to integrate even in large-
scale manufacturing environments. Conventional light microscopy is the most common
method here, but famously faces Abbe’s diffraction limit at roughly half the wavelength
of the incident light. Optical imaging systems are incapable of resolving objects that are
closer to each other than this limit [17]. Much has been done to overcome this limit,
with a famous recent example being the development of stimulated emission depletion
microscopy (STED), which was awarded the Nobel Prize in Chemistry in 2014 [18]. Super-
resolution methods like STED, however, rely on the presence of fluorescent markers in
the structures under investigation. While it is common to use fluorophores in biological
applications, they are incompatible with, e.g., semiconductor samples, making these tech-
niques impractical especially in metrology [19, 20, 21]. In contrast to all these stand non-
imaging methods, such as ellipsometry, which are indirect optical techniques. Instead of
directly measuring for example the thickness of a thin layer, ellipsometry measures the
difference of the sample’s influence on light polarized in different ways. This difference is
then compared to models in order to find the corresponding layer thickness. As this is not
limited by diffraction, it is capable of characterizing dimensions down to a few Ångström
with high accuracy [22, 23, 24, 25].

When talking to people from outside the optics community about ellipsometry, many
struggle to connect the term with the measurement method. Usually, the ’-metry’ part
is obvious, stemming from the ancient Greek word µέτρoν (métron, measure) [26]. The
’ellipso-’ part refers to the polarization ellipse, a general description of light’s state of
polarization. Alexandre Rothen is said to have coined the term ’ellipsometry’ in 1945
[27], but the method has been around since the time of Paul Drude, and potentially even
longer. Its origins are not quite clear, but already in the 19th century, measurements that
can be regarded as ellipsometry were conducted [25, 28, 29]. Although it is by far not a new
tool, it is still popular today, being used in a wide range of applications from metrology [30,
31, 32] over semiconductor industries [25, 33, 34] to biology [35, 36, 37]. It even played a role
in characterizing PTB’s monocrystalline silicon spheres used in determining the quantity
of the Avogadro constant by measuring the thickness of its oxide layer [38].

The appeal of ellipsometry lies in its high accuracy when measuring layer thicknesses
or optical constants or when reconstructing the parameters of periodic nanostructures.
However, to some extent, it still faces the problem of finite illumination spot size: Dur-
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Motivation 5

ing a measurement, the sample is illuminated with light and the intensity change of the
reflected (or transmitted) light is measured for different states of polarization. In doing
so, the result is integrated over the whole illumination spot, the diameter of which is usu-
ally in the order of magnitude of 1 mm2. Thus, structures smaller than this illumination
spot can only be evaluated correctly when they are periodic and when the patterned area
is larger than the illuminated area. If the structured field is smaller than the spot size, in-
fluences from the surroundings are mixed into the measured signal, affecting the result.
Local polarization effects from opposing corners or edges are averaged out and features
from non-periodic, individual structures cannot be separated and evaluated. A possible
solution for this, which I explored in this work, is the use of imaging ellipsometry. This
technique combines ellipsometry with microscopy: Instead of a simple detector, a ca-
mera is used to collect the information from the ellipsometry measurement in images of
the sample. Together with a magnifying optical system, this allows to measure polarizing
effects more locally than conventional ellipsometry is able to. The idea of imaging ellipso-
metry is not new [39, 40, 41]. Yet, there is currently only one imaging ellipsometry system
commercially available, offered by Park Systems / Accurion [42], and it is barely used in a
metrological context, despite its advantages. A reason for this might be its evaluation diffi-
culties [43]. By now, results from imaging ellipsometry are usually evaluated by averaging
over regions of interest (ROI) in the image and evaluating these mean results like in con-
ventional ellipsometry. Although this allows for an easier evaluation of smaller areas than
in conventional ellipsometry, it only makes use of homogeneous areas in the images and
completely neglects other topological information from features like structure edges or
corners. Reconstructing non-periodic nanostructures using the information from these
inhomogeneities would necessitate numerical simulations in three dimensions, which
come with considerable computational costs and are thus often evaded. Other methods
to access topological information without elaborate simulations are needed to make this
method more viable for metrological purposes. For the sake of reliability in metrology, it
is also important to consider the thermal stability of imaging ellipsometry. The thermal
influence on these kinds of measurements is still widely ignored as it only plays a minor
role in conventional ellipsometry and when measurements are conducted in sufficiently
short time ranges. Apart from that, typical imaging ellipsometry usually features opti-
cal components also used in microscope systems. Replacing these optics with structures
from the rapidly developing field of meta-lenses involves many potential advantages, from
more compact setups over smaller illumination areas towards the possibility to imple-
ment scanning-type or structured-illumination-like measurement schemes. These kinds
of enhancements, that are likely to improve the access to subwavelength information, are
still pending.

The aim of this thesis was to find ways to enhance the performance of imaging Mueller
matrix ellipsometry for the purpose of establishing it for nanometrological applications
and ultimately helping to bridge the gap towards nanotechnology. I explored different
possibilities to advance Mueller matrix ellipsometry for metrological purposes. This en-
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compasses ways to evaluate Mueller matrix images without the need for three-dimension-
al simulations, using techniques inspired by machine learning and image processing. As
a testbed, I designed a set of distinct nanostructures which showed detectable responses
in measurements agreeing with simulations, even for feature changes smaller than the
illuminating wavelength and even for simple measurements under normal incidence. In
addition, this thesis covers the problem of thermal drifts that naturally occur during mea-
surements. While negligible in conventional ellipsometry and thus mostly disregarded,
I prove that these drifts are a potential source of uncertainty in imaging ellipsometry
by performing experiments on moving samples. I also offer an algorithmic solution for
handling drifts to improve even already existing setups. Apart from that, I explored the
application of specially designed flat meta-lenses, specifically plasmonic lenses, for the
advancement of ellipsometric methods towards more compact and versatile setups.

Plasmonic lenses are based on the extraordinary transmission effect. Usually, light is un-
able to pass holes which are significantly smaller than the wavelength. However, it was
observed that, instead of the transmission dropping steadily towards zero with decreas-
ing hole diameter, there is some transmission enhancement for certain small diameters
of metallic holes [44, 45]. This unexpected behavior was called extraordinary transmission.
Although not completely understood yet [46], it is regarded by most to be linked to the
excitation of surface plasmon polaritons (SPPs) [45, 47], which are oscillations of the sur-
face electron density coupled to the photons that excited them. They were first described
in the late 1960s [48]. When light passes as SPPs through such a hole, its phase changes
according to the hole size and shape [49, 50, 51]. In the 2000s, when this was examined in
more detail and when fabrication techniques for such holes became more available, the
first types of focusing plasmonic metasurfaces were developed by arranging slits or simi-
lar structures in metal [52, 53, 54, 55, 56, 57]. Concerning the advancement of ellipsometry,
this thesis aimed to scrutinize the suitability of these types of structures for the enhance-
ment of measurement sensitivity. Other than normal lenses, plasmonic lenses are flat and
can produce small focal spots with much shorter focal lengths. This potentially enables an
easier integration of these lenses in ellipsometry, leading to more compact setups. Also,
it enables extensions of the method by scanning type measurements, which I approached
with numerical simulations at focal distances of a few micrometers. However, plasmonic
lenses as they are common in literature are relatively difficult to produce without the
right tools. They often require focused ion beam (FIB) milling for their fabrication, which
is rather time consuming and unsuited for a large-scale production. This is why I devel-
oped a new design, the so-called inverted plasmonic lens, which I present in this thesis.
The new design enables an easier fabrication with common lithography methods. Using
this, I designed, simulated and, after fabrication, measured a set of inverted plasmonic
lenses to characterize their functionality, and created a study about various lens parame-
ters to see their limitations. Part of the new design is an alternative placement scheme
for the waveguides these lenses are made of, which maximizes the throughput and thus
tackles one of plasmonic lenses’ major disadvantages compared to dielectric meta-lenses.
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In addition, I characterized their dispersive behavior and discuss different schemes for
the realization of achromatic plasmonic lenses compatible with ellipsometric methods at
multiple wavelengths.

After this motivation, Chapter 2 starts with a brief introduction concerning Maxwell’s
equations and how light behaves when it interacts with conductive media. That gives
us the foundation needed to describe the polarization of light in the Mueller matrix
formalism and the link between photons and plasmons. Chapter 3 then goes into de-
tail about ellipsometry, comparing different techniques of polarimetry and ellipsometry
and presenting the experimental setups used in this thesis. It also introduces us to the
nanoform sample, the set of structures fabricated for the investigations in this thesis.
Measurements conducted on this sample revealed thermal drifts, which are character-
ized and algorithmically accounted for. Continuing from the exposition, Chapter 4 then
shows how plasmonic waveguides can be used to build flat lenses. It presents the inverted
plasmonic lens design and goes into detail about parameter optimization. After evalu-
ating the performance of the lenses, both numerically and experimentally, it discusses
different concepts for the realization of multispectral plasmonic lenses to circumvent the
dispersion observed in the evaluation. Afterwards, Chapter 5 characterizes the polarizing
properties of the fabricated plasmonic lenses using the setups presented earlier, before
discussing numerical simulations of Mueller matrix images as well as the implementa-
tion of plasmonic lenses in ellipsometric setups. Apart from that, it covers an approach
for the application of machine learning ideas in an ellipsometric context. In the end,
Chapter 6 gives a brief conclusion of the results of this thesis.
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2
Light in and around
Conductive Media

In this thesis, we will see both light being used as an information channel
for nanometrology and light being shaped for this purpose. Therefore, we start by
briefly reviewing the theoretical framework necessary to understand how light and

its interaction with matter will be described mathematically in what follows. This chapter
begins at Maxwell’s equations to establish the wave character of light, before it deals with
its subsequent property polarization and how to describe it using Stokes vectors. It then
introduces the Mueller matrix formalism for the influence of optical components on
polarization, which is the foundation for Mueller matrix ellipsometry as described in
Chapter 3. Afterwards, we see how light waves interact with electrons in metals in a way
to excite surface plasmon polaritons. These will be used in Chapter 4 in the construction
of plasmonic lenses.

2.1 Maxwell’s Equations and the Description of Light
The classical description of electromagnetic waves follows from Maxwell’s equations [58].
They represent the interaction and propagation of electric fields E⃗ and magnetic fields B⃗:

∇ · E⃗ =
ρ

ε
, (1a)

∇ · B⃗ = 0 , (1b)

∇× E⃗ = −∂B⃗
∂t

, (1c)

∇× B⃗ = µ⃗j + εµ
∂E⃗
∂t

. (1d)

In these equations, ε = ε0εr denotes the permittivity and µ = µ0µr the permeability of
the corresponding media. In the uncharged, current-free vacuum case, the equations can
be simplified by neglecting the electric charge density ρ and the electric current density j⃗
as well as εr and µr [59].
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2.1.1 Wave Equations
From Maxwell’s equations follows the wave equation for the behavior of electromagnetic
waves in conducting media [60]:

∇2E⃗ − σ

εc2
∂E⃗
∂t

− 1
c2

∂2E⃗
∂t2 = 0 , (2)

where c is the speed of light in the medium and σ denotes the electric conductivity, which
is the proportionality between the current density and the electric field [60]:

j⃗ = σ · E⃗ . (3)

An in detail derivation of the wave equation is given in Appendix A.1. An often used case
is the wave equation in the absence of electrical currents and charges:

∇2E⃗ − 1
c2

∂2E⃗
∂t2 = 0 . (4)

Similar equations can be found for the magnetic field and in general, each single compo-
nent of both fields follows the wave equation [46]. Under the assumption of a harmonic
time dependence, we can rewrite the wave equation to the Helmholtz equation with the
wave number k0 [61]:

∇2E⃗ + k2
0E⃗ = 0 . (5)

2.1.2 Solutions of the Wave Equations
The simplest and presumably most versatile solution of the wave equation is the plane
wave [46]:

E⃗(⃗r, t) = E⃗0ei(⃗k·⃗r−ωt) , (6)

where k⃗ is the so-called wave vector. For simplicity, we often consider plane waves trav-
eling along a certain direction of the Cartesian coordinate system, for example the z-
direction:

E⃗(z, t) = E⃗0ei(kz−ωt) . (7)

In the case of vacuum, without charges present, the divergence of the electric field has to
vanish in accordance with Equation (1a). For a plane wave traveling along the z-direction,
this reduces to:

∂Ez
∂z

= 0 , (8)

as the field does not depend on x or y. This is only fulfilled when Ez = 0. Non-trivial
solutions would suggest that Ez had a constant value for all t and z, which does not hold
for a wave. Hence, the field components of an electromagnetic wave in direction of their
propagation are zero and the fields oscillate only in the directions transverse to their prop-
agation [58]. Thus, light is considered a transverse electromagnetic wave.
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2.1 Maxwell’s Equations and the Description of Light 11

Apart from plane waves, other solutions for the wave equation exist that are especially
useful in specific situations, such as the description of certain light sources like lasers.
Important examples for these, which are not further discussed in this thesis, are spherical
waves and Gaussian beams [62].

2.1.3 Evanescent Fields
A more general description of complex wave fields usually follows from a decomposition
of the field into several plane waves, a so-called angular spectrum [63]. Mathematically,
this is described via a Fourier transform of the components of the electromagnetic fields
[46]. Consider the electric field in a plane with constant z-coordinate. The inverse Fourier
transform of this field yields its angular spectrum representation [64]:

E⃗(x, y, z) =
∫∫ ∞

−∞

˜⃗E(kx, ky; z)ei(kxx+kyy)dkxdky . (9)

When we insert this into the Helmholtz equation, we see that, in the angular spectrum,
the propagation of the wave along the z-axis is described with a phase factor [46, 64]:

˜⃗E(kx, ky; z) = ˜⃗E(kx, ky; 0)e±ikzz . (10)

The component kz which is the wave vector component along the axis of propagation is
also called the propagation constant β [61]. The different signs of e±ikzz represent differ-
ent directions of propagation along the z-axis. For propagating waves, kz is real and e±ikzz

describes an oscillation. However, the wave number kz might also be imaginary. This
leads to a phase factor of e−kzz which describes a field decaying along the z-axis instead.
This case is also referred to as the evanescent field. Generally, it only occurs at inhomo-
geneities. The most prominent examples for this are interfaces of dielectric media with
different indices of refraction, where total internal reflection occurs [46, 64, 65]. Another
important case is the excitation of surface plasmons at metal-dielectric-interfaces, which
will be discussed in Section 2.3.1.

When considering the wave vector k⃗, its components have to describe the surface of a
sphere with radius |⃗k| = k, the so called Ewald sphere [66]:

k2 = k2
x + k2

y + k2
z . (11)

For propagating waves, kz is real and therefore k2 ≥ k2
x + k2

y . However, evanescent fields
deliver solutions for the wave equation where k2 < k2

x + k2
y , which means that the associ-

ated wave vector is no longer inside the Ewald sphere [46]. Transformed into the Carte-
sian space, spatial frequencies outside of the Ewald sphere relate to structures smaller
or closer together than the wavelength. Thus, in contrast to propagating waves, evanes-
cent fields carry information from the sub-wavelength domain [46, 67, 68]. Because of the
rapidly decaying nature of evanescent fields however, we can’t access this information in
the far-field. Therefore, we have to rely on means of near-field optics, for example scan-
ning near-field optical microscopy (SNOM) [69].
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2.2 Polarization of Light
We have seen in Section 2.1.2 that propagating light is a transverse electromagnetic wave,
where the electric and magnetic field vectors oscillate in directions perpendicular to the
propagation. The orientation of these oscillations is referred to as polarization. In this sec-
tion, we discuss the mathematical descriptions of polarization relevant for this work.

2.2.1 The Polarization Ellipse

Ex

E

ωt+ϕ

E0y

E0x

Ey

h

Figure 2.1 – Polarization ellipse. The
helicity is denoted by h.

Considering a monochromatic plane wave as in-
troduced in Section 2.1.2:

E⃗(⃗r, t) = E⃗0 · ei(⃗k·⃗r−ωt+ϕ) , (12)

with an arbitrary phase ϕ. The wave travels along
the z-direction and the fields oscillate transversely
to its direction of propagation in the x-y-plane.
Thus, the wave can be decomposed into the Carte-
sian components [70]:

Ex(z, t) = E0x cos(kz − ωt + ϕx) , (13a)
Ey(z, t) = E0y cos(kz − ωt + ϕy) , (13b)
Ez(z, t) = 0 . (13c)

When these equations are combined, they result in the equation of an ellipse, which is the
most general description of the polarization of an electromagnetic wave:

E2
x

E2
0x

+
E2

y

E2
0y

− 2
ExEy

E0xE0y
cos(ϕ) = sin2(ϕ) , (14)

with the arbitrary phases ϕ = ϕy − ϕx. A schematic of the polarization ellipse is given in
Figure 2.1.

2.2.2 States of Polarization
As demonstrated in Section 2.2.1, the polarization of light can generally be described with
an ellipse. Consequently, this case is referred to as elliptical polarization. Figure 2.2(a)
shows an example for this. From the general case, useful special cases can be derived.
If the half-axes of the ellipse are of same length (E0x = E0y = E0) and the phase ϕ is an
odd-numbered multiple of π/2, the ellipse degenerates to a circle, which describes circular
polarization:

E2
x

E2
0
+

E2
y

E2
0
= 1 . (15)
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Ex

E

Ey

k

(a) Left-handed elliptical.

Ex

E

Ey

k

(b) Left-handed circular.

E

Ex

Ey

k

(c) Vertical linear.

Figure 2.2 – Examples for elliptical (a), circular (b), and linear (c) states of polarization.

In both cases, elliptical and circular polarization, the helicity h of the wave can be either
left-handed or right-handed, depending on the phase. An example for left-handed cir-
cular polarization is depicted in Figure 2.2(b). If the phase is an integer multiple of π,
Equation (14) further simplifies to a linear equation, describing linear polarization:

Ey = ±
(

E0x
E0y

)
Ex . (16)

If one of the field components vanishes, this results in linear horizontal (E0y = 0) or
vertical (E0x = 0) polarization. The latter is shown in Figure 2.2(c). If the field components
are the same, the equation describes diagonally polarized light [70].

When describing light at oblique incidences, e.g. when dealing with reflection, refraction,
or change of propagation, it is more reasonable to describe the state of polarization rel-
ative to a plane of incidence instead of an overall coordinate system. We describe light
as parallel (p) polarized, if the electric field vector oscillates in the plane of incidence,
which is spanned by the wave vector k⃗ and the normal vector n⃗ of the surface as depicted
in Figure 2.3(a). Likewise, perpendicular (s from German senkrecht) polarized light has its
electric field vector perpendicular to the plane of incidence, as shown in Figure 2.3(b).
In the context of structured fields, when the plane of incidence coincides with the plane
spanned by the normal vector n⃗ and the grating vector g⃗, we also refer to these cases as
transverse-magnetic (TM) or transverse-electric (TE) polarized, respectively [46].

n

g

k

E B

(a) TM polarized.

n

g

k

B E

(b) TE polarized.

Figure 2.3 – States of polarization depending on the plane of incidence. Examples for TM (a)
and TE polarized light (b).
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2.2.3 Jones Calculus

A vector based description for completely polarized light was introduced in 1941 by Robert
Clark Jones [71]. States of polarization of a plane wave propagating in z-direction are
described by a so-called Jones vector J⃗:

E⃗ = J⃗ · ei(⃗k·⃗r−ωt) , J⃗ =

(
E0xeiϕx

E0yeiϕy

)
. (17)

When examining polarization only, Jones vectors are usually normalized with regard to
amplitude and phase [58].

If an optical component changes the polarization of light, this transform is mathemati-
cally performed via a 2 × 2 Jones matrix MJ :

J⃗′ = MJ · J⃗ . (18)

2.2.4 Stokes Calculus

The Jones calculus introduced in Section 2.2.3 describes completely polarized light in a
compact manner. The vectorial treatment of only partially polarized light however needs
another formalism. In 1852, Sir George Gabriel Stokes introduced the description of
polarized light via four parameters, the so-called Stokes parameters, which can be sum-
marized into a Stokes vector [72]:


S0

S1

S2

S3

 =


E2

0x + E2
0y

E2
0x − E2

0y
2E0xE0y cos(ϕ)
2E0xE0y sin(ϕ)

 . (19)

The first parameter, S0, denotes the overall intensity I of the light. S1 contains information
about linear horizontal and vertical polarization, S2 describes linear diagonal polarization,
and S3 stands for circular polarization. Generally, the sum of the squares of the other
parameters is less than or equal to the square of S0:

S2
0 ≥ S2

1 + S2
2 + S2

3 . (20)

Completely unpolarized light is represented by every parameter except S0 being zero. For
partially polarized light, the degree of polarization Π is defined as [70]:

Π =

√
S2

1 + S2
2 + S2

3

S0
. (21)
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Similar to the Jones calculus, the change of polarization induced by optical components
onto a Stokes vector is described with 4 × 4 Mueller matrices [73, 74]:

S⃗′ = M · S⃗ , (22a)
S′

0
S′

1
S′

2
S′

3

 =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 ·


S0

S1

S2

S3

 . (22b)

The interaction with multiple components mathematically corresponds to the multipli-
cation of the respective Mueller matrices. As a helpful example, the rotation of an optical
component by an angle of θ is achieved by multiplying the component’s Mueller matrix
with a rotation matrix R(θ):

M(θ) = R(−θ) · M · R(θ) , R(θ) =

(
1 0 0 0
0 cos(2θ) sin(2θ) 0
0 − sin(2θ) cos(2θ) 0
0 0 0 1

)
. (23)

A set of relevant Mueller matrices is collected in Appendix A.2.

2.2.5 Mueller Jones Matrices
If the light is completely polarized, the degree of polarization is Π = 1 and the squares of
the Stokes parameters sum up to the square of the intensity:

S2
0 = S2

1 + S2
2 + S2

3 . (24)

When completely polarized light interacts with a non-depolarizing medium, the Mueller
matrix of this medium is referred to as a pure Mueller matrix or a Mueller Jones ma-
trix, because it can also be described by a Jones matrix. Equivalently, each Jones matrix
can be transformed into a Mueller Jones matrix via [75]:

M = T(MJ ⊗ M∗
J )T

−1 , (25)

where T is the transformation matrix [75]:

T =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 . (26)

We can use the depolarization index PD as a description for the purity of a state of polar-
ization [76]:

PD =

√
Tr
(

MT M
)
− m2

00√
3 · m00

. (27)

A pure Mueller matrix has a depolarization index of PD = 1 [75].
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2.3 Plasmonics
In conductive solids, electromagnetic forces induced by incident light inherently influ-
ence the movement of electrons among atomic nuclei, leading to charge imbalances and
causing local electric fields. These plasmonic interactions are able to create evanescent
fields traveling along the surfaces of solids. This section gives a brief introduction into
plasmonics and the properties of surface plasmon polaritons.

2.3.1 Plasma Oscillations
Consider a number of ne free electrons in a medium being displaced by a distance of x
from their quasi-neutral positions, for example due to an external electric field. This dis-
placement creates a net charge imbalance, which, according to Maxwell’s Equation (1a),
leads to an electric field itself:

Ex =
p
ε0

=
enex

ε0
, (28)

where p is the dipole moment caused by the displacement [77, 78]. This electric field
creates a retracting force on the electrons:

me
d2x
dt2 = −eEx = − e2nex

ε0
. (29)

This force might cause the electrons to oscillate around the nuclei, so we describe the
solution to this differential equation with a periodic movement of the electrons:

x(t) = x0 cos(ωpt) , (30)

where ωp is the frequency of this oscillation. With Equation (29), this leads to:

meω2
px =

e2nex
ε0

, (31a)

ωp =

√
e2ne
meε0

. (31b)

Following the description of free electrons in conductive solids as a plasma, this oscil-
lation frequency ωp of the charge density is usually referred to as the plasma frequency.
Likewise, local imbalances of the charge density carry on through the solid as plasma
oscillations [77, 79]. These collective, propagating excitations of the free electrons are de-
scribed via quasi-particles, so-called plasmons. When these electron density waves travel
along the surface of a material, we call them surface plasmons [80].
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2.3.2 Surface Plasmon Polaritons
As indicated in Section 2.3.1, external electromagnetic fields, for example in the form of
photons, can excite plasma oscillations. If plasmons couple to the photons that excited
them, they are referred to as plasmon polaritons [77]. We want to focus on the special case
of surface plasmon polaritons (SPP), which are oscillations of the surface electron density,
excited by and coupled to photons while propagating along the surface [81]. We can excite
these evanescent fields deliberately at the interfaces between materials with a positive and
a negative permittivity, respectively. In most cases, these materials are a dielectric medium
and a metal [82, 83].

Figure 2.4(a) depicts an interface between two arbitrary uncharged media 1 and 2 with
permittivities ε1 and ε2. We assume density charge oscillations inside material 2 coupled
to an electric field right at the interface. We describe this field as follows:

E⃗(⃗r, t) =

{
E0,1e−i(ωt+kx,1x+kz,1z), z > 0
E0,2e−i(ωt+kx,2x+kz,2z), z ≤ 0

. (32)

The electric field underlies continuity conditions at the interface [59]:

Ex,1 − Ex,2 = 0 , (33a)
ε1Ez,1 − ε2Ez,2 = 0 , (33b)

which together with Maxwell’s equations lead to the dispersion relation of the wave vec-
tor component along the surface [82]:

kx =
ω

c

√
ε1ε2

ε1 + ε2
, (34)

and the component perpendicular to the surface [82]:

kz,v =

√
εv
(ω

c

)2
− k2

x =
ω

c

√
ε2

v
ε1 + ε2

, v = 1, 2 . (35)

Eε1

ε2

+++ +++- - - - - - x

z

λSPP

(a) Surface electron density oscil-
lations coupled to an electric field.

ε1

δd

δm

ε2

|Ez|

z

(b) SPP penetration
depths.

Figure 2.4 – SPPs at the interface between two materials, adapted from [84]. Electric field at
the surface (a) and with distance to it (b).
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Generally, the electric permittivity is complex-valued: ε = ε′ + iε′′. Under the assump-
tion that the permittivity of material 1 is real-valued, and when our goal is to describe
propagations along the interface, k2

x has to be real-valued as well [82]. Thus, the real part
of the permittivity of material 2 has to be negative and its absolute value has to be larger
than the one of material 1. Usually, metals do have large negative real parts and smaller
imaginary parts, so these requirements for the existence of SPPs are fulfilled for metal-
dielectric-interfaces. In this case, kz,v is imaginary, which classifies the electromagnetic
field associated with SPPs as an evanescent field (see Section 2.1.3). The suitability of a
metal for plasmonic excitations is coupled to its permittivity and can be expressed in
form of a quality factor [85, 86]:

QSPP =
ε′2m
ε′′m

. (36)

For example, pure silver is the metal with the highest quality factor of QSPP ≈ 373 at a
wavelength of 532 nm (data from [87]).

From the real part of kx, we get the wavelength of the SPPs along the surface [88]:

λSPP = λ0

√
εd + ε′m

εdε′m
, (37)

where λ0 = 2π/k0 is the incident wavelength and εm,d = ε′m,d + iε′′m,d are the complex per-
mittivities of the metal and the dielectric, respectively. Generally, kx is complex-valued,
which means that the field is also dampened along the interface from its center of ori-
gin. From the imaginary part of kx, we obtain the distance after which the SPPs’ intensity
decreases by 1/e of their initial value, the so-called propagation length [88]:

δSPP = λ0
ε′2m

2πε′′m

(
εd + ε′m

εdε′m

) 3
2

. (38)

Additionally, SPPs penetrate into both media to a certain extent which is considered by
the penetration depths illustrated in Figure 2.4(b) [88]:

δd =
1
k0

√√√√∣∣∣∣∣ εd + ε′m
ε2

d

∣∣∣∣∣ , (39a)

δm =
1
k0

√∣∣∣∣ εd + ε′m
ε′2m

∣∣∣∣ . (39b)
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2.3.3 Excitation of Surface Plasmon Polaritons
Figure 2.5 illustrates the dispersion curve of SPPs at an interface between a metal (silver)
and a dielectric material (SiO2), following Equation (34). As we see, it always lies at higher
wave numbers than the light line, shown for the vacuum case. The excitation of SPPs,
however, requires conservation of energy and momentum, but the momentum of a pho-
ton is always smaller than that of the SPPs. This momentum mismatch prevents photons
to directly excite SPPs. Nevertheless, we can find geometries to compensate this momen-
tum mismatch, for example by using the total internal reflection in prisms or by means
of grating couplers [82, 83, 84].

0 0 . 0 2 5 0 . 0 5 0 . 0 7 5 0 . 1 0 . 1 2 5 0 . 1 5 0 . 1 7 5 0 . 2
0

0 . 2

0 . 4

0 . 6
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 L i g h t  l i n e
 S P P  D i s p e r s i o n

�
 / 

�
p

k x c /  � p

S u r f a c e  p l a s m o n
 ( n o n - p r o p a g a t i n g  s u r f a c e  o s c i l l a t i o n )

Figure 2.5 – Dispersion of surface plasmon polaritons at an interface between silver and SiO2

(dark) compared to light in vacuum (light), normalized to the plasma frequency in silver. The
dashed red line is the frequency of surface plasmons at the silver-SiO2 interface.
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3
Mueller Matrix
Ellipsometry

One of the most important properties of light is its polarization. Espe-
cially in nanometrology, it forms a crucial information channel sensitive to ge-
ometries as well as materials of samples under investigation. Using the Mueller

matrix formalism introduced in Chapter 2, we now take a look on the polarization-based
characterization of nanostructures, from experimental setups to measurements on spe-
cific samples. This chapter starts with a brief overview over polarimetric and ellipsometric
techniques before presenting the setups used in this thesis. Afterwards, a particular set of
samples for systematic investigations on local polarization influences is introduced and
characterized. This chapter ends with a treatment of thermal influences in ellipsometric
systems.

3.1 Polarimetry and Ellipsometry
Polarimetry is the science of measuring polarization as a property of waves [89]. The terms
polarimetry and ellipsometry are often used synonymous and their distinction is not al-
ways presented clearly. Ellipsometry is more of a specialized case of polarimetry: While
polarimetry measures the state of polarization of a beam of light, ellipsometry measures
the polarization ellipse. This is more often used in the scope of thin film or surface char-
acterization in reflection measurements, usually to retrieve layer thicknesses or refractive
indices [28, 70, 90, 91]. Nevertheless, both terms are sufficiently congruent and as this
thesis deals mainly with measurements of surface nanostructures, I will refer to the pro-
cedures used here as ellipsometry. This section gives a brief overview of common po-
larimetry and ellipsometry techniques that are relevant for this work.
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3.1.1 Ψ-∆-Ellipsometry
Historically speaking, ellipsometry could be divided from polarimetry by performing
measurements in reflection. As such, traditional ellipsometry measures the reflection
(or transmission) from a sample for two different states of polarization of the illuminat-
ing light, s- and p-polarized. The resulting complex reflection coefficient ratio is then
described in terms of an amplitude and a phase difference:

Rp
Rs

= tan Ψ · ei∆ . (40)

As usual in ellipsometry, the resulting values, Ψ and ∆, are then used to indirectly derive
the desired information about the sample by fitting a model to the measurement. This
way, film thicknesses or refractive indices can be obtained [25].

3.1.2 Stokes Polarimetry
Sets of optical elements that are used to create a certain state of polarization are called po-
larization state generators (PSG). Similarly, polarization state analyzers (PSA) are systems
to analyze the state of polarization. Both, PSG and PSA, often involve rotating optical ele-
ments for the creation or examination of polarization. Rotating element polarimetry uses
the intensity modulation created by these rotating polarizing elements to deduce Stokes
vectors, which usually involves a truncated Fourier series over the rotation angle θ. One
of the simplest possible PSAs is a single polarizer, shown in Figure 3.1(a). When inserted in
a polarized beam of light in front of a detector, rotating the polarizer creates a modulation
of the measured intensity, as depicted in Figure 3.2(a). Using the formalism introduced in
Section 2.2.4, this enables the measurement of three of the four Stokes parameters [70]:

S⃗′ = R(−θ) · Mpol · R(θ) · S⃗ , (41a)
S′

0
S′

1
S′

2
S′

3

 =

(
1 0 0 0
0 cos(2θ) − sin(2θ) 0
0 sin(2θ) cos(2θ) 0
0 0 0 1

)
· 1

2

( 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

)
·
(

1 0 0 0
0 cos(2θ) sin(2θ) 0
0 − sin(2θ) cos(2θ) 0
0 0 0 1

)
·


S0

S1

S2

S3

 (41b)

=
1
2


1 cos(2θ) sin(2θ) 0

cos(2θ) cos2(2θ) sin(2θ) cos(2θ) 0
sin(2θ) sin(2θ) cos(2θ) sin2(2θ) 0

0 0 0 0

 ·


S0

S1

S2

S3

 . (41c)

The modulated intensity follows from executing the multiplication for the first Stokes
parameter only:

S′
0 = I =

S0

2
+

S1

2
cos(2θ) +

S2

2
sin(2θ) =

a0

2
+

a2

2
cos(2θ) +

b2

2
sin(2θ) , (42)

where a and b are the Fourier coefficients.
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P Detector

θ

(a) Rotating polarizer (P).

λ/4 Detector

θ

P

(b) Rotating retarder (λ/4) and fixed po-
larizer (P).

Figure 3.1 – Examples for polarization state analyzers (PSA), consisting of a single polarizer (a)
and a combination of polarizer and retarder (b).

The full Stokes vector can already be obtained by adding a retarder, a quarter-wave plate,
as a rotating element in front of a fixed polarizer, as visualized in Figure 3.1(b). In this case,
the modulated intensity can be obtained in the same way [70] (compare Figure 3.2(b)):

I =
a0

2
+

1
2

2

∑
v=1

(a2v cos(2vθ) + b2v sin(2vθ)) . (43)

The Stokes vector follows again from the Fourier coefficients:
S0

S1

S2

S3

 =


a0 − a4

2a4

2b4

b2

 . (44)

In this manner, several different possible combinations of rotating optical elements allow
for the characterization of the Stokes parameters.
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(a) Rotating polarizer.
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(b) Rotating retarder
and fixed polarizer.
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(c) PCSCA configura-
tion.

Figure 3.2 – Intensity modulation of linear polarized light due to rotating optical elements.
Examples for a rotating polarizer (a), a polarizer and retarder (b), and PCSCA configuration (c).
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3.1.3 Mueller Matrix Ellipsometry
Instead of measuring the sample properties at just two states of polarization, as described
in Section 3.1.1, a more generalized approach to ellipsometry is to measure at many dif-
ferent states of polarization. This gives access to the sample’s Mueller matrix, which
contains additional information about anisotropy and depolarization [25]. For the mea-
surement of the Mueller matrix of a sample, we need to modulate both, the polarization
of the illumination and of the light coming from the sample. Thus, regarding the rotating
element polarimetry from Section 3.1.2, a PSG and a PSA are needed [70]. A common way
to accomplish that is the configuration shown in Figure 3.3(a) that uses a fixed polarizer in
combination with a rotating retarder as PSG and a rotating polarizer, which is in this case
called an analyzer, as PSA. This configuration is abbreviated as PCSA (polarizer, compen-
sator, sample, analyzer) and it is capable of measuring the first three rows of the Mueller
matrix. The complete Mueller matrix can be obtained with rotating optical elements
when both, PSG and PSA, consist of a fixed polarizer and a rotating retarder. This config-
uration, depicted in Figure 3.3(b), is referred to as dual-rotating retarder configuration or
PCSCA (polarizer, compensator, sample, compensator, analyzer) [70, 92, 93].

In general, for any ellipsometric system, the modulated intensity measured at the detector
comes from the Mueller matrix M of the sample, the Mueller matrix of the PSA, and
the Stokes vector coming from the PSG. As we are only interested in the intensity, we can
omit the other rows and find the intensity as a sum of parameters [70]:

S⃗′ = MPSA · M · S⃗PSG , (45a)
I
•
•
•

 =


ma,0 ma,1 ma,2 ma,3

• • • •
• • • •
• • • •

 ·


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 ·


Sg,0

Sg,1

Sg,2

Sg,3

 , (45b)

I =
3

∑
u,v=0

ma,umuvSg,v =
3

∑
u,v=0

µuvmuv , (45c)

with µuv = ma,uSg,v. For a dual-rotating retarder configuration like in Figure 3.3(b) with
two linear polarizers and two rotating quarter-wave plates, we can specify this further:

S⃗′ = MPSA · M · S⃗PSG (46a)
= Mpol · R(−θA) · Mλ/4 · R(θA) · M · R(−θG) · Mλ/4 · R(θG) · Mpol · S⃗ . (46b)
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(b) Dual-rotating retarder (PCSCA) configuration.

Figure 3.3 – Mueller matrix ellipsometry configurations with one (a) and two retarders (b).

The retarders of the PSA and PSG need to rotate with different speeds to obtain enough
modulation for a Fourier analysis like discussed in Section 3.1.2. Though many different
ratios for their speeds are possible to obtain the Mueller matrix, we want to consider
only the lowest possible one, which is 5:1 [70], so θG = θ and θA = 5θ. Given that the light
source is generally unpolarized and using trigonometric identities, we get:

S⃗PSG = R(−θ) · Mλ/4 · R(θ) · Mpol · S⃗ (47a)

=
1
2

( 1
cos2(2θ)

sin(2θ) cos(2θ)
sin(2θ)

)
, (47b)

MPSA = Mpol · R(−5θ) · Mλ/4 · R(5θ) (48a)

=
1
2

(
1 cos2(10θ) sin(10θ) cos(10θ) − sin(10θ)

1 cos2(10θ) sin(10θ) cos(10θ) − sin(10θ)
0 0 0 0
0 0 0 0

)
. (48b)

When we neglect the factors of 1/2 because they are just intensity scaling factors, we get
for the respective vectors of PSA and PSG:(

ma,0 ma,1 ma,2 ma,3

)
=
(

1 cos2(10θ) sin(10θ) cos(10θ) − sin(10θ)
)

, (49)
Sg,0

Sg,1

Sg,2

Sg,3

 =


1

cos2(2θ)

sin(2θ) cos(2θ)

sin(2θ)

 . (50)
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These are now used to calculate the expressions for µuv = ma,uSg,v, which help to develop
the modulated intensity in a Fourier series:

I =
3

∑
u,v=0

µuvmuv (51a)

=a0 +
12

∑
j=1

(
aj cos(2jθ) + bj sin(2jθ)

)
= I(θ) . (51b)

From this, we obtain the Fourier coefficients aj and bj as functions of the Mueller matrix
elements muv and vice versa:

a0 = m00 +
1
2
(m01 + m10) +

1
4

m11 (52)

a1 = 0 a7 = 1
4 m32 b1 = m03 +

1
2 m13 b7 = − 1

4 m31

a2 = 1
2 m01 +

1
4 m11 a8 = 1

8 m11 +
1
8 m22 b2 = 1

2 m02 +
1
4 m12 b8 = − 1

8 m12 − 1
8 m21

a3 = − 1
4 m32 a9 = 1

4 m23 b3 = − 1
4 m31 b9 = − 1

4 m13

a4 = − 1
2 m33 a10 = 1

2 m10 +
1
4 m11 b4 = 0 b10 = 1

2 m20 +
1
4 m21

a5 = 0 a11 = − 1
4 m23 b5 = −m30 − 1

2 m31 b11 = 1
4 m13

a6 = 1
2 m33 a12 = 1

8 m11 − 1
8 m22 b6 = 0 b12 = 1

8 m12 +
1
8 m21

⇔

m00 = a0 − a2 + a8 − a10 + a12 m20 = −2b8 + 2b10 − 2b12

m01 = 2a2 − 2a8 − 2a12 m21 = 4b8 + 4b12

m02 = 2b2 + 2b8 − 2b12 m22 = 4a8 − 4a12

m03 = b1 + b9 − b11 m23 = 2(a9 − a11)

m10 = −2a8 + 2a10 − 2a12 m30 = b3 − b5 + b7

m11 = 4a8 + 4a12 m31 = −2(b3 + b7)

m12 = −4b8 + 4b12 m32 = 2(−a3 + a7)

m13 = 2(−b9 + b11) m33 = −a4 + a6

The complete derivation of these expressions is given in Appendix A.3, together with the
equations for the PCSA configuration.
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We calculate the Fourier coefficients from the measured intensity signal [58]. As the rota-
tion of the retarders usually happens in discrete steps rather than in continuous motion,
we use discrete sum expressions for this:

a0 =
2
N

N

∑
v=1

I(θv) , (53a)

aj =
4
N

N

∑
v=1

I(θv) cos(2jθv) , (53b)

bj =
4
N

N

∑
v=1

I(θv) sin(2jθv) . (53c)

3.1.4 Error Compensation
When implementing the methods described in Section 3.1.3, misalignments of the opti-
cal elements and imperfections of the retarders proved to be the most crucial sources for
errors. We can account for these by introducing error compensation parameters that de-
scribe deviations of the polarizing elements from the ideal case. Figure 3.4 depicts these
parameters for a dual-rotating retarder configuration. The respective parameters account
for deviations in the retardation of the two retarders (ε1 and ε2) as well as for differences in
the orientation of all optical elements relative to the first polarizer (ε3, ε4, and ε5). Repeat-
ing the Fourier analysis (as in Section 3.1.3) under consideration of these errors leads to
new relations between the Mueller matrix elements and the Fourier coefficients. From
a calibration measurement without a sample, we obtain the Fourier coefficients. To-
gether with the identity matrix as a Mueller matrix, they deliver the error parameters,
which in turn can be used in a measurement of a sample for error compensation. As the
corresponding relations are lengthy, you may find them in Appendix A.3.2. An in-depth
examination of error compensation can be found in [94, 95]. Other sources of error, like
depolarization, detector linearity, or wavelength uncertainty, were accounted for by cal-
ibrations of the components and by normalizing the results. More complex influences
like beam fluctuations due to wedge errors require a more in-depth examination of the
uncertainty budget of these setups, which is beyond the scope of this thesis.

ε3

ε4 ε5

ε1

ε2

Figure 3.4 – Error compensation parameters.
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3.1.5 Imaging Ellipsometry

Ellipsometry like described in Sections 3.1.1 - 3.1.4 is a powerful tool. From the mea-
sured polarization information, further characteristics of the sample exceeding polariza-
tion can be deduced. This encompasses optical parameters, like the refractive index, as
well as geometrical parameters, like layer thicknesses, structure sizes or periodicity. The
process used for this parameter reconstruction is referred to as solving an inverse prob-
lem. First, an ellipsometric measurement of the sample is performed and either Ψ and ∆
or the Mueller matrix are measured. Then, a model of the sample is constructed. For
this model, the same ellipsometric values are computed numerically and for different de-
grees of freedom in the structure. By fitting the numerical model to the measured values,
structure parameters can be obtained. This process is highly successful for the parameter
reconstruction in various areas [37, 96, 97, 98, 99, 100]. The way homogeneously layered or
structured surfaces influence the polarization of transmitted or reflected light and how
this effects the Mueller matrix are already widely examined. However, this is mostly true
only for two special cases:

The first case is about homogeneously layered areas. For these kinds of samples, the
Mueller matrix can simply be measured and then used to determine the optical para-
meters or the thicknesses of the stacked layers.

The second case concerns periodic nanostructures, where the influence on the Mueller
matrix stems from the polarizing effect of periodic lattices. When evaluated by solving the
inverse problem using numerical simulations, more average information about the peri-
odic structure can be obtained, depending on the number of performed measurements at
different wavelengths and angles of incidence. However, conventional ellipsometry has a
downside: While it can yield layer thicknesses down to the sub-nanometer regime, since
in the detector the response of the sample is integrated over the whole illuminated area,
its sensitivity to spatial variations is limited to the spot size of the illumination, which
is in the order of magnitude of 1 mm2. Thus, when the structured field is smaller than
the illumination spot, or when non-periodic samples are examined, additional responses
from the surrounding medium might interfere with the result, or information from the
actual structures might average out [25, 42]. We see an example for this in Figure 3.5(a). It
shows a conventional spectroscopic Mueller matrix measurement of a square, 5× 5 µm2

sized structure, performed at PTB’s SENTECH SE850 spectroscopic ellipsometer [100, 101]
at 70◦ angle of incidence in reflection. Each graph contains the spectral response of one
Mueller matrix element to a wavelength change between 190 nm and 980 nm. As a com-
parison, Figure 3.5(b) shows a measurement of the unstructured substrate in the same
configuration. As evident from these graphs and clarified in Figure 3.5(c), the structure
has no observable influence on the Mueller matrix elements. In this measurement, the
illumination spot diameter is around 200 times the size of the structure under investiga-
tion. Therefore, polarizing effects are averaged out at detection.
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Figure 3.5 – Conventional spectroscopic ellipsometry measurement example with (a) and
without structure (b) as well as direct comparison (c).

https://doi.org/10.7795/110.20240308



30
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Figure 3.6 – Imaging ellipsometry in PCSCA configutation.

Instead of just reducing the spot size, which also has its limits, a solution for this challenge
is imaging ellipsometry. In the analyzing side of the ellipsometer, an objective lens is in-
serted to collect the light from the sample, and instead of a detector after the PSA, a camera
collects the analyzed light and builds an image of the sample. This way, the Mueller ma-
trix can be measured for each pixel in the resulting microscope image, which in turn leads
to 16 individual images of the sample, each representing one element of the Mueller ma-
trix. These so-called Mueller matrix images allow for a more local examination of the
polarizing properties of the structure, without information loss due to integrating of the
spot size [39, 40]. An example for this is shown in Figure 3.6.

3.2 Experimental Setups
For the experiments described in this thesis, two imaging Mueller matrix ellipsometry
setups were used. In this section, both setups and their evaluation procedures are briefly
presented.

3.2.1 Mueller Matrix Microscope

Commercial setups are often closed systems without possibilities for experimental ad-
justments. Thus, we realized a custom-built imaging Mueller matrix ellipsometry setup
within the framework of a Master’s thesis [102]. It is based on a dual-rotating retarder el-
lipsometry configuration (PCSCA) as described in Section 3.1.3, but horizontally oriented
as opposed to the usual vertical orientation. Figures 3.7(a), 3.7(b), and 3.7(c) show a top view
sketch, a CAD sketch, and a photography of the setup, respectively. The setup consists of
two arms: The arm on the left side of Figure 3.7(a) is fixed to the table and contains the
illumination parts of the system, while the arm on the right side is attached to a large
aperture rotation stage and contains the analyzing parts.
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(a) Mueller matrix microscope concept sketch.

Light
Source

CCD
Camera

Large Aperture
Rotation Stage

P λ/4

Illuminating Arm Analyzing Arm

Objectives
Pλ/4

(b) Mueller matrix microscope CAD sketch.

(c) Mueller matrix microscope.

Figure 3.7 – Sketch (a), CAD sketch (b), and photograph (c) of the Mueller matrix microscope
setup. The system can be operated as microscope both in reflection (a, b) and in transmission
mode (a, c) as well as in oblique incidence (a, b).
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In the illumination arm, light from the light source is collimated and then sent through
an aperture to create Köhler illumination. For this, two lenses focus the light on the
aperture and afterwards collimate it again. Currently, a blue light LED with a wavelength
of 455 nm, a bandwidth of 18 nm, and typically 1445 mW power is used as a light source.
The short wavelength was chosen to ensure a high resolution in the microscope images.
As a reference for the intensity of the light source, 10 % of the light are branched off to a de-
tector using a beam splitter plate, before the remaining light is sent through the polariza-
tion state generator system. A Glan-Thompson polarizer and a superachromatic quarter-
wave plate, both placed in motorized rotation mounts, control the state of polarization of
the illumination. Afterwards, the light is focused to the entrance pupil of an objective,
which then illuminates the sample plane with collimated light [103]. Several adjustment
stages allow for a linear and rotational positioning of the sample. In the analyzing arm,
another objective collects the light reflected from or transmitted through the sample.

Both objectives have a numerical aperture (NA) of 0.42 and a long working distance of
25.5 mm to enable rotations around samples of up to 5 cm diameter. The polarization
state analyzer system contains the same parts as the generator system in reverse order: a
quarter-wave plate and a polarizer, both in rotation stages. Due to the stepwise rotation
of the retarders, measurements take about 7 minutes to complete. After the polarization
analysis, a tube lens focuses the light on the chip of a monochromatic CCD camera to
create the microscope image. The analyzing arm is mounted on a rotation stage with
the sample at the center in the axis of rotation. Together with the rotation stage of the
sample, this setup can measure in transmission and in reflection, both at nearly arbitrary
angles of incidence and view between 37.5◦ and 90◦, only limited by the finite size of the
arms.

A unique feature of this setup is the direct incidence microscopy mode, which can be
accessed when the analyzing arm is moved to a position in a 90◦ angle to the illumination
arm as shown in the CAD sketch in Figure 3.7(b). Light reflecting back from the sample
into the first objective in the illumination arm is then guided via a beam splitter in that
arm over a mirror mounted outside of the rotation stage to the analyzing arm, where a flip
mirror brings the light to the polarization state analyzer system and the camera. This way,
reflection measurements can be performed even at 0◦ angle of incidence without major
reconstructions of the system. Complete details on the construction and calibration of
this setup are elaborated in the Master’s thesis by Jana Grundmann [102].
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3.2.2 Commerical Imaging Ellipsometry Setup EP4
Figure 3.8 shows a photography of the imaging ellipsometer Accurion EP4 (EP4) by the
company Park Systems / Accurion [42]. The overall composition is similar to the custom
setup, consisting of two arms for the illumination and the analysis, respectively, but in a
vertical orientation. A flowbox surrounds this setup which allows for a cleaner measure-
ment environment with a more stable temperature control compared to the experimen-
tal Mueller matrix microscope setup from Section 3.2.1 without a flowbox. Addition-
ally, the EP4 setup is mounted on an active vibration isolation unit. A laser-driven light
source with a monochromator enables spectroscopic ellipsometry measurements at the
EP4. The objective collecting the light from the sample can be replaced to account for
different magnifications from 10× to 50×. Two cameras allow for measurements both in
the visible as well as in the ultraviolet spectral range. The EP4 usually realizes the PCSA
configuration, which allows for the measurement of only 11 elements of the Mueller ma-
trix (see Section 3.1.3). However, our EP4 also features an additional retarder which can be
removed from the setup as desired. Thus, the setup can not only perform measurements
in its usual manner, but also in a dual-rotating compensator configuration to measure
the complete Mueller matrix. However, the software accompanying the setup does not
include this configuration, yet. Thus, measurements with the additional retarder have
to be performed under the control of a Python script which implements the evaluation
methods used in the custom setup.

Figure 3.8 – Custom Accurion EP4 imaging ellipsometer.
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3.3 Nanoform Structures
In Section 3.1.5, we briefly discussed the advantages of imaging ellipsometry opposed to
conventional ellipsometry. To gain better understanding of the relationship between cer-
tain elements of the Mueller matrix and variations in structural properties, I designed a
set of test samples for systematic measurements. This section describes these structures,
their fabrication, and their characterization with non-optical methods.

3.3.1 Sample design
The set of individual nanostructures designed as reference samples for systematic mea-
surements consists of basic geometrical shapes with varying parameters [104]. Within the
scope of this thesis, we will refer to these structures as nanoform structures. A sketch
of them is depicted in Figure 3.9. I chose basic square and circle shapes with different
sizes (B and C) as well as squares with varying corner rounding (A) to emulate a transition
from a square to a circle. Similar investigations of Mueller matrix images of structures
like these have been performed before by using simulations only [105]. The individual
structures have 5 mm distance between each other to prevent interactions, even when
measured with large beams. In addition, a set of small arrays with only up to 4×4 square
structures (D) is included for investigations on the influence of structures with low peri-
odicity. The A labeled square structures have a width w of 5 µm and varying corner radii rc
between 100 nm and 2000 nm. The square structures labeled B as well as the circle struc-
tures labeled C vary in size w or in diameter d = 2r, respectively, from 50 nm to 2000 nm.
The small arrays labeled D are made up of N × N square structures of width w = 1 µm
and with two different pitches Λ between the structures. A detailed list of the structure
specifications is given in Table 3.1.

Table 3.1 – Structure specifications of the designed nanoform structures.

1 2 3 4 5 6 7 8 9 10

A rc / nm 100 150 200 300 400 500 750 1000 1500 2000
B w / nm 50 70 100 200 250 500 750 1000 1500 2000
C r / nm 25 35 50 100 125 250 375 500 750 1000
D N, Λ / µm 1, - 2, 10 3, 10 4, 10 - 1, - 2, 20 3, 20 4, 20 -

rc

w

r

N

Λ

A B C D

Figure 3.9 – Nanoform structures for investigations on imaging ellipsometry.
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3.3.2 Fabrication and SEM Characterization

Figure 3.10 – Nanoform sample test wafer.
Structures are in the middle of the 5 × 5 mm2

sections marked with crosses in the corners.
The crack did not damage any structure.

The nanoform structures were fabricated as
holes in 100 nm thick polymethylmethacry-
late (PMMA) on a 100 mm silicon wafer using
electron beam lithography. The silicon sub-
strate enables ellipsometric measurements
in reflection, while the PMMA layer was re-
tained to keep the possibility for etching the
structures into the silicon [104].

Before the samples were finalized, a wafer
with test structures was produced which is
depicted in Figure 3.10. These test structures
were the same structures as designed, but
fabricated with different dose factors during
the electron beam lithography process. The
dose factor was varied in 10 steps between 1.0
and 4.3. As the choice of dose factor influ-
ences the final shape of the structure, it was necessary to fabricate and evaluate the test
structures to find the right dose factor for the required feature sizes. For this evaluation,
scanning electron microscopy (SEM) images of all test structures were taken. Examples
for these SEM images are given in Figure 3.11. Additional images of the lower two corners
of the rounded square structures were taken to control the corner radius.

In the SEM images, I used a Canny edge detection algorithm for the evaluation [106]. The
algorithm identifies pixels belonging to edges of the structures by analyzing gradients in
the intensity values and choosing suitable threshold values for these gradients. In circu-
lar structures, the pixels associated with an edge were then fitted to a circle to determine
the structure radius. The sizes of square structures, their width and height, were deter-
mined by performing a Hough line transform to detect straight edges in the images and
then measuring the distances between edges with the same orientation [107, 108]. In the
Hough line transform, straight lines are represented in their Hesse normal form with a
parameterization over their angle to an axis and their Euclidean distance from the origin,

rc

w

r

N

Λ

A B C D

Figure 3.11 – SEM images of nanoform structures.
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(a) In the SEM image, edge
points were determined.

(b) The edge points were
used in a Hough trans-
form.

(c) This way, straight lines
in the image were found.

Figure 3.12 – SEM image evaluation example, from edge detection (a), over the Hough trans-
form (b), to line identification (c).

Figure 3.13 – SEM corner evaluation example. From the edges (yellow pixels) found in the
SEM image, those pixels associated with the corner (red area) were fitted to a circle (green,
with yellow center point) to find the corner radius.

as shown in Figure 3.12. Performing this transform on an edge image leads to accumu-
lation points in the Hough space that indicate straight lines in the original image [108,
109]. The corner radii were evaluated using the images of the corners: First, I had to iden-
tify pixels associated with the corner. I achieved this by numerically taking the second
derivative of the edge pixels over their distance to the edge until a significant deviation
was observed. Similar to the circular structures, all pixels belonging to the corner were
then fitted to a circle to determine the corner radius, as shown in Figure 3.13. In the small
arrays of square structures, sizes were also evaluated by Hough line transform and dis-
tances by using the Frobenius norm [110]. The implementation of these methods was
performed in Python using the scikit-image package [111].
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Figure 3.14 – SEM image evaluation results. Structure size (a, c - e) and corner radius (b) as
well as structure distance evaluation (f ). Fit parameters are given in Appendix A.4
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Figure 3.14 collects the averaged results from evaluating the SEM images. Uncertainty bars
result from combining a systematic deviation by one pixel size due to the image evaluation
process with the statistic deviation coming from averaging results from multiple images.
From the evaluations, it is evident that structure sizes as well as corner radii increased
with increasing dose factor, as indicated in Figures 3.14(a) and 3.14(c). We also observe
a slight asymmetry in the rounded square structures with a mean aspect ratio of 1.0095.
From Figures 3.14(b) and (d), we see that larger structures matched the design more often
than smaller ones, regardless of the dose factor. Likewise, in Figures 3.14(c) and (d) we
see that circular structures had less deviations form the design compared to square ones.
Below 100 nm size, squares were likely to degenerate into circles. Overall, the mean dose
factor for structures as close to the design as possible was 1.18 with a standard deviation
of 0.28.

The evaluation with image processing methods delivered adequate information about the
connection between dose factor and structure sizes. This information helped to produce
a second sample, shown in Figure 3.15, which was used in all further measurements. Usu-
ally, critical dimensions in SEM images are evaluated using more complex edge operators
in model-based approaches [112, 113]. However, elaborated methods like these are more
efficient when implemented for SEM image evaluations on a regular basis. For the inves-
tigations in this thesis, the image processing approach proved to be sufficient, as we will
see in Section 3.3.3.

Figure 3.15 – Nanoform sample wafer. Structures are again located in the middle of each
5 × 5 mm2 section marked with crosses in their corners.
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3.3.3 AFM Characterization
The final sample in Figure 3.15, fabricated with the results from the SEM characterization
described in Section 3.3.2, was characterized using traceable AFM. The measurements
were performed at a metrological scanning probe microscope (SPM) [114] and a commer-
cial AFM with a high aspect ratio probe, calibrated with the metrological SPM and a trans-
fer standard, at CMI in the Czech Republic [115]. As a tactile method, AFM measurements
take considerably longer than optical techniques in general [116]. For this reason, only
selected structures were examined. An overview of the selected structures and the mea-
surement results is given in Table 3.2. Figure 3.16 depicts the measured AFM images.
The structures were evaluated with the open-source software Gwyddion [117]. Gwyddion’s
"Fit shape" function was used to fit the structures in row A to a square hole with rounded
corners. On average, the outer widths of the structures deviate about 1.4 % between mea-
surement and design, while the corner radius deviates by 6.8 %. The larger deviations are
explained by a partial damage of structure A6 during the AFM measurement process as
can be seen in Figure 3.16(c). Neglecting the damaged structure, the deviations are 0.33 %
for the outer width and 4.38 % for the corner radius. For the other rows, Gwyddion was
used to measure structure diameters and pitches. The measured sizes deviate on aver-
age by 8 nm from the target in rows B and C and by 0.4 nm for row D. The pitch of the
structures in row D varies by 0.13 % on average. All deviations are below the uncertainy
limit of the measurement system which is estimated to 20 nm [115]. Thus, the structures
fabricated with the information from the SEM characterization meet their target values
and are suitable for further investigations.

Table 3.2 – Selected structures and AFM measurement results.

Outer width / µm Target width / µm Corner radius / nm Target radius / nm

A1 5.007 5 111 100

A5 4.967 5 394 400

A6 5.210 5 571 500

A10 4.977 5 2013 2000

Size / nm Target size / nm Pitch / µm Target pitch / µm

B4 189 200 − −
B6 499 500 − −
C4 182 200 − −
C6 499 500 − −
D4 1005 1000 10.014 10

D9 1002 1000 20.022 20
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Figure 3.16 – AFM images of selected structures from rows A (a - d), B (e, f ), C (g, h), and D (i - l)
from the nanoform sample.
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3.4 Ellipsometric Measurements
After introducing the measurement systems and the sample in Sections 3.2 and 3.3, re-
spectively, we now take a look on measurements of selected structures from the nanoform
sample. The large size of Mueller matrix images doesn’t allow for every measurement to
be included in this thesis, so only those reasonable to be discussed are shown here.

3.4.1 Measurements at Mueller Matrix Microscope
Structures of the nanoform sample (see Section 3.3) were measured using the Mueller
matrix microscope setup (see Section 3.2.1) in the direct incidence reflection mode at
455 nm wavelength. The resulting images for some of the rounded square structures in
row A are collected in Figure 3.17. The Mueller matrix images are normalized to the el-
ement m00. As this element contains only little information exceeding a pure microscope
image, it is given unnormalized and in grayscale [32]. In the raw measurements, a notice-
able blur was present in the Mueller matrix images. This blur, that stems from move-
ment of the sample during the measurement, was already corrected for in Figure 3.17.
Details on this drift correction will be discussed in Section 3.5. A collection of further
Mueller matrix images is given in Appendix B.1.1 and B.1.2. The measured Mueller
matrix images in Figure 3.17 show polarization effects in the corners and at the edges of
the structures. In conventional, non-imaging ellipsometry, these effects would be aver-
aged over the whole image and therefore not detectable, especially as they have opposite
signs depending on the orientation of the edge or corner relative to the image axes. Thus,
imaging ellipsometry provides additional information about the structures compared to
both microscopy and conventional ellipsometry alone. As the effects are observable in
measurements, but rather weak, Figure 3.18 provides a scaled view of certain matrix el-
ements of selected structures in row A. The m00 elements are barely distinguishable for
sub-wavelength changes of the corner radius. Off-diagonal matrix elements, however,
show a more pronounced response. As an example for this additional information chan-
nel, when the corner radius changes from 100 nm in A1 to 400 nm in A5, the absolute
value of the m13 element in the corners increases by 15 %. With about 160 %, the change
from A5 with 400 nm to A10 with 2000 nm corner radius is even more significant. Similar
behaviors can be observed in other off-diagonal matrix elements, for example for edges
in the m23 elements. Therefore, local sub-wavelength sized geometries of the structures
under investigation like orientation and curvature of edges have measurable influence on
sign and value of the Mueller matrix image, which is promising for the application of
imaging ellipsometry in nanometrology.

The square and circular structures of different sizes in rows B and C were supposed to
be used in the determination of resolution limits in the measurements. Presumably,
Mueller matrix images might have shown polarization effects even for structures too
small for microscopy. Unfortunately, because the structures are much smaller than the

https://doi.org/10.7795/110.20240308



42

-1

-0.5

0

0.5

1

(a) A1

-1

-0.5

0

0.5

1

(b) A5

-1

-0.5

0

0.5

1

(c) A6

-1

-0.5

0

0.5

1

(d) A10

Figure 3.17 – Mueller matrix images of 5 µm by 5 µm sized structures A1 (a), A5 (b), A6 (c),
and A10 (d) from the nanoform sample measured at the Mueller matrix microscope setup,
corrected for structure drift.

ones in row A, they could not be corrected for drifts reliably. For this reason, measuring
both rows B and C did not bring any advantage and in the end, only the circular struc-
tures in row C were measured. A selection of their Mueller matrix images is shown in
Figure 3.19 and Appendix B.1.4 collects all measurements on the structures in this row.
Structures smaller than C4 with a radius of 100 nm were not visible anymore due to being
much smaller than the Abbe diffraction limit [60]. This and the aforementioned drift-
related blur made it impossible to find these structures in the images. Even when knowing
their exact position, at this size, polarization effects are most likely indistinguishable from
noise. Nevertheless, even sub-wavelength sized structures like C4 still showed measurable
polarization effects while being barely visible in the microscope image.
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Figure 3.18 – Detailed view of matrix elements m00 (a, d, g, j), m13 (b, e, h, k), and m23 (c, f, i, l) of
drift corrected Mueller matrix images measured at the Mueller matrix microscope setup.
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Figure 3.19 – Mueller matrix images of structures C4 (a), C5 (b), C8 (c), and C10 (d) from the
nanoform sample measured at the Mueller matrix microscope setup.

3.4.2 Measurements at EP4 Setup

Structures of the nanoform sample discussed in Section 3.3 were measured using the EP4
imaging ellipsometry setup described in Section 3.2.2. Measurements were performed
for wavelengths between 400 nm and 800 nm in steps of 50 nm with a 50× magnification
under 40◦ angle of incidence in reflection. Due to the different wavelengths, the num-
ber of resulting Mueller matrix images is rather large. Therefore, Figures 3.20 and 3.21
show only some of the measured structures for exemplary wavelengths for both configu-
rations, PCSCA and PCSA, respectively. For measurements at this setup, drift correction
is usually not required, as the measurements are performed considerably faster and the
environment is more stable than at the other setup. Generally, the average matrices look
different from the close to identity matrices measured at the Mueller matrix micro-
scope, with considerable more retardation showing in the lower right quadrant. Reasons
for this are the change from transmission to reflection measurement and the oblique
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Figure 3.20 – Measurements of structures A1 (a), A5 (b), and A9 (c) at 450 nm at the EP4 setup
in PCSCA configuration.

angle of incidence, which influence the polarization according to the Fresnel equations
[63]. Strikingly, structures of row A in Figure 3.20 are more pronounced in the Mueller
matrix images than in the microscope image, with clearly highlighted edges and corners
as well as less interferences showing up around the structures. In the PCSA measure-
ments, the m00 element also gets normalized together with the other matrix elements by
the company’s own evaluation method, so the microscope image doesn’t show up here.
Figures 3.21(d) to (g) demonstrate how sensitive spectral measurements of the Mueller
matrix are: They show matrix images on the structures B4 and B6; square structures with
200 nm and 600 nm width, respectively, at two wavelengths, 450 nm and 500 nm. Not
only can even the sub-wavelength sized B4 still be observed in the off-diagonal matrix el-
ements, but also rectangular areas around the structures are visible. These are most likely
remnants of the AFM measurements discussed in Section 3.3.3 and their contrast to the
surroundings depends strongly on the wavelength.

https://doi.org/10.7795/110.20240308



46

-1

-0.5

0

0.5

1

(a) A1 at 450 nm

-1

-0.5

0

0.5

1

(b) A5 at 450 nm

-1

-0.5

0

0.5

1

(c) A9 at 450 nm

-1

-0.5

0

0.5

1

(d) B4 at 450 nm

-1

-0.5

0

0.5

1

(e) B4 at 500 nm

-1

-0.5

0

0.5

1

(f ) B6 at 450 nm

-1

-0.5

0

0.5

1

(g) B6 at 500 nm

-1

-0.5

0

0.5

1

(h) D9 at 600 nm

Figure 3.21 – Measurements of structures from rows A (a - c), B (d - g), and (D) (h) from the
nanoform sample at the EP4 setup in PCSA configuration.
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A measurement of an area from row D is shown in Figure 3.21(h). In the images, no ma-
jor influence from the superstructure is visible, which was expected considering the large
pitch of 20 µm. Yet, thanks to the imaging system, we can distinguish polarization proper-
ties of individual structures, even when they are as close together as several micrometers,
which is an advantage over conventional ellipsometry. Figure 3.22 shows the averaged
Mueller matrix images of the nanoform sample in dependence of illumination wave-
length and corner radius. As demonstrated in Section 3.1.5, the local polarization effects
all vanish in the averaged values and the main influence on the matrix elements visible
here stems from the varying wavelength.

0 . 5
1

1 . 5
2

� �

� � � �

0
0 . 5
1

0 . 5
1

1 . 5
2

� �

� � � �

0
0 . 5
1

0 . 5
1

1 . 5
2

� � � �

� � � � �

0
0 . 0 5
0 . 1

0 . 5
1

1 . 5
2

� � � �

� � � � �

0
0 . 0 5
0 . 1

0 . 5
1

1 . 5
2

C
or

ne
r R

ad
iu

s 
/ µ

m

� �

� � � �

0
0 . 5
1

0 . 5
1

1 . 5
2

� �

� � � �

0
0 . 5
1

0 . 5
1

1 . 5
2

� � � �

� � � � �

0
0 . 0 5
0 . 1

0 . 5
1

1 . 5
2

� � � �

� � � � �

0
0 . 0 5
0 . 1

4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

0 . 5
1

1 . 5
2

W a v e l e n g t h  /  n m

� � � �

� � � � �

0
0 . 0 5
0 . 1

4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

0 . 5
1

1 . 5
2

W a v e l e n g t h  /  n m

� � � �

� � � � �

0
0 . 0 5
0 . 1

4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

0 . 5
1

1 . 5
2

W a v e l e n g t h  /  n m

� �

� � � �

0
0 . 5
1

4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

0 . 5
1

1 . 5
2

W a v e l e n g t h  /  n m

� �

� � � �

0
0 . 5
1

Figure 3.22 – Averaged Mueller matrices of the nanoform sample over wavelength and corner
radius, measured at the EP4 setup in PCSA configuration.
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3.5 Thermal Influences
Evaluated measurements from the Mueller matrix microscope setup contained blur
which didn’t stem from the imaging system. An example for this is shown in Figure 3.23.
In direct comparison, the blurry measured m00 element in Figure 3.23(a) looks remarkably
similar to Figure 3.23(b), which shows an overlay of the first and the last image of the mea-
surement series. Therefore, the reason for this blur was a drift of the structures during
the measurements, most likely due to thermal influences. This drift apparently also af-
fects measured Mueller matrix images, as indicated from Figure 3.23(c). In this section,
we examine the thermal drift at the Mueller matrix microscope setup. As other setups
might suffer from similar issues, we also take a look on drifts at the EP4 setup. In addition,
this section includes an analysis of intentionally moving samples to scrutinize the impact
of movements on Mueller matrix images as well as the introduction and discussion of
an algorithmic solution for the thermal drift problem.

3.5.1 Drift at Mueller Matrix Microscopy Setup
For the characterization of drifts at the Mueller matrix microscopy setup, the position of
a structure in the microscope image was tracked for eight hours. Laboratory air tempera-
ture T as close to the sample as 3 cm was also measured. Electrical drifts of the controllable
rotating components were prevented by disconnecting them from the power supply, as far
as they were not needed. The test series was conducted in the late afternoon and evening
to reduce disturbances. Images were taken and temperature measured every 10 s. The
results are collected in Figures 3.24 and 3.25.

(a) Mueller matrix
image m00.

(b) Overlay of first and
last images.

� �

� � � �

0

0 . 5

1

(c) Mueller matrix image m02.

Figure 3.23 – Blur of Mueller matrix images of elements m00 (a) and m02 (c) during a mea-
surement at the Mueller matrix microscope. Compared to an overlay of the first and last
images of the measurement series (b), it is evident that the blur stems from sample drift.
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Figure 3.24 – Thermal influences at
Mueller matrix microscope, correlation
matrix.

An exponential fit of the temperature com-
pensates the digitization due to the tempera-
ture sensor visible in Figure 3.25(a). The mea-
sured x- and y-coordinates of the structure
position in Figure 3.25(b) show an exponen-
tial trend, where the structure position follows
the temperature change. Figure 3.25(c) illus-
trates this further. Nearly linearly, the struc-
ture moved about 33.5 µm

◦C in x-direction and
about 46 µm

◦C in y-direction. The direct influ-
ence of the change in room temperature on
the structure position also shows in the cor-
relation between these parameters, visualized
in Figure 3.24. All parameters are nearly per-
fectly correlated to each other. The decreasing temperature is the result of two persons
being present in the laboratory during sample adjustment and measurement prepara-
tions, heating up the room temperature. After leaving the laboratory for the measure-
ment series, the air cools down, but the air conditioning needs several hours to stabilize
the room temperature. Even after five hours, the structure still moved perpetually about
11 nm per minute. During a measurement series, images are taken over the course of
several minutes, as described in Section 3.2.1. On these timescales, the observable drift of
the structures is crucial for measurement quality.
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Figure 3.25 – Characterization of sample movement (b, c) due to temperature changes (a) at
Mueller matrix microscope setup.
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3.5.2 Drift at EP4 Setup
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Figure 3.26 – Thermal influences at EP4,
correlation matrix.

Thermal influences on the commercial EP4
setup were examined in a way similar to Sec-
tion 3.5.1. Again, structure position in mi-
croscope images was tracked for eight hours
together with laboratory air temperature and
humidity, this time in steps of 30 s. Fig-
ure 3.26 indicates parameter correlation again
while Figure 3.27(a) shows temperature T and
humidity H over time. Ambient conditions
are much better controllable at the EP4 setup
compared to the Mueller matrix microscope,
with the temperature only changing in a 0.15◦C
range. Humidity, which could not be con-
trolled directly and which is heavily influenced

by weather conditions, ranged between about 59 % and 66 %. In Figures 3.27(b) and 3.27(c),
structure positions are shown over the measured temperature and humidity, respectively.
In contrast to the Mueller matrix microscope setup, the position shows no direct in-
fluence from temperature changes exceeding stochastic movements. Over the course of
eight hours, the structure did not move further than 1 µm away from its initial position.
Interestingly, the structure moved slightly with the changing humidity, but as seen in the
correlation matrix in Figure 3.26, direct influences from both temperature and humidity
are negligibly small at this setup for short measurements. However, for long-term mea-
surements over several hours, even a stochastic movement of up to 1 µm is visible in the
images and therefore crucial over time.
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Figure 3.27 – Characterization of sample movement (b, c) due to temperature and humidity
changes (a) at EP4 setup.
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3.5.3 Drift Correction Algorithm
During a measurement with the Mueller matrix microscope setup, the imaged structure
might move by several micrometers. When the single images taken during measurement
are then evaluated to Mueller matrix images, intensity values are evaluated by pixel co-
ordinate, leading to a blurring of the resulting images. The best mitigation for this effect
would be a complete stabilization of the surrounding climate. However, as discussed in
Section 3.5.2, even under the flowbox at the commercial setup, air temperature and hu-
midity can only be controlled to a certain extend, and structure position is still subject
to small random movements. A more viable approach is the implementation of an al-
gorithm that counteracts the drift. This section discusses the implementation of a drift
correction algorithm optimized to work with structures from the nanoform sample de-
scribed in Section 3.3. Its concepts are, however, applicable to arbitrary cases. A flowchart
for the algorithm is given in Figure 3.28. It detects the structure in the first image of a
measurement series and crops a 400 × 400 pixel area containing this structure to speed
up computations. The image is then normalized to an empty reference image and a his-
togram of its gray values is extracted. Next, Sobel operators are applied to the image. So-
bel operators are edge detection operators that visualize high local intensity differences
as gradients [118]. To calculate this gradient for a certain pixel, the 3 × 3 area around this
pixel is convolved with the Sobel operators:

Sx =

−1 0 1
−2 0 2
−1 0 1

 and Sy =

 1 2 1
0 0 0
−1 −2 −1

 . (54)

1 2 3

Figure 3.28 – Drift correction algorithm, flow chart.
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The results from this convolution are 3 × 3 matrices again which are summed up and
combined to a new gray value representing the gradient of the respective pixel. The new
image emerging from this is then treated as a height map to which a watershed trans-
formation is applied [119]. This transformation finds segments in an image by filling in
connected areas as if they were valleys in a landmass that is flooded with water. From the
histogram of the original image, extreme points are taken to find positions in the gradi-
ent image which are usable as markers. Starting from these markers, the gradient image
is then flooded, but areas originating from different markers are not merged. This way,
a connected area is found that covers only the structure in the image. The center of this
area, and thus of the detected structure, is then computed in the form of its center of mass.
The current section of the overall image is then re-centered to this structure center. The
central coordinates are also given to the next iteration of the algorithm, so the next image
of the measurement is cropped to a 400× 400 pixel area around this position, and the po-
sition of the structure in this new image is detected again. In this manner, the algorithm
goes through the whole image stack, gaining a centered image of the structure from each
step. The evaluation process is then performed on these centered images, eliminating
the effect of thermal drifts down to pixel accuracy. I implemented the drift correction in
Python, using methods from the SciPy and Scikit-Image packages [111, 120]. It was suc-
cessfully applied on nanoform sample structures in row A. For rows B and C, structures
were too small to be treated reliably with the watershed transformation, so a re-centering
was impossible. Figure 3.29 shows a comparison of Mueller matrix images without and
with drift correction on structure A10 as an example. Corrected images show a significant
reduction in blur, which is most evident in the first matrix element m00. Yet, edge and
corner effects are still visible in off-diagonal matrix elements, indicating that they are not
caused by the drift but valid responses from the structure [121]. In Section 5.2.1, we will
compare these results to numerical simulations to further test this point. Drift corrected
Mueller matrix images of structures in row A are given in Appendix B.1.2.
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(a) Without drift correction.
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(b) With drift correction.

Figure 3.29 – Mueller matrix images of structure A10, before (a) and after drift correction (b).
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3.5.4 Intentionally Induced Drift
Using the sample stage of the EP4 ellipsometer, the sample can be moved intentionally
during the measurement. This way, the effects of structure drift in different directions
could be emulated and analyzed systematically. With sufficiently small movements, this
might help to distinguish genuine effects in the measured Mueller matrices from ther-
mal drift effects. Figure 3.30 shows efforts in trying to measure Mueller matrix images
of structure A5 while the sample stage was moving as little as possible during the mea-
surement. In Figures 3.30(b) and (c), the sample moved in x-direction around the mid-
dle with speeds of about 18 nm/s and 54 nm/s, respectively, while Figure 3.30(a) shows
a comparison without any movement. However, even with the relatively slow veloci-
ties, the sample moved significantly more than when drifting due to thermal influences.
Also, the sample moved uniformly in one direction instead of randomly around a center.
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(a) No movement.
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(b) Movement at about 18 nm/s.
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(c) Movement at about 54 nm/s.

Figure 3.30 – Intentionally moving sample at different speeds (b, c) during Mueller matrix
image measurements, compared to measurement without movement (a).
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Yet, this experiment delivered a valuable insight: Lateral movement of the sample during
the measurement produces misleading effects in the Mueller matrix images that might
be mistaken as polarization effects. This can be observed in all matrix elements in Fig-
ure 3.30. If the sample moved less far, these effects would only appear at the edges of the
structures perpendicular to the movement direction. The measurement process involves
taking several images at different combinations of the polarizing optics. If the sample
moves during the measurement, it appears in different positions for different states of
polarization. In the evaluation process, this might be interpreted as, for example, multi-
ple structures imposing different polarization effects, as seen in Figures 3.30(b) and (c), or
as influences from the structures’ edges, in accordance with the observations from Sec-
tion 3.5.1.

The way the movement influences the interpretation of Mueller matrix images depends
strongly on both the movement speed and the measurement speed. If we assumed both to
be discretized, we would only get an undisturbed measurement when it is completed faster
than one step of sample movement. This naturally connects to larger influences from the
surroundings the longer the measurement takes. Thus, when using slower measurement
procedures, thermal drifts of the sample have to be taken into consideration as potential
sources of error in Mueller matrix imaging. Nevertheless, as we will see in Section 5.2.1,
after tracking the sample position and correcting for potential drift, both measurement
and simulation are in good agreement. Thus, we can suppress drift influences by algorith-
mic means, and the only challenge that remains is detecting the structures in the images.
Further research of the interplay between sample movement and Mueller matrix image
alteration, possibly using techniques from pattern recognition, will help to characterize
thermal influences in ellipsometric setups more fundamentally. Beyond that, a systemat-
ical use of deliberately moving samples might even help to emphasize structural features
like edges in Mueller matrix images, ultimately leading to new ways for an enhanced
feature analysis.
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4
Plasmonic Lens Devices

As implied in Chapter 2, the interaction of light and matter that leads
to the excitation of evanescent fields includes promising prospects for modern
nanometrology. Local plasmon resonances are inherently sensitive to even small

changes of the structure geometry, from which optical methods like those presented in
Chapter 3 can profit [122]. This chapter continues the view on plasmonics from Section 2.3
and introduces the application of plasmonic waveguides as a focusing metastructure, a so-
called plasmonic lens. Based on this, we will discuss a novel design for plasmonic lenses
which is oriented towards the limitations of fabrication. After optimizing the design pa-
rameters of these lenses for applications in the visible and near-infrared regime with focal
lengths between 5 µm and 1 mm, we take a look at their performance, both in simulations
as well as in measurements on fabricated lenses. In the end, I will discuss strategies to im-
prove the design further towards multispectral applications in ellipsometric setups.

4.1 Plasmonic Waveguides
Although light is usually unable to pass through holes in a metal with a diameter smaller
than half the wavelength, the excitation and coupling of SPPs can enable a form of extraor-
dinary transmission. This allows light to propagate even through narrow metal holes,
which in this case can be regarded as waveguides [44, 45, 50, 123, 124].

Understanding how SPPs pass through such waveguides requires a closer look on SPPs
at metal-dielectric surfaces first. Consider the configuration illustrated in Figure 4.1(a):
An interface between two media in the x-y-plane at z = 0 and a one-dimensional plane
wave propagating along this interface in the x-direction while being polarized in the
z-direction. We start from the Helmholtz equation for waves traveling along the inter-
face:

∂2E⃗(z)
∂z2 + (k2

0ε − β2)E⃗ = 0 , (55)

where k2
0ε − β2 = k2

z and β = kx is the so-called propagation constant. From this, equa-
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tions for the relevant field components for TM and TE modes can be found [61, 83]:

TM: Ex = −i
1

ωε0ε

∂Hy

∂z
, (56a)

Ez = − β

ωε0ε
Hy , (56b)

TE: Hx = i
1

ωµ0

∂Ey

∂z
, (56c)

Hz =
β

ωµ0
Ey , (56d)

as well as the wave equations for these modes:

TM:
∂2Hy

∂z2 + (k2
0ε − β2)Hy = 0 , (57a) TE:

∂2Ey

∂z2 + (k2
0ε − β2)Ey = 0 . (57b)

We can use these equations to describe the fields depending on their z position. For z > 0,
we get:

TM: Ex(z) = iA2
1

ωε0ε2
k2eiβxe−k2z , (58a)

Hy(z) = A2eiβxe−k2z , (58b)

Ez(z) = −A2
β

ωε0ε2
eiβxe−k2z , (58c)

TE: Hx(z) = −iA2
1

ωµ0
k2eiβxe−k2z , (58d)

Ey(z) = A2eiβxe−k2z , (58e)

Hz(z) = A2
β

ωµ0
eiβxe−k2z , (58f )

and for z < 0, we get:

TM: Ex(z) = −iA1
1

ωε0ε1
k1eiβxek1z , (59a)

Hy(z) = A1eiβxek1z , (59b)

Ez(z) = −A1
β

ωε0ε1
eiβxe−k1z , (59c)

TE: Hx(z) = iA1
1

ωµ0
k1eiβxek1z , (59d)

Ey(z) = A1eiβxek1z , (59e)

Hz(z) = A1
β

ωµ0
eiβxek1z . (59f )

At the interface, continuity conditions require Ex and Hy to be continuous in the TM case
as well as Hx and Ey in the TE case. This leads to:

TM: A1 = A2 , (60a)
k2

k1
= − ε2

ε1
, (60b)

β = k0

√
ε1ε2

ε1 + ε2
, (60c)

TE: A1 = A2 , (60d)

− iA2k2

ωµ0
=

iA1k1

ωµ0
, (60e)

k1 + k2 = 0 . (60f )

In the TM case, this is the SPP dispersion relation we already know from Equation (34). In
the TE case however, since the real parts of the wave numbers are required to be non-zero
and positive, we don’t get a solution. Hence, surface plasmon polaritons are inherently
TM polarized [61, 83].
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Figure 4.1 – Interfaces between two (a) and three media (b) with different permittivities.

Next, we consider two opposing interfaces as depicted in Figure 4.1(b). In this configura-
tion, we distinguish three regions, two outer and one inner region. The derivation works
similar to the case of only one interface and we will only regard cases where the outer re-
gions are of the same material. Nevertheless, it is a significantly longer derivation, so the
detailed version is given in Appendix A.5. Ultimately, it leads to the characteristic equa-
tion for the propagation of SPPs through a rectangular metal-dielectric-metal waveguide
of width w [46, 48, 52, 61, 83, 125]:

tanh
(

w
2

√
β2 − k2

0εd

)
= − εd

εm

√
β2 − k2

0εm√
β2 − k2

0εd

. (61)

with the relative permittivities εd of the dielectric material (ε1 in Figure 4.1) and εm of the
metal (ε2 in Figure 4.1). Apart from optical properties, the propgation β of SPPs through a
metal-dielectric-metal waveguide, and thus the phase of the light propagating behind the
waveguide, depends only on the waveguide width w.

4.2 Plasmonic Lenses
We rearrange Equation (61) to find the width w of a waveguide needed for a certain prop-
agation:

w =
2√

β2 − k2
0εd

tanh−1

−
εd

√
β2 − k2

0εm

εm

√
β2 − k2

0εd

 . (62)

By building an array of waveguides with different widths, a plane wavefront incoming
on one side of the waveguide array could be altered in arbitrary ways. For example, the
wavefront can be curved so that it forms a focal spot, which gives the waveguide array
the functionality of a flat lens. To achieve this in a monochromatic case, the propagation
constant β and therefore the phase shift ϕ introduced by the waveguides has to depend
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Figure 4.2 – Phase distribution (upper) and corresponding waveguide width (lower) for a plas-
monic lens with l = 200 nm, f = 5 µm and λ0 = 532 nm. Materials are iridium and air.

on the position x on the lens relative to its center [126]:

ϕ(x) = β(x) · l (63a)

= 2πm +
2π f
λ0

− 2π
√

f 2 + x2

λ0
, (63b)

with m ∈ N. To facilitate the simplest possible fabrication, each waveguide of a lens is
considered to have the same length, denoted by l in Equation (63a). Therefore, this length
will also be referred to as the thickness of the plasmonic lens. Considering an arrangement
of slits in a metallic slab as plasmonic waveguides, each slit width w corresponds to a phase
delay ϕ. In order to produce a focal spot at a distance f from the slab, the phase delay in the
centre of the lens has to be the largest. With increasing distance from the centre, the phase
delay has to decrease. The upper graph in Figure 4.2 shows an exemplary plot of the phase
distribution resulting from Equation (63) for a lens with a thickness of l = 200 nm and a
focal length of f = 5 µm at a wavelength of λ0 = 532 nm. Complementary, the lower graph
in Figure 4.2 plots the width w of the waveguides corresponding to this phase distribution
of their position on the lens according to Equation (62). As we can see, with increasing
distance from the center, the slit width increases, leading to a delayed phase. Close to
the 2π phase shift, the width suddenly decreases. This is explained by numerical issues
due to exponentially increasing values eventually exceeding the floating-point range [127].
The 2π periodicity of the phase is also the reason why the width does not get increasingly
larger until the edge of the lens, but periodically jumps back to smaller widths in a Fresnel
lens-like manner.
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4.3 Inverted Plasmonic Lenses
The fabrication of conventional plasmonic lenses like described in Section 4.2 is chal-
lenging. They are usually realized by either cutting slits in metallic slabs or by stack-
ing alternating metallic and dielectric layers. However, the latter would result in very
large thicknesses l of the lenses so that SPPs couldn’t propagate properly. Thus, further
post-processing would be required to shorten the waveguides to the desired length and
to mount the layerstack sideways on a substrate for easier lens handling, both of which
could affect the lenses’ functionality. Presumably, this is why top-down approaches are
more frequently used in plasmonic lens production. In doing so, thin slits of around
100 nm width have to be cut into metallic slabs of up to 2 µm thickness. Usually, this is
achieved by means of focused ion beam milling (FIB) [128, 129, 130, 131, 132, 133]. Though
being a highly accurate method, FIB suffers from small preparation areas and low produc-
tion speeds. This makes FIB appropriate for research purposes, but rather unsuited for
larger quantities of structures with varying parameters, especially regarding future indus-
trial uses [134, 135, 136]. With this in mind, the fabrication with etching techniques seems
more promising. Yet, etching structures with such high aspect ratios in metal without
high deviations remains challenging.

Therefore, I developed a new kind of plasmonic lens design which is compatible with the
electron beam lithography fabrication process [137]. In the conventional plasmonic lens
design shown in Figure 4.3(a), the SPPs travel along the metal-air-interfaces through the
slits, where air takes the part of a dielectric medium as according to Section 2.3.2. In the
new design, illustrated in Figure 4.3(b), they still travel along metal-dielectric-interfaces,
but these are now realized as dielectric ridges covered with a metallic coating. In addition,
the substrate is capped with a metallic layer to prevent unwanted light transmission. Be-
cause of the design inversion from slits to ridges, I call this design inverted plasmonic lens.
Inspired by the production of wire grid polarizers [138], the dielectric ridges can be fabri-
cated using electron beam lithography and afterwards, the coating is realized with atomic
layer deposition (ALD). This mitigates the need to etch or mill high aspect ratio structures
in metal while still retaining the functionality of the plasmonic structures. As an example,
Figure 4.4 shows a comparison of the fields produced by both the conventional and the
inverted design. Both designs used the same structural parameters that were optimized
for the inverted design. In this example, the focal spot produced by the inverted design
has an about 10 % higher intensity compared to the conventional design.

In the scope of this thesis, a set of inverted plasmonic lenses was designed, fabricated, and
characterized. As mentioned in Section 2.3.2, different materials offer different responses
to plasmonic excitations. The plasmonic lenses fabricated for this thesis are made of
AZ1505 photoresist by MicroChemicals [139] as dielectric component as well as iridium
as the metallic coating. The photoresist has a refractive index of about 1.65 in the visible
and near-infrared regime and is easily processible in lithography. Iridium has a quality
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(a) Conventional plasmonic lens design.
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(b) Inverted plasmonic lens design.

Figure 4.3 – Schematics of conventional (a) and inverted plasmonic lenses (b). Metallic struc-
tures (dark gray) on a dielectric substrate (light gray). In the inverted design, the ridges are
filled with a dielectric material (green).

(a) Conventional plasmonic lens design. (b) Inverted plasmonic lens design.

Figure 4.4 – Intensity distribution of conventional (a) and inverted plasmonic lenses (b) with
the same structural parameters, cropped to area of interest.
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factor of QSPP ≈ 9.67 (data from [140]). This is much less than typical metals used in
plasmonics, like silver, gold, copper, or aluminium. Nevertheless, iridium was chosen
due to its comparably high oxidation resistance as well as its capability to be deposited by
means of ALD. Apart from that, silicon dioxide (SiO2) forms the substrate material of the
fabricated lenses. The structural parameters of the lenses follow applications in the vis-
ible and near-infrared wavelength range at short focal lengths between 5 µm and 1 mm.
The wavelength range was chosen in accordance with the ranges available in common
ellipsometric setups. The intention behind the short focal lengths was for future imple-
mentations of the lenses to be compact, while keeping the possibility to catch near-field
effects from light-sample-interactions. Section 4.4 describes the parameter optimization
process followed to obtain structural parameters for the different lens designs. Following
this, an overview of the fabricated structures as well as an analysis of their performance is
given in Section 4.5.

4.4 Lens Design and Parameter Optimization
The design of the inverted plasmonic lenses followed the methods described in Sec-
tions 4.2 and 4.3. After defining the parameters of the lens, their focal length, application
wavelength, aperture, thickness, and coating thickness, I calculated the phase distribu-
tion for each position on the lens and the corresponding ridge widths in steps of 1 nm
from the lens center. At this stage, the lens computations and simulations are made in
a two-dimensional cross-section of a lens due to high computational demands of three-
dimensional numerical simulations. Next, spots on the lens where a ridge shall be placed
are selected. They can’t be placed arbitrarily close to each other because of their finite size.
Two different ways to manage ridge arrangements are described in Section 4.4.3. In the
end, if the lens dimensions are sufficiently small, a finite element simulation of the lens
cross-section is performed to evaluate the spot generation and quality.

Structural parameters critically influence the performance of the lens. Therefore, I per-
formed a series of numerical simulations using the finite element method (FEM) tool
JCMsuite [141], supported by particle swarm optimization (PSO) to find optimal lens pa-
rameters for each set of focal lengths and application wavelengths.

PSO is a global optimization algorithm that stochastically finds the solution to a multi-
dimensional problem. Its idea origins from the swarm behaviour of certain animals, like
birds or fish. The algorithm starts by statistically distributing starting points inside the
given parameter space and assigning them to virtual particles. In each iteration, the ob-
jective function is evaluated at the particles positions in the parameter space. Then, the
particles update their position based on their velocity vector. This vector contains three
terms: the particle’s inertia, the coordinates of their own best position so far, as well as
the whole group’s best position so far. The weighting of each of these hyperparameters
determines whether a particle is more likely to explore the parameter space on its own
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or if it flocks together with other particles. Eventually, the particle swarm will converge
towards an optimum. Swarm dynamics are controlled by adjusting the hyperparameters
and by implementing constriction coefficients to their movement [142, 143].

The following subsections first describe the optimization of the three lens parameters l,
dc, and a illustrated in Figure 4.3(b) using PSO. The algorithm’s optimization objective
was to minimize the ratio between full width at half maximum (FWHM) and intensity
of the focal spot at focal distance from the lens surface. Larger intensities and slimmer
focal spots led to smaller values of the objective function. Due to high computational
costs, the optimizations were performed only for two wavelengths in the visible regime,
455 nm and 532 nm, as well as for the short focal lengths 5 and 10 µm to observe the
general behaviour of the inverted plasmonic lens under parameter changes. The swarms,
consisting of up to 30 particles, usually converged after up to 40 iterations. Apart from the
lens dimensions, two different approaches to ridge arrangement will be discussed. The
results of these investigations were then considered for the final lens designs that were
ultimately fabricated.

4.4.1 Waveguide Length and Lens Aperture

As a first impression of the influence of the waveguide length l, I computed the parameters
of plasmonic lenses with f = 10 µm at λ0 = 532 nm according to Equations (62) and
(63) for different thicknesses l up to 200 nm. AZ1505 was used as dielectric material and
iridium as metal. The aperture was fixed to 10 µm and the ridge widths and positions
were recalculated for each thickness. Figure 4.5(a) shows the normalized intensity of the
resulting focal spots depending on the thickness. Generally, the intensity increases with
the thickness, but also falls back to lower values periodically. The reason for this behavior
becomes clear when comparing this to the number of ridges generated within the fixed
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Figure 4.5 – Influence of the waveguide length (a, b) and the aperture (b) on the focal spot.
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aperture: From Equation (63a), we know that the propagation constant β is inversely pro-
portional to the thickness l. Thus, with increasing thickness, the width of the ridges also
has to increase. Generally wider ridges result in less ridges fitting inside the aperture.
Also, in this case, the ridges were arranged as an array with a fixed pitch between ridge
centers, and when ridges became too large and would overlap, they were removed from
the design. Each time a ridge gets removed for one or the other reason, the intensity drops
significantly as less light is able to propagate.

Figure 4.5(b) shows the results of each evaluation from a PSO performed over thickness
and aperture with 35 particles in 35 iterations. The sizes of the points indicate the FWHM
of the focal spot and their color denote the intensity. The swarm converged at a thickness
of l ≈ 350 nm and an aperture of a ≈ 87 µm. On average, spots had a FWHM of about
190 nm and were overall smaller than the incident wavelength. The particles tended to-
wards higher apertures and to thicknesses between the SPP wavelength λSPP = 333.6 nm
and the wavelength inside the ridges λc = λ0/nd = 364 nm. Each evaluation attempt for
thicknesses larger than λc failed to compute. We can comprehend this cut-off when we
examine Equation (62). For non-magnetic materials, it is safe to assume that the refractive
index relates to the permittivity by nd =

√
εd [77]. In combination with Equation (63a), for

the square root in Equation (62) follows:

√
β(x)2 − k2

0εd =
√

β(x)2 − k2
0n2

d =

√
ϕ(x)2

l2 −
4π2n2

d
λ2

0
. (64)

If the thickness l becomes equal or greater than λ0/nd, the radicand is always negative and
therefore, the result of the square root is always complex-valued, which leads to the ridge
width w also being complex-valued and thus not realizable. This indicates that it is ad-
visable to choose thicknesses for the plasmonic lenses between λc and λSPP for optimal
performance. Please note that the limitation due to λc solely comes from the mathe-
matical model used to describe the phase shift provided by a certain waveguide width.
A waveguide longer than λc will physically still be able to support SPP propagation and
yield in a phase delay depending on its width and length.

Recalculating the ridge widths and positions for each thickness leads to a decreasing num-
ber of ridges per lens. Another approach to this is calculating the ridge parameters before-
hand and then changing the lens’ thickness while keeping a fixed set of ridge widths. This
is especially reasonable when considering fabrication limits of the lens’ thickness, because
eventually, each lens on a wafer will have to have the same thickness. Figure 4.6 shows the
first and last iterations of a PSO with fixed ridge parameters computed for l = 200 nm
and f = 5 µm at λ0 = 455 nm. The swarm consisted of 20 particles and optimized for
35 iterations. The arrows in the first iteration indicate the velocity of the particles. Some
arrows are missing due to overshooting the limits of the parameter space. As highlighted
by the red circle in the last iteration, the particles that were randomly distributed in the
beginning collected at l = 172 nm and a = 100 µm. The optimized thickness lies well
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Figure 4.6 – First (a) and last iteration (b) of a PSO for fixed ridge parameters.

below the one this set of ridge parameters was designed for. When keeping also the aper-
ture fixed to in this case 50 µm, we obtain Figure 4.7, which depicts focal spot intensity and
FWHM depending on the thickness of a lens simulated with fixed ridge parameters in the
same parameter space as the PSO in Figure 4.6. For constant ridge widths, as the lengths
of the waveguides increase, the intensity of the focal spot decreases, because SPPs decay
from their point of excitation, as described by their propagation length in Equation (38).
So in general, the thicker the lens, the less energy can propagate through it, leading to
weaker focal spots. In addition, we observe a periodicity in the intensity that is linked to
the phase shift induced by the changing waveguide lengths. This phase shift causes the
focal spot to move in and out of the plane of observation at the expected focal distance
when evaluating the simulations. The influence of this movement is especially clear in
the FWHM of the focal spot, which increases with decreasing intensity, but also oscillates
with a periodicity of about 148 nm.
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Figure 4.7 – Intensity and FWHM of focal
spot for different lens thicknesses l.

To sum up the observations: For optimal lens
performance, the ridge widths and positions
should first be determined for a thickness be-
tween λSPP and λc, but the final thickness of
the lens should then be optimized with the re-
sulting fixed set of ridge parameters.

The particles of the optimization in Figure 4.6
collected at the upper bound of the aperture
parameter space. In general, a larger aper-
ture is preferable, as larger lenses obviously
contain more ridges and therefore establish
more throughput as well as a higher NA.
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The NA is defined as [144]:

NA = n sin(θmax) = n sin
(

arctan
(

a
2 f

))
. (65)

For the parameter space in the PSO in Figure 4.6, the NA ranges between 0.894 and 0.995.
Overall, this leads to a higher quality of the produced focal spot in terms of intensity and
spot size. These observations are in agreement with early numerical investigations from
the literature [145].

4.4.2 Coating Thickness
In the inverted plasmonic lens design, we encounter both types of three-layer-interfaces:
metal-dielectric-metal and dielectric-metal-dielectric. The former are the plasmonic wave-
guides themselves; dielectric ridges coated with metal. The latter are the metallic coatings,
facing the waveguide on one side and the surrounding dielectric material on the other.
In both cases, the SPP penetration depths δd and δm play important roles. As introduced
in Section 2.3.2, the evanescent fields corresponding to the SPPs decay with distance to
the interface, and their penetration into both media depends on the respective permit-
tivities. For a plasmonic waveguide, we want the SPPs on both sides of the waveguide
to couple to create an efficient energy transport. Thus, the ridges should not be wider
than δd. On the other hand, the fields also enter the metallic coating to a certain extent,
and when the coating is thinner than δm, SPPs could form outside of the waveguides, too,
leading to leakage [61]. For the material system in this thesis, δd and δm are depicted
in Figures 4.8(a) and (b), respectively, for wavelengths in the visible and near-infrared
regime. The penetration depths were calculated for both air and AZ1505 as dielectric ma-
terials. Above 480 nm, the penetration depth into AZ1505 is always higher than the min-
imum width required for a 2π phase shift, so SPP coupling can occur without problems.
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(a) Decay length δd into the dielectric.
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(b) Decay length δm into the metal.

Figure 4.8 – SPP decay lengths into the dielectric (a) and the metal (b) perpendicular to an
interface between iridium as a metal and either air or AZ1505 as a dielectric layer.
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Figure 4.9 – Focal spot intensity and FWHM
depending on coating thickness.

Regarding the penetration into the metallic
coating, the maximum lies at about 30.1 nm
and for the visible regime, it lies significantly
below that. Thus, a coating of around 35 nm
thickness should already prevent leakage suf-
ficiently. As the penetration depths are always
smaller in the case using AZ1505, we will focus
on air filled ridges for now.

For further examinations of the influence of
the coating thickness, I simulated plasmonic
lenses with fixed ridge positions and widths
but different coating thicknesses for f = 5 µm

at 532 nm. At this wavelength, the metallic penetration depth is around δm ≈ 21 nm for
air filled ridges. Figure 4.9 shows the normalized intensity and the FWHM of the focal
spot over the coating thickness. As expected, for coatings thinner than δm, intensity van-
ishes and FWHM rises as the resulting leakage prevents proper plasmonic propagation
and thus a distinguished focal spot to be formed. The intensity reaches its maximum at
about 28 nm, but after that decreases again for larger thicknesses. This is most likely also
a leakage effect: SPPs penetrating the metallic coating might transform to propagating
waves, contributing to the overall intensity of the electromagnetic field behind the lens.
So, while the intensity of the focal spot might have its maximum at about 28 nm, the in-
tensity of the field around the spot, which was not observed, might also still be relatively
strong. Thus, with thicker coatings, the probability for leakage decreases, together with
the absolute intensity of the focal spot, while the relative intensity might stay the same.
Eventually, increasing dc would lead us back to the conventional design, where the in-
tensity presumably converges to. Regarding the FWHM, the focal spot size stayed rather
constant for coating thicknesses larger than the penetration depth and reached a mini-
mum of about 194 nm at dc = 51 nm.

l / nm

d c
 / 

nm

100

90

80

70

60

50

40

30

20
100 200 300 400 500 600 700 800

Iteration: 0

(a) First iteration.

l / nm

d c
 / 

nm

100

90

80

70

60

50

40

30

20
100 200 300 400 500 600 700 800

Iteration: 39

(b) Last iteration.

Figure 4.10 – First (a) and last iteration (b) of a PSO for the coating thickness dc.
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The optimization of the coating thickness in dependence of the thickness l using PSO
was conducted for a lens with f = 5 µm at a λ0 = 532 nm. The initial state of the particle
swarm is shown in Figure 4.10(a) and the final state after 40 iterations in Figure 4.10(b).
The swarm converged at a thickness of about 327 nm. Regarding the coating thickness,
the swarm tended towards the lower bound of 20 nm, as highlighted in Figure 4.10(b). The
reason lies in what we have already seen in Figure 4.9: The objective function of the swarm
is to maximize the intensity of the focal spot in relation to its size. So in general, a higher
intensity is preferred, which at lower coating thicknesses is achieved due to leakage and
thus overall higher absolute field intensity.

4.4.3 Ridge Arrangement
Plasmonic lenses in the literature usually arrange the plasmonic waveguides in periodic
arrays. They get their functionality from periodically differing either the width, the depth
or the refractive index of the dielectric slits [129, 146, 147]. For the lenses in this thesis, this
means choosing a certain period Λ and computing the width w of the ridge at each po-
sition on that array as illustrated in Figure 4.11(a). However, due to the interplay between
waveguide width and phase delay, placing each ridge in a fixed distance to the next one is
not always possible, as the width required at a certain position might lead to neighboring
ridges overlapping each other. When a ridge is too wide for its designated position, it
is skipped and no ridge is placed at that position. This leads to large areas on the lens
with no waveguides at all, which significantly decreases the throughput and therefore the
intensity of the focal spot.

For this reason, I implemented a second ridge arrangement style next to the conventional
periodic one. In this second style, which is schematically shown in Figure 4.11(b), ridges
are not placed on an array with a fixed pitch, but successively next to each other as soon
as they fit. The design algorithm considers the width of the current ridge, accounts for

Λ

(a) Periodic arrangement.

dmin

(b) Successive arrangement.

Figure 4.11 – Periodic (a) and successive ridge arrangement (b), illustrated over the ridge
widths from Figure 4.2.
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coating thickness dc and a minimum gap thickness dmin, and then looks ahead to find
the next position a ridge could be placed without overlapping the current one. In this
manner, no unnecessary large gaps form on the lens and the throughput is maximized.
When compared to the periodic arrangement, the successive arrangement showed about
twice as intense focal spots in numerical simulations, which is also why I will mostly focus
on these types of lenses in the remainder of this thesis. Further differences between the
two arrangement types will be discussed on the final designs in Section 4.4.4.

4.4.4 Final Designs
For the fabrication of inverted plasmonic lenses, I chose a set of application wavelengths
and focal lengths based on practicability. Wavelengths for the lenses should range in the
visible regime to be easily accessed by experimental means, but also go towards the in-
frared to address common use cases (e.g., telecommunications or lab-on-a-chip devices).
Simulations to test the functionality of the lenses before their fabrication could only be
performed for short focal lengths due to high computational costs. Therefore, two focal
lengths in the micrometer regime were chosen which could be verified with simulations.
Two longer focal lengths were added due to the difficulty of measuring at such short dis-
tances but not verified by simulations before fabrication.

Simulations so far have been performed with two-dimensional model geometries to save
computational costs. In these simulations, an infinite extension of the waveguides into
one dimension is assumed. This is approximated in fabrication by ridges of sufficient
length. However, constructing the lenses this way leads to the formation of a focal line
like from a cylindrical lens, rather than a spot. For circular spot formation, lenses are also
realized as concentric rings with the same cross section as the cylindrical lens, with the
middle ridge being at the center of the lens.

Each designed lens got a label according to its most important parameters for easier de-
scription. The labels consist of two uppercase letters and two digits, divided by a hyphen.
The letters indicate whether the lens is fabricated as a spherical (O) or a cylindrical lens (C)
and if the ridge arrangement is periodic (P) or successive (S) (see Section 4.4.3). The digits
decode their intended focal length (first digit) and wavelength (second digit) according to
Table 4.1.

Table 4.1 – Plasmonic lens labels.

f
λ0 455 nm 532 nm 632 nm 1064 nm 1550 nm

5 µm X-00 X-01 X-02 X-03 X-04
10 µm X-10 X-11 X-12 X-13 X-14

100 µm S-20 S-21 S-22 S-23 S-24
1000 µm S-30 S-31 S-32 S-33 S-34
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The optimization process described in the previous sections was carried out for different
combinations of application wavelengths and desired focal lengths. Due to the already
indicated fabrication limits, lenses that are produced on the same wafer should have the
same thickness. Therefore, I intended to find one thickness which is compatible with as
many lenses as possible. Thus, the parameter space was confined to the range of 200 nm
to 600 nm in steps of 100 nm. Table 4.2 lists the optimal thicknesses found for each lens
configuration. As most of these lenses work best at 200 nm, this thickness was chosen for
the fabricated set of plasmonic lenses.

As a result from Section 4.4.2, a coating thickness of dc = 35 nm was chosen for the final
design. It exceeds the required minimum thickness of the metallic coating to prevent SPP
coupling to the outside and it leaves some space for fabrication deviations. While thin
coatings are both time and cost efficient in fabrication, it is preferable for the coating to
be too thick rather than too thin. The reason for this is that thicker coatings only converge
towards the conventional design in functionality and thus reduce leakage further, while
thinner ones impair the functionality of the lens.

While larger apertures enhance the intensity and quality of the focal spot, they also dras-
tically enhance the computational costs tied to performing the numerical simulations
required for the optimization process. Thus, a fixed aperture of 100 µm was chosen for
nearly every lens. At lower wavelengths and focal lengths, even with an aperture of only
50 µm, sufficiently high beam qualities could be ensured, so the aperture was reduced for
the sake of simulation time. A complete table of all parameters of the fabricated lenses is
given in Appendix A.6.

Figure 4.12 shows a box plot statistic about the widths of the ridges and the distances
between their centers. As the periodically arranged ridges are all placed in multiples of
200 nm, their mean distances between each other are comparatively low with only a few
outliers, but show larger scattering around their average. Concurrently, their widths show
a similar behavior and in general, the periodically arranged ridges are mostly thinner than
in the successive design. Compared to that, most of the successively arranged ridges share
the same width, though outliers are more likely here. We also observe that the scattering
around the mean as well as the mean itself increase with increasing application wave-
length and focal length. While ridge distances in the successive design are also comparably

Table 4.2 – Optimal plasmonic lens thicknesses.

f
λ0 455 nm 532 nm 632 nm 1064 nm 1550 nm

5 µm 200 nm 200 nm 300 nm 400 nm 600 nm
10 µm 200 nm 200 nm 200 nm 200 nm 600 nm
100 µm 200 nm 200 nm 200 nm 300 nm 500 nm

1000 µm 200 nm 200 nm 200 nm 300 nm 500 nm
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Figure 4.12 – Box plots of the ridge distances (upper) and widths (lower). The boxes illustrate
the interquartile range (IQR) between the 25th and the 75th percentile of the data sets. The
whiskers are determined from 1.5 times the IQR. Data points not covered by this are consid-
ered to be outliers [148].
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Figure 4.13 – Ridge coverage of the area of the final plasmonic lens designs.
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less scattered than in the periodic one, lenses with focal lengths of 100 µm seem more
scattered. The larger deviations for lenses with longer focal lengths and application wave-
lengths are most likely the cause of the ridge widths increasing to ensure the functionality
of the lens while still being limited to a fixed aperture. This leads to a smaller number of
ridges fitting in the aperture, generally larger ridge distances and more variation.

The mean number of ridges for the periodic design is 98.6; in the successive design, it
is only 58.2. However, due to their free placement, successively arranged ridges are gen-
erally wider. This leads to periodically arranged ridges only covering 8.45% of the lens
on average, while the successive design has a mean coverage of 23.56%, so nearly 3 times
higher. A higher coverage means that less lens area is obscured and in general, more light
can be used for focal spot creation. Figure 4.13 demonstrates this further. There, we also
observe a reduced coverage for the lenses with higher focal lengths. These lenses also
showed outliers with large ridges far away from the others. Most likely, the aperture was
too small for lenses with these focal lengths to give the space needed for enough ridges
to be created. These lenses would have benefited from larger apertures which were not
taken into account due to being too large for numerical simulations.

4.5 Lens Performance Evaluation
Inverted plasmonic lenses were fabricated using the designs from Section 4.4.4. Now we
want to take a look on the performance of the lenses, both experimentally on the fabricated
ones as well as from the design perspective in numerical simulations.

4.5.1 Tolerances to Deviations from Design

0 2 0 4 0 6 0 8 0 1 0 00 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

1

In
te

ns
ity

 (n
or

m
.)

γ

Figure 4.14 – Focal spot intensity under
Gaussian distribution of ridges.

Fabrication processes often underlie devia-
tions compared to the design. Therefore, I
simulated a lens with l = 300 nm at a wave-
length of 532 nm and examined the inten-
sity of the focal spot while assigning random
changes to the ridge positions in order to es-
timate the influence of minor ridge misplace-
ments. In Figure 4.14, we see the observed in-
tensity depending on the scale γ of the Gaus-
sian distribution used to randomly displace
the ridges. Even with only one simulation
per scale factor, the intensity significantly de-
creases with increasing randomness. For γ = 100, the intensity drops as low as half of the
initial value. Nevertheless, for γ up to 10, the influence of the displacement is negligible, so
deviations from the fabrication of up to 50 nm are not crucial for lens performance.
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4.5.2 Wavelength Dependency
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Figure 4.15 – Simulated intensity and FWHM
of an inverted plasmonic lens’ focal spot at fo-
cal length for different wavelengths.

Before fabricating the lenses, simulations
already suggested a strong dependency of
the focal spot on the incident wavelength.
Figure 4.15 shows the normalized intensity
and FWHM of the focal spot of a simulated
lens designed for 455 nm at wavelengths be-
tween 400 and 600 nm. Spot size and in-
tensity were evaluated at the intended focal
distance only. The plot shows clearly that
the focal spot gets less intense and at the
same time broadens when leaving the design
wavelength. This indicates a shift of the spot
away from the design focal distance.

Figure 4.16 depicts a sketch of how the different lenses are arranged on the sample. As an
example, Figure 4.17 shows two SEM images of fabricated plasmonic lenses. Using two
different setups, the focal lengths of the produced plasmonic lenses were measured by
means of through-focus scanning optical microscopy (TSOM) [149]. The first setup was
a microscope, the second one was the EP4 Mueller matrix ellipsometer introduced in
Section 3.2.2. The reason for two different setups is that the focal length range of the
lenses was too large to be covered with only one setup. At the microscope, focal scans
of the lenses with focal lengths of 5 and 10 µm could be measured in steps of 100 nm,
but the total range in focal direction was limited to 100 µm, so larger focal lengths could
not be measured. On the other hand, at the EP4, the movement range goes up to several
centimeters, which allowed for focal scans of the lenses with 100 and 1000 µm focal length,
but with a minimum step size of 1 µm, so the lenses with shorter focal lengths could not
be measured.

In the TSOM measurements, images of the lens were taken for different focal positions
around the focused image of the lens itself. The focal range was chosen to cover up to at
least twice the intended focal length of the lens in both directions from the focused image.
For the evaluation of the images, the standard deviation of all pixels in the images was
observed. In this context, higher standard deviation is correlated with a higher contrast
in the image and thus a more focused image. In microscopy, this is one measure used
to evaluate if the image under investigation is focused [150]. The assumption was that if
a lens was imaged at different focal planes, it should produce at least two peaks in the
standard deviation curve: One at the focused image of the structure itself, and one in a
focal length distance from the focused image. As the lens is illuminated with collimated
light which it focuses into the microscope’s objective, this second peak should correspond
to an image of the light source and thus, the image at this focal plane should resemble a
small spot with high brightness.
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Figure 4.16 – Inverted plasmonic lens chip design.

(a) Cylindrical plasmonic lens CS-11. (b) Spherical plasmonic lens OS-11.

Figure 4.17 – SEM image examples of a fabricated cylindrical (a) and spherical (b) plasmonic
lens with f = 10 µm at a wavelength of 532 nm.
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As an example, Figure 4.18(a) shows the standard deviation for the TSOM measurement of
plasmonic lens OS-11 at a wavelength of 532 nm, measured with the microscope. We see
that the assumption was met that peaks at the focused image as well as at the focal spot
would be produced. The position of the focused image is marked by a dot in the middle
of the scan. Next to this, the plot shows several oscillations which are most likely caused
by moiré effects. The second peak is around 10 µm to the right of the focused image,
which is at the expected distance for this lens. However, a third unexpected peak occurs,
which is also located at focal length distance from the focused image, but in the opposite
direction. It is assumed that this peak is a product of reflections inside the lens. These
peaks are also visible in Figure 4.18(b), which shows an example for a TSOM scan of lens
OS-11, where the images of each focal plane along the z-direction were stitched together
to create a y-z-cross section. In the middle, the ridges of the plasmonic lens can be seen
in the focused image, which blurs with growing distance from it. About 10 µm away to
both directions, the two focal spots are located.

For each of the lenses, the distances of the two side peaks from the peak of the focused
image were evaluated. The results are collected in Figure 4.19. When measuring the lenses
with short focal lengths, both types of ridge arrangements discussed in Section 4.4.3, pe-
riodic and successive, were considered. Figure 4.19(a) shows the distances of only the
expected peak from the focused image, divided by the intended focal length, over the dif-
ference between the measurement wavelength and the one the lens was designed for. As
we can see, at their design wavelength, most lenses are also close to the design focal length.
Lenses with a periodic ridge arrangement tend to longer distances, with up to twice the
intended focal length at the design wavelength. Also, for other wavelengths, these lenses
nearly always show a longer focal length than intended, with no clear correlation to the
wavelength.
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Figure 4.18 – Standard deviation (a) and image cross section (b) of an example TSOM mea-
surement of plasmonic lens OS-11 at a wavelength of 530 nm.
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In contrast, the lenses with successive ridge arrangements follow a clear trend: Their focal
spot moves closer to the lens for larger wavelengths and vice versa. This resembles chro-
matic aberration which can also be observed in conventional lenses and is most likely
caused by dispersive effects of the dielectric material inside the ridges of the lenses. We
also see this effect in Figure 4.19(b), which shows the peak distances for both the expected
and the unexpected peak, for all lenses measured at both setups. However, this time,
only lenses with successive ridge arrangements were considered, as the focal distances of
the lenses with periodically placed ridges showed a worse performance. We observe the
same wavelength dependence for each lens, even for the unexpected peaks, reinforcing
the impression that it is mainly influenced by material properties. Unfortunately, lenses
designed with larger focal lengths of 1 mm didn’t show any peaks in the standard devia-
tion besides the focal image and thus didn’t produce a focal spot. Reason for this is most
likely the design of theses lenses itself as it consisted of only a small number of ridges due
to the large focal length, while it was still limited to the same aperture of 100 µm as the
other lenses to keep fabrication reasonable. Apparently, the small number of ridges is not
sufficient for the functionality of the structures as a lens.
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(a) Distances of the expected peaks for plas-
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Figure 4.19 – Wavelength dependent distances of observed peaks in the standard deviation
for fabricated plasmonic lenses with focal lengths of 5 and 10 µm, measured at a microscope
setup (a) and results for all plasmonic lenses measured at both setups (b).
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4.6 Concepts for Achromatic Plasmonic Lenses
As shown in Section 4.5.2, the focal length of the inverted plasmonic lenses is inherently
wavelength dependent. Now, we take a look at theoretical concepts how to remove or
at least reduce this wavelength dependency to expand the design of inverted plasmonic
lenses to an achromatic functionality. So far, the realization of multispectral plasmonic
lenses has been achieved with design approaches using meta-atoms two-dimensionally
distributed on a surface [151, 152, 153, 154] or by realizing complex material gradients
[155, 156]. Generally, over the last years, the focus in research shifted from plasmonic to
dielectric metastructures, as they are capable to provide more efficient effects [157]. For
this reason, current literature offers little consideration of achromatic plasmonic lenses.
This section starts with the most formal way to realize dispersion-free lenses from current
literature oriented at dielectric metasurfaces and discusses limitations for the applicabil-
ity to the inverted plasmonic lens design as well as possible alternatives.

4.6.1 Dispersion-Free Meta-Lenses
For any metastructure to produce a focal spot, the meta-atoms have to induce a relative
phase to an incoming plane wavefront which depends on the position r of the meta-atom
in relation to the center of the lens [126]:

ϕ(r, ω) = −ω

c

(√
r2 + f 2 − f

)
, (66)

where f is the intended focal length of the lens. In Section 4.2, we only regarded the
distribution of the phase over the position. If the lens is also supposed to be achromatic,
however, the phase also has to depend on the angular frequency ω or the wavelength λ.
An achromatic lens focuses different wavelengths to the same focal length. Therefore,
the meta-atoms not only have to deliver a certain phase change, but also higher-order
dependencies of the phase on the wavelength need to be matched [158]. We can expand
the phase into a Taylor series to access these higher orders:

ϕ(r, ω) = ϕ(r, ωv) +
∂ϕ(r, ω)

∂ω

∣∣∣∣
ω=ωv

(ω − ωv) +
∂2ϕ(r, ω)

∂ω2

∣∣∣∣
ω=ωv

(ω − ωv)
2 + ... (67)

The first derivative of the phase in the Taylor series is called the relative group delay, the
second derivative is the group delay dispersion. When designing a meta-lens, we not only
have to match the phase of the meta-atoms, but also these two quantities, thus gaining
dispersion control via higher orders. We want the focal length not to depend on the fre-
quency, so we can simply determine the first and second order derivatives of the phase
from Equation (66):

∂ϕ(r, ω)

∂ω
= −1

c

(√
r2 + f 2 − f

)
, (68a)

∂2ϕ(r, ω)

∂ω2 = 0 . (68b)
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As we can see, the dispersion vanishes, so this case already describes an achromatic lens.
For the description of diffractive lenses, please refer to [158].

The next step would involve the design of plasmonic waveguides, this time considering
not only the phase, but also its first and second order derivatives, with high emphasize on
the dispersion being as close to zero as possible. The control over all three factors requires
at least three degrees of freedom in the design of the plasmonic waveguides. Apart from
the waveguide widths w, other possible degrees of freedom, that would also influence the
phase, are the waveguide lengths, the material composition, or the sidewall angles. These
are rather hard to control or realize during the fabrication process, and in the first place,
the argumentation behind the inverted lens design was to comply with limitations from
fabrication. Therefore, we only considered one degree of freedom, the width w of the
waveguides. Using any of the other parameters would make the production of the lenses
considerably more challenging.

Apart from missing the relevant degrees of freedom, the current design of the plasmonic
lenses relies on the characteristic Equation (61) that links the waveguide width to its propa-
gation constant. For different geometries, a similar analytical equation would be necessary
to enable a quick design process. Otherwise, the design would have to rely on simulat-
ing phases for different geometries, which might be manageable in a machine learning
context, but would significantly slow down the design process nevertheless.

4.6.2 Cylindrical Plasmonic Meta-Atoms
So far, we only considered rectangular waveguides for SPPs, like depicted in Figure 4.20(a).
They are historically the common way to realize plasmonic nanoslit lenses, as we have
seen in Section 4.2, but they are also inherently selective to states of polarization due to
their geometry. Therefore, it is appealing to also consider circular waveguides, where the
excitation of plasmonic modes under normal incidence does not depend on the polar-

w

l

(a) Rectangular plasmonic
waveguide.

r

(b) Circular plasmonic
waveguide.

Figure 4.20 – Example for a rectangular (a) waveguide of width w and thickness l and a circular
plasmonic waveguide as a hole with radius r in a metallic layer on a substrate.
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ization. A visualization for such a waveguide is given in Figure 4.20(b). In a way similar
to meta-atoms, these waveguides can locally influence the phase of the transmitted light
based on SPP propagation. Thus, we could use them as building blocks for achromatic
plasmonic lenses, for example in windmill-like arrangements similar to those we will dis-
cuss in Section 4.6.3. Although plasmonic lenses based on circular nanoholes have already
been investigated [159, 160, 161, 162, 163, 164], their use for achromatic focusing purposes
is yet to be fully explored. For this concept to work, we have to take a look on the phase
retardation from circular plasmonic waveguides. Their dispersion equation is different
from the characteristic Equation (61) discussed in Section 4.1 [165, 166]:

(
1
ξd

I′v(ξd)

Iv(ξd)
− 1

ξm

K′
v(ξm)

Kv(ξm)

)(
εd
ξd

I′v(ξd)

Iv(ξd)
− εm

ξm

K′
v(ξm)

Kv(ξm)

)
= v2

(
β

k0

)2
(

1
ξ2

d
− 1

ξ2
m

)2

, (69)

for the v-th order hybrid mode and with:

ξm,d = r ·
√

β2 − εm,dk2
0 , (70)

where r is the waveguide radius. Furthermore, Iv and Kv are the modified Bessel functions
of order v, and I′v and K′

v are their derivatives [59, 165]:

Iv(x) =
∞

∑
m=0

1
m!Γ(m + v + 1)

( x
2

)2m+v
, (71a)

Kv(x) =
π

2
I−v(x)− Iv(x)

sin(vπ)
, (71b)

with the Gamma function
Γ(z) =

∫ ∞

0
xz−1e−xdx . (72)
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(a) Circular plasmonic waveguides.
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(b) Rectangular plasmonic waveguides.

Figure 4.21 – Numerical solutions of the characteristic equations for circular (a) and rectan-
gular geometries (b) of resist waveguides in iridium.
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From Equation (69), we can get the characteristic equation for the 0th order TM mode
with v = 0 by using I′0(x) = I1(x) and K′

0(x) = −K1(x):

ε1 I1(ξ1)

ξ1 I0(ξ1)
+

ε2K1(ξ2)

ξ2K0(ξ2)
= 0 . (73)

As the modified Bessel functions depend on the waveguide radius r, Equation (73) has
no analytical solution for r. Thus, we have to determine r numerically for different values
of the propagation constant β [166]. Figure 4.21(a) depicts this numerical solution for an
example where a circular waveguide made of AZ1505 resist in iridium is illuminated with
a wavelength of 532 nm. The plot shows all possible solutions to Equation (73) for wave-
guide radii r between 0 and 2 times the incident wavelength and for propagation constants
β from 0 to 2 times the wavenumber. In this case, only one solution exceeds ε

1/2
d and is

therefore associated with the propagation of SPPs [166]. In addition, we observe no possi-
ble solution for radii below about 97 nm. In comparison, Figure 4.21(b) shows the solution
for a rectangular waveguide under the same conditions with different waveguide widths
w according to Equation (61). Here, we observe only one solution, which is the excited SPP
mode that shows a propagation constant that changes only for small widths.

Another approach to this is the use of FEM simulations to examine the phase delay of cir-
cular waveguides with different widths. Figure 4.22 shows the total transmission and the
relative phase of the electric field through a circular waveguide depending on its radius.
The transmission steadily increases with larger waveguides, but subwavelength structures
even down to 100 nm radius still show some transmission. However, plasmonic excita-
tion could not be observed for such small waveguides as in the rectangular case, and the
transmission vanishes rapidly below about 60 nm radius. Considering this, we only take
radii above 60 nm into account. The relative phase is similar to the numerical solution
of Equation (73) shown in Figure 4.21(a), which is plausible when considering the rela-
tionship between phase and propagation constant from Equation (63a). Both phase and
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Figure 4.22 – Simulated transmission (a) and relative phase (b) for different geometries of
resist waveguides in iridium.
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transmission also show some kind of resonance at a radius of around half the incident
wavelength which is most likely not caused by plasmonic effects.

The phase delays generated by circular plasmonic waveguides of different radii would
be suited for the construction of plasmonic lenses. However, the waveguide dimensions
would be significantly larger compared to the rectangular waveguide design. This results
in less waveguides per lens area and therefore in a worse control of the local phase, which
is adverse for the functionality of the lens.

4.6.3 Merged Plasmonic Lens Design

As explained in Section 4.6.1, the current inverted plasmonic lens design has not enough
addressable degrees of freedom to support a dispersion-free design. A quick solution for
this using rectangular waveguides of varying widths is proposed in Figure 4.23. By simply
merging lenses designed for different wavelengths, the resulting structure would be able
to focus these wavelengths to the same focal spot, albeit with some chromatic aberration
when leaving the focal plane. Dividing the circular lens area in sections undermines its
polarization insensitivity, but a certain symmetry in the division is required to ensure the
formation of a symmetric focal spot. The division in four sections per wavelength thus
constitutes a compromise between symmetry and polarization insensitivity. Another op-
tion is the division into even smaller sections. This would lead to a better performance
under arbitrary states of polarization, but it would also significantly shorten the plas-
monic ridges, which might adversely affect the phase delay produced by this ridge. As
illustrated in Figure 4.23, the sectioning concept could even be transferred to more than
two wavelengths per lens, again while losing polarization insensitivity.

As a first step to see if truncating the waveguides impedes the formation of SPPs, I simu-
lated air-filled waveguides in a 200 nm thick silver layer with different lengths and widths,

(a) One wavelength:
532 nm.

(b) Two wavelengths:
532 nm and 632 nm.

(c) Three wavelengths:
450 nm, 532 nm, and
632 nm.

(d) Four wavelengths:
450 nm, 532 nm,
632 nm, and 1064 nm.

Figure 4.23 – Merged plasmonic lens concepts for one (a), two (b), three (c), and four wave-
lengths (d).
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illuminated at a wavelength of 532 nm. Figure 4.24 shows the intensity and phase of light
that propagated through these waveguides, normalized to unobstructed propagation. Fol-
lowing the discussions in Section 4.1, the width of the waveguide is directly connected to
the phase of the transmitted light, but these considerations always assume an infinite
length. In Figure 4.24(b), we see that only under about 300 nm, the length significantly
influences the phase. In addition, the intensity of the transmitted light significantly drops
towards shorter waveguides, which is most likely caused by a smaller ratio between wave-
guide and computational domain area. It should be noted that these simulations were per-
formed for s-polarized light only, preventing SPP excitation along the length of the wave-
guide, which under illumination with mixed polarization might also happen. Neglecting
curvature for now, a ring-shaped waveguide with a circumference of 300 nm would have
a radius of about 47.75 nm. For the monochromatic lens designs, most rings apart from
the central ridge are longer than this, so waveguide length should be no limiting factor.
However, the merged design as proposed in Figure 4.23 cuts the rings to at least 1/8 of
their initial size. For the smaller, inner rings, this might already lead to a diminished
functionality.

Examining the influence of ridge curvature, I also simulated 18 nm wide waveguides with
a fixed arc length of 900 nm, which should be long enough to not impede its functional-
ity following the results from Figure 4.24, while bending the waveguide to different radii.
Curvature is defined as the reciprocal radius of the curve [167]. A curvature of 0 denotes
a perfectly straight line (infinite radius), and for an arc length of 900 nm, the largest
possible curvature is 6.98 µm−1, which corresponds to a perfect circle with a radius of
about 143.24 nm. Figure 4.25 illustrates different curvatures. Larger curvatures are only
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Figure 4.24 – Simulated intensity (a) and phase (b) of light transmitted through 200 nm thick
plasmonic waveguides of different lengths and widths.
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Figure 4.25 – Curved wave-
guides.

theoretically possible when considering elliptical shapes
which are not of interest here. Figure 4.26 shows the trans-
mission and phase of s- and p-polarized light propagating
through waveguides of different curvature. The transmis-
sion is normalized to the maximum value. As we can see,
for a straight line, no s-polarized light is transmitted be-
cause only p-polarized light excites SPPs as discussed in
Section 4.1. When the waveguide starts to curve, more and
more parts of it shift their orientation so that s-polarized
light also excites SPPs. For curvatures larger than 3.5 µm−1,
where the waveguide is bent to a semicircle, the decline of
p-polarized transmission reaches an inflection point. Fur-
ther bending of the waveguide also shifts the orientation of
parts of it back so that eventually, the amount of p-polarized
transmission increases again. In the end, for the full circle,
both s- and p-polarized light show the same transmission
for reasons of symmetry. The discontinuity right before this

case most likely comes from the small gap between the waveguide ends closing. Similarly,
the phases for s- and p-polarized light are the same for the full circle case. In general,
phases for both polarization cases don’t differ much from each other, but change by up to
0.75π with curvature.

To test these influences in the context of a real lens, a proof-of-concept simulation was
necessary to show if a merged plasmonic lens would really diminish the dispersive be-
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Figure 4.26 – Simulated transmission (a) and phase (b) of light through curved plasmonic
waveguides. The dashed line at 6.98 µm−1 indicates a closed circle.
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haviour. Due to the nature of finite element simulations, performing one such simulation
in three dimensions for one of the cases described in Section 4.4.4 takes a high amount
of computational resources. Time and memory requirements of these simulations heav-
ily depend on the extents of the computational domain as well as the sizes of the smallest
parts of the mesh. Thus, in what follows, we want to observe a minimal proof-of-principle
design which allows us to examine how the lens concept described here would perform
under different incident wavelengths. As the lens layouts used here are optimized for tak-
ing less computational resources, they lack in functionality and generally underperform
in terms of focal spot intensity and size. However, their simulations could be carried out
in reasonable time and deliver information about the dispersive behaviour of the different
lens designs. Figure 4.27 shows the proof-of-concept FEM simulation model of a merged
plasmonic lens for two wavelengths, 532 nm and 632 nm, realized using JCMsuite [141].
An in-detail list of the lens parameters is given in Appendix A.6. To minimize the com-
putational requirements of this model, instead of the inverted lens design, the model has
dielectric AZ1505 ridges completely embedded in a sheet of iridium. As discussed in Sec-
tion 4.4.2, this does not impair the functionality of the lens. A focal length of 0.75 µm and
an aperture of 5 µm were chosen, as these sizes are still manageable in FEM at acceptable
timescales.

Simulations were carried out for incident wavelengths between 507 and 907 nm in steps
of 25 nm. As a direct comparison, a lens with the same dimensions but only for a wave-
length of 532 nm was also simulated. The circular shape of the lenses guarantees a sym-
metric behavior of s- and p-polarized light. Thus, we will only compare simulations for
p-polarized light in what follows. Figure 4.28 illustrates the results from this simulation,
which were gathered by measuring the intensity and position of the produced focal spot
from the simulated electric field. In Figure 4.28(a), we observe a reduction of the overall
intensity to around 2 % of the incident intensity for the merged lens, compared to the
about 5 % of the monochromatic lens. The small values of these intensities are mostly

Figure 4.27 – Numerical model of the merged plasmonic lens proof-of-concept.
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due to the small aperture of the proof-of-principle geometries, which were only 5 µm.
The difference between the intensities of the two lenses is assumed to be the result of the
previous observations from single waveguides. This effect is also enhanced by the small
proof-of-principle geometries. Nevertheless, compared to the monochromatic lens, the
merged lens shows a clearly reduced dependence of the intensity on the wavelength. In-
terestingly, the monochromatic lens has nearly the same intensity for both design wave-
lengths, but this is only an artifact from the lens having an intensity peak at about 580 nm,
which stems from the non-optimized design. The merged two-wavelength lens, however,
does not show this peak and therefore has a more uniform response to the wavelength,
speaking for this approach at least from the perspective of intensity uniformity. The spot
position illustrated in Figure 4.28(b) is more crucial as it represents the lenses’ chromatic
aberration. As observed in Section 4.5.2, the focal spot shifts closer to the lenses with
increasing wavelength. However, this shift is less pronounced for the merged lens com-
pared to the monochromatic lens. Parameters for the parabolic fit are collected in Ta-
ble A.7 in Appendix A.4. Thus, the merged lens’ dispersion is visibly reduced compared to
the monochromatic lens, indicating that this approach indeed helps to create achromatic
plasmonic lenses, albeit at the expense of spot intensity. Further investigations into the
development of working designs are needed, though, as the choice of design wavelengths
for optimal dispersion reduction is likely very crucial. Probably, designs with more sec-
tions of different wavelengths might also help to further reduce dispersion, again at the
expense of intensity. An increasing number of sections might even converge towards a
spiral-like design, although this would be highly challenging to fabricate.
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Figure 4.28 – Spot intensity (a) and position (b) of merged plasmonic lens and comparison
lens depending on the wavelength of the incident light. Dotted lines indicate design values.
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5
Advanced Methods for
Imaging Ellipsometry

The plasmonic lenses from Chapter 4 have the purpose to serve optical na-
nometrology by being designed around their compatibility with both fabrication
and integration in ellipsometric setups. For the latter, it is necessary to char-

acterize their polarization properties, a task which naturally links to the measurement
methods explored in this thesis. Apart from that, this chapter covers the conceptual inte-
gration of plasmonic lenses into ellipsometric setups as well as the numerical evaluation
of Mueller matrix images. Solving the inverse problem is the common way to retrieve ge-
ometrical parameters from ellipsometric measurements, but with imaging ellipsometry,
simulating the necessarily three-dimensional models is still connected to high computa-
tional costs. For this reason, we also look out towards machine learning for inspiration
concerning other evaluation approaches. This chapter starts out with Mueller matrix
measurements performed with the methods described in Chapter 3 on the plasmonic
lenses introduced in Chapter 4. This is followed by simulations of Mueller matrix im-
ages using FEM as well as a numerical experiment on the applicability of inverted plas-
monic lenses in ellipsometric measurements. In the end, we take a look on Haar-like
features of Mueller matrix images to estimate the benefit of ellipsometric evaluations
in the context of machine learning and vice versa.

5.1 Mueller Matrix Images of Fabricated Plasmonic
Lenses

As described in Section 4.1, only TM polarized light can excite SPPs, and light propagating
from a plasmonic lens will inevitably be polarized. The lenses introduced in Section 4.4
have a circular design that is supposed to not only create the functionality of a spheri-
cal lens, but also make up for the polarization selectivity of the plasmonic waveguides.
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The ring-shaped ridges allow for polarized light from arbitrary orientations to generate
SPPs and thus to be focused. It is questionable if the central ridge, which in this case
is a circular waveguide rather than a curved rectangular one, correctly contributes to the
functionality, because circular structures present different SPP propagation behaviour, as
seen in Section 4.6.2. Nevertheless, the presence of focal spots in the measurements from
Section 4.5.2 is evidence for the functionality of the lenses, as long as they have enough
ridges inside their aperture. Now, we want to take a look into their polarization selectiv-
ity by taking Mueller matrix images of the plasmonic lenses. Additionally, we look at
a Mueller matrix focus scan measurement of one lens, with a set of Mueller matrix
images for each focal plane in the measurement series. This way, we can analyze the po-
larization properties of the lens and its focal spot, which is necessary if the lens should be
considered as an optical component used in ellipsometry.

5.1.1 Mueller Matrix Images at Different Wavelengths
Figure 5.1 shows the Mueller matrix images of plasmonic lens OS-00 measured at the
Mueller matrix microscope in transmission mode at 455 nm wavelength. Drift correc-
tion as described in Section 3.5.3 was not applied yet due to the high structure complexity
of the lenses. Effects from thermal drifts appear in this measurement, however, most no-
ticeably in the m14 and m41 elements, which are more likely to be closer to zero without
the drift. As expected, different regions on the lens show different polarizing behavior, de-
pending on their rotation relative to the global orientation of the polarizing system. Aver-
aging the pixels over the lens area only, the mean Mueller matrix of the lens reads:

MOS-00(455 nm) =


1.000 0.027 −0.017 −0.009
0.074 0.399 −0.007 0.006

−0.013 0.036 0.407 0.008
0.055 −0.086 0.004 0.236

 . (74)

Apart from the main diagonal, the local polarization introduced by the lens vanishes for
the most part when averaging over the lens area. Based on this example, Figure 5.1 and its
mean values indicate a sufficient polarization neutrality of the inverted plasmonic lenses,
despite some depolarization, showing in the main diagonal that differs from 1. Therefore,
their potential use in ellipsometric setups is not impaired by the polarization selectivity
of SPPs, as intended by constructing the lenses as concentric rings.

Measurements at the EP4 setup were performed to examine the spectral behavior of the
lenses’ Mueller matrix for wavelengths from 407 to 807 nm for the same lens OS-00. As
an example, Figure 5.2 shows the matrix images of this lens measured at 457 nm wave-
length for both measurement methods at this setup according to Section 3.2.2. Overall,
these measurements show good agreement between each other and with the results from
the Mueller matrix microscope setup. Figures 5.3 and 5.4 collect the Mueller matrix
images at the different wavelengths averaged over the lens areas for the measurements
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Figure 5.1 – Mueller matrix image of plasmonic lens OS-00, measured at the Mueller ma-
trix microscope, without drift correction.
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(b) Measurement with second compensator.

Figure 5.2 – Mueller matrix image of plasmonic lens OS-00, measured at the EP4 setup at
457 nm wavelength in PCSA (a) and PCSCA configuration (b).
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Figure 5.3 – Mean Mueller matrix images of plasmonic lens OS-00, measured at the EP4
imaging ellipsometer without second compensator (PCSA), averaged over the lens area.

4 0 0 6 0 0 8 0 0

� �

0
1

λ /  n m
4 0 0 6 0 0 8 0 0

λ /  n m
4 0 0 6 0 0 8 0 0

λ /  n m
4 0 0 6 0 0 8 0 0

� �

0
1

λ /  n m

� �

0
1

� �

0
1

M
U

EL
LE

R 
M

at
ri

x

� �

0
1

M
U

EL
LE

R 
M

at
ri

x

� �

0
1

4 0 0 6 0 0 8 0 0
� �

0
1

λ /  n m

4 0 0 6 0 0 8 0 0
λ /  n m

4 0 0 6 0 0 8 0 0
λ /  n m

4 0 0 6 0 0 8 0 0
� �

0
1

λ /  n m

Figure 5.4 – Mean Mueller matrix images of plasmonic lens OS-00, measured at the EP4
imaging ellipsometer with second compensator (PCSCA), averaged over the lens area. The
outlier at 782 nm stems from high noise in the images due to low transmittance at this wave-
length.

https://doi.org/10.7795/110.20240308



5.1 Mueller Matrix Images of Fabricated Plasmonic Lenses 89

4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

St
an

da
rd

 D
ev

ia
tio

n

� � /  n m
Figure 5.5 – Standard deviation of the
first matrix element measured in PC-
SCA configuration.

without and with second compensator, respec-
tively. Comparable to the measurement from
the Mueller matrix microscope at 455 nm wave-
length, we see that the mean values show no ma-
jor influence of the whole lens on the polarization,
apart from some depolarization. Slight changes
with the wavelength are observable, but as the lens
was optimized to work at only one wavelength, a
wavelength dependency was expected. It is most
prominent on the main diagonal in Figure 5.4
and follows the observations made in Section 4.5.2
about the dispersion of the lenses. Additionally,
Figure 5.2(b) suggests that the lens was out of fo-
cus during the measurements. Figure 5.5 further
illustrates this by showing the standard deviation
of the first matrix element over the wavelength. Just as with the TSOM measurements in
Section 4.5.2, we see a peak in the standard deviation, indicating a shift of the focal plane.
The reason for this is the long term measurement series during which these images were
taken, revealing a drift of the structure out of focus during longer time periods, even at
the more stable EP4 setup. The impact of focal shifts is further discussed in Section 5.1.2.
Mueller matrix images for the other wavelengths are collected in Appendix B.2.

5.1.2 Mueller Matrix Images at Different Focus Positions
In Section 5.1.1, we saw that for long term measurements, samples examined at the EP4
setup might drift out of focus of the imaging system. Thus, it is reasonable to investi-
gate how much the focus of the recorded images affects the measured Mueller matrix
images. Additionally, to assess the usability of the lenses in ellipsometric setups, we need
to evaluate the polarization of the resulting focal spot. As described in Section 4.5.2, the
focal distance of the fabricated plasmonic lenses was verified via TSOM. In a similar way,
the polarization of the focal spot was evaluated by performing Mueller matrix through-
focus scan measurements on lens OS-21 at its intended wavelength of 532 nm. For each
focal plane in a range of ±200 µm around the focused image of the lens, Mueller matrix
images were recorded, leading to 16 individual image stacks, each representing a focus
scan series of one specific Mueller matrix element.

Figure 5.6 shows the mean Mueller matrix images per focal plane and the respective
standard deviations. Like in Section 5.1.1, we can see from Figure 5.6(a) no major influence
of the focal plane on the mean Mueller matrix elements. The standard deviations in
Figure 5.6(b), however, were affected by the focus scan. The first matrix element doesn’t
show up because of normalization. In all the other matrix elements, the central peak of
the focused image of the lens is clearly visible, but the other two side peaks observed in
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Section 4.5.2 are mostly missing. In some elements, especially m10 and m11, there is a
shoulder to the left of the central peak, but it is too close to be from the focal spot. In
other elements, most noticeably those in the last row or column, small dips very close to
the design focal length are observable. Thus, focused images are very clearly recognizable
from Mueller matrix images, but while the focal spots are slightly visible in the standard
deviation, their polarization should be sufficiently uniform for polarimetric means.
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(a) Mean focus scan Mueller matrix images.
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Figure 5.6 – Mean Mueller matrix images per focal plane (a) and respective standard devia-
tions (b).
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5.2 Numerical Simulations of Mueller Matrix Images
Ellipsometry relies on the solution of the inverse problem: By performing numerical sim-
ulations with varying parameters and comparing them with measurement results, the
geometrical properties of the structure under investigation are successively determined.
While this process is widely used and its implementations are generally fast, numerical
models are usually defined in two dimensions only. Two-dimensional models are evalu-
ated quickly, with single simulations taking rarely more than a second. The computational
costs of such simulations, their duration and memory usage, strongly depend on the sizes
of the computational domain, the mesh, and the layers present in the model, as well as on
the wavelength. More complex structures necessitate higher computational costs.

For imaging ellipsometry, the logical step would be to use three-dimensional models
for the inverse problem, as in the example in Figure 5.7. Structures like those from the
nanoform sample (Section 3.3) are simply impossible to model in two dimensions only.
Nevertheless, even for commercial imaging ellipsometry setups, measurement evaluation
is usually realized by averaging over regions of interest (ROIs) in the image and then eval-
uating the mean matrix values like in conventional ellipsometry. This is easily done and
compatible with existing tools, but it also neglects most advantages of imaging ellipsome-
try, apart from choosing more refined ROIs than would be possible without imaging. In
the example of singular structures as on the nanoform sample, we could just use average
values of ROIs inside and outside the structure to determine, e.g., the depth of the struc-
ture or the material composition of its surrounding. However, edge and corner effects as
observed in Section 3.4 and the structural information coming with them would be com-
pletely unused. Only when solving the inverse problem with three-dimensional models,
these effects are correctly accounted for and contribute to the parameter reconstruction of
the sample. On the downside, three-dimensional simulations require high computational
costs, making them unattractive for larger geometries or parameter spaces.

Figure 5.7 – Example for an FEM
model of a structure from the
nanoform sample.

The simulation of Mueller matrix images forms a
necessary step towards the solution of the inverse
problem in imaging ellipsometry. This section dis-
cusses the numerical simulation of Mueller ma-
trix images of the samples introduced in this the-
sis and the challenges related to them. In addi-
tion, we will look on simulated Mueller matrix im-
ages in combination with plasmonic lenses to esti-
mate the lenses’ influence on an ellipsometric mea-
surement.

https://doi.org/10.7795/110.20240308



92

5.2.1 Simulated Mueller Matrix Images of the Nanoform Sample

For a direct comparison, simulations of the structures from the nanoform sample were
performed with JCMsuite [141]. Figure 5.7 illustrates an example for a model used in the
FEM simulations. It has the same dimensions as specified in the design in Section 3.3.
The source was defined as a plane wave with 0◦ incidence from above at a wavelength of
λ0 = 455 nm. The use of multiple pupil points per illumination source was considered
but rejected. As the measurement system works with nearly collimated light, going from
a plane wave illumination to multiple pupil points would only lead to disproportionately
longer simulation times. The Mueller matrix images were simulated by computing sev-
eral microscope images of the sample at different Stokes vectors for the illumination
and then using these to derive the Mueller matrix elements pixelwise [105]. Figure 5.8
shows examples of the simulated Mueller matrix images for the same structures as in
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Figure 5.8 – Simulated Mueller matrix images of structures A1 (a), A5 (b), A6 (c), and A10 (d)
from the nanoform sample. Further images are given in Appendix B.1.3
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Figure 3.17 in Section 3.4.1. Although the measurements were performed in the perpen-
dicular incidence reflection mode, the measured images resemble those of transmission
measurements, because the light passed a couple of mirrors on its way to the camera,
switching the sign of corresponding matrix elements each time. The simulation does not
take these mirrors into account. Therefore, some simulated Mueller matrix elements
show the opposite sign compared to the measurements, which is most prominent in the
m22 element. Figure 5.9 collects selected measured and simulated Mueller matrix im-
ages for an easier comparison. Measurements from the EP4 setup are not considered here
as the simulations used the same perpendicular incidence illumination as the Mueller
matrix microscope setup. Thus, the oblique angle of incidence from the EP4 setup hinders
a direct comparison to the simulation results. Again, we see distinct polarization effects
at the edges and in the corners of the structures in the drift corrected images. These ef-
fects are confirmed by the simulated images, which show the same kinds of effects in the
same matrix elements as the drift corrected measurement, besides the mentioned sign
difference. Therefore, it is legitimate to assume that these effects do not stem from sam-
ple movements from, e.g., thermal drifts alone and are indeed inherent responses from
the structures themselves. Furthermore, both measurement and simulation are in good
agreement after drift correction, which means that the suppression of drift influences by
algorithmic means is a viable strategy. The only challenge that remains here is that the
drift correction algorithm has to detect structures in the images to work, which has to be
done on a case-by-case basis.

Concerning their metrological use, we want to take a closer look on the additional infor-
mation delivered by off-diagonal matrix images. With the examples of elements m00 and
m13 in Figure 5.9, we see that the microscope images of structures A1 and A5 are barely
distinguishable. Their only difference is a change of their corner radius from 100 nm to
400 nm, which is a feature difference smaller than the resolution of the imaging system
of about 800 nm [102]. However, in element m13, this change is evident from the abso-
lute value of the matrix element in the corners. We see that corners have different signs
depending on their orientation. By computing the mean matrix element values in each
quadrant of the image and then further averaging the values of the quadrants with the
same sign, we can obtain the mean difference between the absolute values in the differ-
ent corners. Figure 5.10 collects these quadrant mean value differences for element m13

for both measured and simulated matrix images. The results are plotted over the ratio
between the corner radius and the structure width, which is 5 µm. Thus, a corner ratio of
0 represents a perfect square while a ratio of 0.5 would be a perfect circle. We see a clear
correlation between the corner radius and the absolute values of the matrix element in
the corners. In the measurements, it is highly influenced by noise, but it follows the same
trend as the simulations. Going from A1 to A5, the absolute value of the matrix element
in the corners changes by 15 % in the measurements and by 85 % in the simulations. The
change from A5 to A10 is with about 160 % in both measurements and simulations even
more pronounced. Other off-diagonal matrix elements also show a sensitivity of the ab-
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Figure 5.9 – Selected measured and simulated Mueller matrix images m00 (a - c), m13 (d - i),
and m23 ( j - o).
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solute values in the corners or on the edges of the structures on the corner radius. Thus,
local geometry features like the orientation of an edge or the curvature of a corner do
have significant connections to the local Mueller matrix, even for sub-wavelength sized
feature changes. These offer information channels exceeding those of microscopy or el-
lipsometry alone, making the model-based evaluation of the measurements promising
for structural parameter retrieval [115, 121].
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Figure 5.10 – Quadrant mean value differences for element m24 for both measured and sim-
ulated matrix images.
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5.2.2 Plasmonic Lens Supported Ellipsometry Simulations
Imaging ellipsometry, as a tool for the local examination of polarizing properties, is suit-
able even for non-periodic samples. As such, advancing the system not only from the
evaluation point of view, but also its hardware, would bring benefits to optical nanome-
trology. Research on making ellipsometric systems more compact is currently on-going
and focuses mostly on using metastructures to replace bulky optical components [168,
169]. After examining design strategies for plasmonic lenses that facilitate the fabrication
process in Chapter 4, we now want to take a look on the integrability of plasmonic lenses
in ellipsometric setups. The idea is to implement lenses with short focal lengths and small
spots by, e.g., replacing the focusing optics on the illumination side of the ellipsometer.
From the results in Section 5.1, we know that the lenses provide sufficient polarization
neutrality to allow for this kind of illumination. The shorter focal lengths would help to
make the setup more compact, while the closer placement to the sample might lead to a
higher sensitivity to topological information, maybe in extreme cases even from near-field
interactions. The much smaller focal spots produced by plasmonic lenses could also be
scanned over the sample, so that even in non-imaging use cases, a SNOM kind of scanning
ellipsometry with possibly sub-wavelength resolution could be realized.

As a proof-of-concept, I performed two-dimensional numerical simulations of a single
gap of varying width in a 500 nm thick layer of silicon. The gap was illuminated by a
plane wave with a wavelength of 532 nm. Figure 5.11(a) shows a sketch of the simulation
layout for this. Similar to the simulations in Section 5.2.1, one-dimensional Mueller
matrix images were computed for this structure for different widths of the gap in the
silicon layer in transmission. The results for this are collected in Figure 5.11(b). In the
m00 element, we see that light can only really pass through the gap when its width comes
close to the wavelength of the incident light. However, we already see strong effects in the
Mueller matrix images, even for widths below the wavelength. Towards the sides, stripes
show up, which are most likely caused by the numerical floating point accuracy.

Next, a plasmonic lens is inserted at focal distance to the gap in the illumination side, as
shown in Figure 5.11(c), so the light is focused on the gap. The lens has the S-01 design as
specified in Section 4.4.4, so it has a focal length of 5 µm with an aperture of 50 µm and is
optimized to work at 532 nm wavelength. After inserting, the gap is now visible in the m00

element even well below the wavelength and the effects in the other matrix elements are
much more pronounced and stretched over the whole image, as depicted in Figure 5.11(d).
Except for the mentioned stripes, the Mueller matrix images in the upper left and lower
right quadrant now show a clear dependency on the gap width. Further analysis towards
this, especially how a lateral scan of the focal spot might enhance correlations between
structure size and the Mueller matrix, are requisite.
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(d) Mueller matrix images of the structure illuminated through a plasmonic
lens.

Figure 5.11 – Simulation layout and results for the plasmonic lens supported ellipsometry
concept, without (a, b) and with a plasmonic lens (c, d).
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5.3 Machine Learning Concepts for Mueller Matrix
Images

Over the last years, the importance of machine learning in research and development
drastically increased. Some attempts have also been made to use artificial intelligence in
the fields of ellipsometry and scatterometry, which is a natural development considering
the large number of simulations that usually have to be performed to solve the inverse
problem [170, 171, 172, 173, 174]. These applications however usually focus on the evalua-
tion of conventional ellipsometric measurements. But typically only certain areas of the
sample are of interest, and especially when dealing with nanostructures, the distinction
between individual structures and whole sample areas becomes crucial. In some cases,
it might not be evident from a microscope image alone which areas are relevant for fur-
ther inspections. This is where imaging ellipsometry is helpful. Mueller matrix images
have proven to be useful to distinguish structures which look similar in pure microscope
images. A potential field of application for this is defect inspection, e.g. when trying to
classify pyramidal defects on GaN surfaces for modern compound semiconductor devices
used in power electronics [175]. Thus, it is reasonable to use Mueller matrix images in
object detection frameworks where the algorithm fails to detect structures based on the
microscope image alone due to the high similarity between different structures. In this
section, we want to approach this topic not from the view of the inverse problem in ellip-
sometry, but starting with how images are usually treated in machine learning, and try to
apply general object detection algorithms to Mueller matrix images.

5.3.1 Wavelets and Features
Digital images are made of pixels with different values. Looking at smaller subsets of im-
ages, their pixel values can show recurring patterns, which are referred to as features. In
face recognition, images are usually analyzed for certain features, the most common ones
being so-called Haar-like features. They derive from Haar wavelets, which are the sim-
plest possible wavelets. Mathematically, they are constructed from a fundamental wavelet
function [176]:

ψ(x) =


1 0 ≤ x < 1

2 ,
−1 1

2 ≤ x < 1 ,
0 else .

(75)

From this, the Haar function is constructed:

ψu,v(x) = 2
u
2 ψ(2ux − v), u, v ∈ Z, x ∈ R . (76)

Figure 5.12 shows examples for different Haar wavelets. Similar to these wavelets, Haar-
like features are defined as certain patterns of lighter and darker valued pixel areas. Most
commonly, a set of five different Haar-like features, presented in Figure 5.13, is used.
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Figure 5.12 – Examples for Haar functions with different parameters u (a) and v (b).

(a) 2x-type (b) 2y-type (c) 3x-type (d) 3y-type (e) 4-type

Figure 5.13 – Haar-like features with two- (a, b), three- (c, d), and four-fold division (e).

These features are characterized by their symmetry type. For example, the 2x- and 2y-type
features in Figures 5.13(a) and (b) describe a light area next to a dark area, with an either
vertical or horizontal interface, respectively. A feature’s numerical value is given by the
difference between the sums of all pixel values in the lighter and darker areas. The most
prominent use of Haar-like features is the Viola-Jones algorithm. It detects objects in
grayscale images after being trained on labeled images as a training set [177, 178].

5.3.2 Application to Mueller Matrix Images
Haar-like features are widely in use to detect objects or faces in images. They reduce com-
plex images to a set of recurring patterns that especially highlight local contrast changes,
which is useful in image classification. In Section 5.2.1, we observed measured and simu-
lated Mueller matrix images of the nanostructures described in Section 3.3. These im-
ages presented symmetries that resemble those of Haar-like features. Thus, examining
these features of Mueller matrix images might help in the detection and localization of
edges or corners of non-periodic nanostructures.
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As a test for the sensitivity of Haar-like features on subwavelength sized changes of the
structure, I computed the features from Figure 5.13 for each subset of pixels in each sim-
ulated Mueller matrix image of nanoform structures with corner radii up to 400 nm.
Although the simulated images used in this analysis had a size of only 21 by 21 pixels, the
number of possible subsets is quite large1. Algorithms like Viola-Jones deal with this is-
sue by using integral images and further machine learning techniques [178]. For now, we
want to focus only on the values of the most prominent features of each type. Figure 5.14
shows these values for each Mueller matrix element depending on the corner radius of
the structure. Due to structure symmetry, values for x- and y-type features are mostly
identical, except for the 3x- and 3y-type features in the matrix elements m01 and m10 as
well as m23 and m32, where they change places respectively. The m00 element, which mostly
represents the overall image intensity, shows comparably low feature values, connected to
the contrast of the structures. Furthermore, with a mean of 0.005 to 0.007 per nanometer,
the feature values only change marginally with the corner radius. In the other matrix ele-
ments however, a higher sensitivity to the corner radius can be observed. The most promi-
nent influence shows up in the m13 and m31 elements, where the 4-type feature nearly
doubles over the corner radius range with an about four times enhanced mean change
per nanometer of 0.028. Other elements also show an enhanced sensitivity, illustrated by
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Figure 5.14 – Most prominent feature values depending on the corner radius.

1The number of all possible image subsets of a u× v pixel sized image can be calculated by ∑v
y=1 ∑u

x=1(x · y),
which is 53361 for a 21 by 21 pixel sized image.
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Table 5.1, which collects the mean changes per nanometer for each matrix element and
all five feature types. The results indicate that Mueller matrix images enable a higher
receptivity for local feature changes compared to microscope images alone and that a
more complete analysis of Haar-like features in Mueller matrix images is a promising
approach for the application of machine learning techniques in ellipsometry [179].

Table 5.1 – Mean change of maximum Haar-like feature values per nanometer.

type m00 m01 m02 m03 m10 m11 m12 m13

2x 0.005 0.011 0.022 0.001 0.011 0.015 0.002 0.015
2y 0.005 0.011 0.022 0.001 0.011 0.015 0.002 0.015
3x 0.006 0.007 0.011 0.002 0.015 0.016 0.003 0.011
3y 0.006 0.015 0.011 0.002 0.007 0.016 0.003 0.011
4 0.008 0.003 0.011 0.002 0.003 0.008 0.004 0.028

type m20 m21 m22 m23 m30 m31 m32 m33

2x 0.022 0.002 0.002 0.020 0.001 0.015 0.020 0.014
2y 0.022 0.002 0.002 0.020 0.001 0.015 0.020 0.014
3x 0.011 0.003 0.000 0.021 0.002 0.011 0.002 0.001
3y 0.011 0.003 0.000 0.002 0.002 0.011 0.021 0.001
4 0.011 0.004 0.005 0.009 0.002 0.028 0.009 0.003
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6
Conclusion

In this work, I discussed ways to improve on imaging Mueller matrix ellipso-
metry measurements and showed that they are able to reveal topological information
about nanostructures, even below the diffraction limit, that would be lost in conven-

tional ellipsometry or light microscopy alone. In doing so, I proved that for the optical
examination of individual nanostructures or structured fields smaller than the illumina-
tion area, imaging ellipsometry is indispensable for modern nanometrology.

The observed effects in Mueller matrix images are largely dependent on the shape and
size of the structures, which I systematically observed on a set of specifically designed
nanostructures. These structures consist of basic geometrical shapes with feature para-
meters varying in ranges from 50 nm to 5 µm. Local polarization effects were apparent in
Mueller matrix images taken at both imaging ellipsometry setups used for the measure-
ments. Therefore, these effects, which bear information from the subwavelength regime,
are accessible in measurements, but at the same time, they are usually disregarded in favor
of evaluation simplicity. Using simulated Mueller matrix images, I showed that, when
used in a machine learning context, images of off-diagonal matrix elements provide in-
formation exceeding those of microscopy images alone, which strengthens the potential
combination of Mueller matrix ellipsometry with machine learning techniques. This
might be achieved either by using neural networks instead of inverse problem solving
for faster evaluations of the measurements or by using the additional information from
Mueller matrix images for a better object recognition. Similar approaches are currently
emerging in biological areas of application like cancer detection (e.g., [180, 181]), and the
results from this thesis are most likely to help establishing this kind of evaluation also
in metrology. Either way, the results show that three-dimensional numerical simulations
are not inevitable and that methods which are already used in other fields can help to
evaluate local polarization effects. A more complete examination of Mueller matrix im-
ages, especially in combination with faster ways to access the structural information they
contain, will unlock the potential of imaging ellipsometry not only for metrological ap-
plications, but also in industrial areas. Possibly, methods like these can be applied in
fields like defect inspection, where a fast evaluation of imaging ellipsometry measure-
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ments will help to both find and characterize defects on samples and wafers. Apart from
the evaluation, a stable image acquisition is key for the success of imaging ellipsometry.
A thermally induced drift of the samples was observed during the measurements in this
thesis. While these drifts are usually not an issue in conventional ellipsometry due to
homogeneous areas under investigation, I demonstrated that sample movement during
the measurement, e.g. due to thermal drifts, might induce effects in Mueller matrix
images that can be misinterpreted for sample influences and therefore pose a potential
source of uncertainty. This has repercussions for applications of imaging ellipsometry,
for example in biological fields where the samples under investigation are more prone
to deliberate movements. Thermal drifts are usually suppressed by stabilizing the lab-
oratory environment or by speeding up the measurement process. As an alternative, I
proposed the application of algorithmic image stabilization techniques based on edge
detection methods. This algorithmic approach has the advantage of being universally
implementable even in already existing setups that weren’t optimized in regards of high
stability or speed without requiring costly modifications. Using this, the measurements
in this thesis could successfully be corrected for the sample drift so far that the measured
images are in good agreement with numerical simulations of the structures. This verified
both, the algorithm being capable of eliminating thermal drifts from the measurements
as well as the remaining polarization effects indeed stemming from the structure under
investigation and not being remnant of the drift.

As another approach to advance modern ellipsometry, I investigated the use of plasmonic
lenses as focusing metastructures. For this purpose, I developed a workflow for the de-
sign and optimization of plasmonic lenses using numerical simulations based on FEM in
combination with optimization algorithms. This enabled the design of plasmonic lenses
with nearly arbitrary focal lengths. The optimization process involved in this was based
on particle swarm optimization, which was chosen due to its typically fast convergence.
Later, Bayesian optimization turned out to be better suited for multi-dimensional pa-
rameter optimization problems [182]. It proved to be advisable to refer to these kinds
of optimization techniques, although for the rather low-dimensional problems shown in
this thesis, PSO was more than sufficient. In addition to the design workflow, I invented
the inverted plasmonic lens, a new concept for plasmonic lenses where, instead of milling
slits into a slab of metal, dielectric ridges are coated with a thin layer of metal. This way,
these lenses can be fabricated by means of electron beam lithography and atomic layer
deposition, making them available for fabrication without the need for focused ion beam
milling and thus enabling higher fabrication rates for possible future industrial produc-
tions. This also weakens one of the advantages of dielectric meta-lenses over plasmonic
ones, namely the lower fabrication complexity. Furthermore, I could show that, for the
lenses to work, they do not require a periodic placement of the ridges as is common in
current literature. Instead, I proved that by placing the ridges in a successive manner,
not only the same focal spots were produced, but the throughput of the lenses could be
maximized. This, too, helps plasmonic lenses staying competitive compared to dielectric
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meta-lenses. The intensity of the focal spot produced by plasmonic lenses still forms a
major challenge, which however might be addressed already by larger sized lens apertures.
Several different lenses with focal lengths from only 5 µm up to 1 mm at wavelengths be-
tween 455 and 1550 nm were fabricated and examined for their polarization using imag-
ing Mueller matrix ellipsometry, which was the ideal tool for this as the lenses were too
small to be analyzed in conventional ellipsometry. Yet, it was important to characterize
their polarization properties to test their suitability for applications in ellipsometric set-
ups. I showed that the concentric rings of the plasmonic lenses indeed produced focal
spots at the expected distances without changing the polarization of the source except
for a small amount of depolarization. Concerning the application of plasmonic lenses in
ellipsometric setups, I showed that when used to focus an illuminating plane wave on a
sample, the sensitivity to even subwavelength sized gaps could be enhanced significantly.
Together with the observed small focal spot sizes, the lenses could potentially be used
in stitching or scanning type measurement methods for specialized forms of structured
illumination to achieve superresolution via higher spatial frequencies. The combination
of subwavelength sized spots and macroscopic working distances, that plasmonic lenses
enable, is a significant advantage over near-field methods that receive similiar sized spots
only for distances in close proximity to the sample. As an extension of the inverted plas-
monic lens design, I compared different concepts for a multispectral realization which
would enable the application of these types of lenses at many different wavelengths. I
proved that the merged lens approach would significantly reduce the dispersion, even for
just two different types of sections. Further investigations about the trade-off between
the dispersion reduction of even more sections and the polarization issues involved are
needed, but literature suggests a trend in research moving away from plasmonic lenses
towards dielectric meta-lenses, due to their flexibility and efficiency [157]. Nevertheless,
the results from this thesis are likely to help strengthen the relevance of plasmonic lenses
both in current metastructure research as well as in ellipsometric applications.

All in all, these contributions create a foundation to help advance modern ellipsometry, to
establish imaging ellipsometry as a tool in nanometrology, and to push optical metrology
further beyond its classical limits to keep up with developments from industrial areas. It is
hard to imagine where semiconductor technology will lead us in the future. But it is save
to say that metrology has to keep pace, one way or another. Prospectively, the results from
this work are going to play a role in the development of imaging ellipsometry towards
metrological applications, making it a viable tool for the characterization of nanoscale
structures like computer chips with inconceivably high processing power. Back when I
had my Tamagotchi, it was hard to imagine having something like a tiny but powerful
computer in my pocket, capable of almost everything, from taking pictures and running
games to just talking to my friends. Teachers used to say we would never have a calculator
with us everywhere we go. How wrong they were. Who knows what we are wrong about
now?
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[117] D. Nečas and P. Klapetek. “Gwyddion: an open-source software for SPM data anal-
ysis”. In: Open Physics 10.1 (2012). doi: 10.2478/s11534-011-0096-2.

[118] P.-E. Danielsson and O. Seger. “Generalized and Separable Sobel Operators”. In:
Machine Vision for Three-Dimensional Scenes. Ed. by Herbert Freeman. Elsevier Sci-
ence & Technology, 1990. Chap. 12. isbn: 9780323150637. url: https : / / www .
ebook.de/de/product/21134811/machine_vision_for_three_dimensional_

scenes.html.

[119] S. Beucher and F. Meyer. “The Morphological Approach to Segmentation: The Wa-
tershed Transformation”. In: Mathematical Morphology in Image Processing. Ed. by
Edward R. Dougherty. CRC Press, 1993. Chap. 12, pp. 433–481. isbn: 9781315214610.
doi: 10.1201/9781482277234-12.

[120] P. Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing in
Python”. In: Nature Methods 17.3 (2020), pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

[121] T. Käseberg et al. “Abbildende Müller-Matrix-Ellipsometrie für die Charakterisier-
ung vereinzelter Nanostrukturen”. In: tm - Technisches Messen 89.6 (2022). doi: 10.
1515/teme-2021-0133.

[122] M. Wurm et al. “Metrology of nanoscale grating structures by UV scatterometry”.
In: Optics Express 25 (3 2017), pp. 2460–2468. doi: 10.1364/OE.25.002460.

https://doi.org/10.7795/110.20240308

https://doi.org/10.7717/peerj.453
https://doi.org/10.1088/0957-0233/18/2/S26
https://doi.org/10.1117/1.3190168
https://doi.org/10.3390/s140100877
https://doi.org/10.3390/s140100877
https://doi.org/10.3389/fphy.2021.814559
https://doi.org/10.3389/fphy.2021.814559
https://doi.org/10.1080/09506608.2016.1156301
https://doi.org/10.2478/s11534-011-0096-2
https://www.ebook.de/de/product/21134811/machine_vision_for_three_dimensional_scenes.html
https://www.ebook.de/de/product/21134811/machine_vision_for_three_dimensional_scenes.html
https://www.ebook.de/de/product/21134811/machine_vision_for_three_dimensional_scenes.html
https://doi.org/10.1201/9781482277234-12
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1515/teme-2021-0133
https://doi.org/10.1515/teme-2021-0133
https://doi.org/10.1364/OE.25.002460


116

[123] Lord Rayleigh. “XVIII. On the passage of electric waves through tubes, or the vi-
brations of dielectric cylinders”. In: The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 43.261 (1897), pp. 125–132. doi: 10.1080/147864497
08620969.

[124] T. W. Ebbesen et al. “Extraordinary optical transmission through sub-wavelength
hole arrays”. In: Nature 391.6668 (1998), pp. 667–669. doi: 10.1038/35570.

[125] B. Prade, J. Y. Vinet, and A. Mysyrowicz. “Guided optical waves in planar heterostruc-
tures with negative dielectric constant”. In: Physical Review B 44.24 (1991), p. 13556.
doi: 10.1103/PhysRevB.44.13556.

[126] F. Aieta et al. “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wave-
lengths Based on Plasmonic Metasurfaces”. In: Nano Letters 12.9 (2012), pp. 4932–
4936. doi: 10.1021/nl302516v.

[127] Python Software Foundation. Floating Point Arithmetic: Issues and Limitations. 2022.
url: https://docs.python.org/3/tutorial/floatingpoint.html (visited on
11/07/2022).

[128] W. Srituravanich et al. “Flying plasmonic lens in the near field for high-speed nano-
lithography”. In: Nature Nanotechnology 3.12 (2008), pp. 733–737. doi: 10 . 1038 /
nnano.2008.303.

[129] Y. Fu and X. Zhou. “Plasmonic Lenses: A Review”. In: Plasmonics 5.3 (2010), pp. 287–
310. doi: 10.1007/s11468-010-9144-9.

[130] Y. Fu et al. “Experimental investigation of superfocusing of plasmonic lens with
chirped circular nanoslits”. In: Optics Express 18.4 (2010), p. 3438. doi: 10.1364/oe.
18.003438.

[131] H. Li et al. “Cascaded plasmonic superlens for far-field imaging with magnification
at visible wavelength”. In: Optics Express 26.8 (2018), p. 10888. doi: 10.1364/oe.26.
010888.

[132] H. Li et al. “Cascaded DBR plasmonic cavity lens for far-field subwavelength imag-
ing at a visible wavelength”. In: Optics Express 26.15 (2018), p. 19574. doi: 10.1364/
oe.26.019574.

[133] D. B. Durham et al. “Plasmonic Lenses for Tunable Ultrafast Electron Emitters at
the Nanoscale”. In: Physical Review Applied 12.5 (2019), p. 054057. doi: 10.1103/
physrevapplied.12.054057.

[134] D. Petit et al. “Nanometer scale patterning using focused ion beam milling”. In:
Review of Scientific Instruments 76.2 (2005), p. 026105. doi: 10.1063/1.1844431.

[135] T. Volkenandt, F. Pérez Willard, and B. Tordoff. “Save your FIB from the hard work
– Large-scale sample prep using a LaserFIB”. In: Microscopy and Microanalysis 27.S1
(2021), pp. 18–19. doi: 10.1017/s1431927621000659.

https://doi.org/10.7795/110.20240308

https://doi.org/10.1080/14786449708620969
https://doi.org/10.1080/14786449708620969
https://doi.org/10.1038/35570
https://doi.org/10.1103/PhysRevB.44.13556
https://doi.org/10.1021/nl302516v
https://docs.python.org/3/tutorial/floatingpoint.html
https://doi.org/10.1038/nnano.2008.303
https://doi.org/10.1038/nnano.2008.303
https://doi.org/10.1007/s11468-010-9144-9
https://doi.org/10.1364/oe.18.003438
https://doi.org/10.1364/oe.18.003438
https://doi.org/10.1364/oe.26.010888
https://doi.org/10.1364/oe.26.010888
https://doi.org/10.1364/oe.26.019574
https://doi.org/10.1364/oe.26.019574
https://doi.org/10.1103/physrevapplied.12.054057
https://doi.org/10.1103/physrevapplied.12.054057
https://doi.org/10.1063/1.1844431
https://doi.org/10.1017/s1431927621000659


Bibliography 117

[136] L. Palasse and P. Nowakowski. “Advances in EBSD sample preparation by broad
ion beam milling”. In: Microscopy and Microanalysis 27.S1 (2021), pp. 1836–1839. doi:
10.1017/s1431927621006711.

[137] T. Käseberg et al. “Inverted plasmonic lens design for nanometrology applications”.
In: Measurement Science and Technology 31.7 (2020), p. 074013. doi: 10.1088/1361-
6501/ab7e6b.

[138] T. Siefke et al. “Fabrication influences on deep-ultraviolet tungsten wire grid po-
larizers manufactured by double patterning”. In: Optics Letters 39.22 (2014), p. 6434.
doi: 10.1364/OL.39.006434.

[139] MicroChemicals GmbH. AZ® 1500-Series. Positive Thin Resists for Wet Etching. url:
https://www.microchemicals.com/products/photoresists/az_1505.html

(visited on 11/03/2022).

[140] A. Lehmuskero, M. Kuittinen, and P. Vahimaa. “Refractive index and extinction
coefficient dependence of thin Al and Ir films on deposition technique and thick-
ness”. In: Optics Express 15.17 (2007), p. 10744. doi: 10.1364/oe.15.010744.

[141] JCMwave GmbH. JCMsuite. The Simulation Suite for Nano-Optics. Berlin, 2001. url:
https://jcmwave.com/ (visited on 09/23/2022).

[142] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Proceedings of ICNN’95
- International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995. isbn:
0-7803-2768-3. doi: 10.1109/icnn.1995.488968.

[143] M. Clerc and J. Kennedy. “The particle swarm - explosion, stability, and conver-
gence in a multidimensional complex space”. In: IEEE Transactions on Evolutionary
Computation 6.1 (2002), pp. 58–73. doi: 10.1109/4235.985692.

[144] G. Brooker. Modern Classical Optics. Oxford Univ. Pr., 2003. 326 pp. isbn: 019859965X.
url: https : / / www . ebook . de / de / product / 2769230 / geoffrey _ brooker _
modern_classical_optics.html.

[145] Y. Yu and H. Zappe. “Effect of lens size on the focusing performance of plasmonic
lenses and suggestions for the design”. In: Optics Express 19.10 (2011), p. 9434. doi:
10.1364/oe.19.009434.

[146] H. Shi and L. J. Guo. “Design of plasmonic near field plate at optical frequency”.
In: Applied Physics Letters 96.14 (2010), p. 141107. doi: 10.1063/1.3378997.

[147] Q. Chen. “Effect of the Number of Zones in a One-Dimensional Plasmonic Zone
Plate Lens: Simulation and Experiment”. In: Plasmonics 6.1 (2010), pp. 75–82. doi:
10.1007/s11468-010-9171-6.

[148] F. M. Dekking et al. A Modern Introduction to Probability and Statistics: Understanding
Why and How. Springer Nature, 2007. 488 pp. isbn: 1852338962. url: https://www.
ebook.de/de/product/3054516/f_m_dekking_c_kraaikamp_h_p_lopuhaae_

l_e_meester_a_modern_introduction_to_probability_and_statistics_

understanding_why_and_how.html.

https://doi.org/10.7795/110.20240308

https://doi.org/10.1017/s1431927621006711
https://doi.org/10.1088/1361-6501/ab7e6b
https://doi.org/10.1088/1361-6501/ab7e6b
https://doi.org/10.1364/OL.39.006434
https://www.microchemicals.com/products/photoresists/az_1505.html
https://doi.org/10.1364/oe.15.010744
https://jcmwave.com/
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/4235.985692
https://www.ebook.de/de/product/2769230/geoffrey_brooker_modern_classical_optics.html
https://www.ebook.de/de/product/2769230/geoffrey_brooker_modern_classical_optics.html
https://doi.org/10.1364/oe.19.009434
https://doi.org/10.1063/1.3378997
https://doi.org/10.1007/s11468-010-9171-6
https://www.ebook.de/de/product/3054516/f_m_dekking_c_kraaikamp_h_p_lopuhaae_l_e_meester_a_modern_introduction_to_probability_and_statistics_understanding_why_and_how.html
https://www.ebook.de/de/product/3054516/f_m_dekking_c_kraaikamp_h_p_lopuhaae_l_e_meester_a_modern_introduction_to_probability_and_statistics_understanding_why_and_how.html
https://www.ebook.de/de/product/3054516/f_m_dekking_c_kraaikamp_h_p_lopuhaae_l_e_meester_a_modern_introduction_to_probability_and_statistics_understanding_why_and_how.html
https://www.ebook.de/de/product/3054516/f_m_dekking_c_kraaikamp_h_p_lopuhaae_l_e_meester_a_modern_introduction_to_probability_and_statistics_understanding_why_and_how.html


118

[149] R. Attota, R. G. Dixson, and A. E. Vladár. “Through-focus Scanning Optical Mi-
croscopy”. In: Proceedings of SPIE 8036, Scanning Microscopies 2011 803610 (2011). doi:
10.1117/12.884706.

[150] Y. Sun, S. Duthaler, and B. J. Nelson. “Autofocusing in Computer Microscopy: Se-
lecting the Optical Focus Algorithm”. In: Microscopy Research and Technique 65 (3
2004), pp. 139–149. doi: 10.1002/jemt.20118.

[151] Z. Zhao et al. “Multispectral optical metasurfaces enabled by achromatic phase
transition”. In: Scientific Reports 5.15781 (2015). doi: 10.1038/srep15781.

[152] J. Hu et al. “Plasmonic Lattice Lenses for Multiwavelength Achromatic Focusing”.
In: ACS Nano 10.11 (2016), pp. 10275–10282. doi: 10.1021/acsnano.6b05855.

[153] O. Avayu et al. “Composite functional metasurfaces for multispectral achromatic
optics”. In: Nature Communications 8.14992 (2017). doi: 10.1038/ncomms14992.

[154] W. Wang et al. “Spin-Selected Dual-Wavelength Plasmonic Metalenses”. In: Nano-
materials 9.5 (2019), p. 761. doi: 10.3390/nano9050761.

[155] Y. Li et al. “Achromatic flat optical components via compensation between struc-
ture and material dispersions”. In: Scientific Reports 6.19885 (2016). doi: 10.1038/
srep19885.

[156] J. Yang et al. “Achromatic flat focusing lens based on dispersion engineering of
spoof surface plasmon polaritons”. In: Applied Physics Letters 110.203507 (2017). doi:
10.1063/1.4983831.

[157] P. Genevet et al. “Recent advances in planar optics: from plasmonic to dielectric
metasurfaces”. In: Optica 4 (1 2017), pp. 139–152. doi: 10.1364/OPTICA.4.000139.

[158] W.-T. Chen et al. “A broadband achromatic metalens for focusing and imaging in
the visible”. In: Nature Nanotechnology 13.3 (2018), pp. 220–226. doi: 10.1038/s415
65-017-0034-6.

[159] F. M. Huang et al. “Focusing of light by a nanohole array”. In: Applied Physics Letters
90.091119 (2007). doi: 10.1063/1.2710775.

[160] Y. Fu et al. “Nanopinholes-Based Optical Superlens”. In: Research Letters in Physics
2008, 148505 (2008). doi: 10.1155/2008/148505.

[161] Z. Shi et al. “Polarization Effect on Superfocusing of a Plasmonic Lens Structured
with Radialized and Chirped Elliptical Nanopinholes”. In: Plasmonics 5 (2010), pp. 175–
182. doi: 10.1007/s11468-010-9131-1.

[162] Y. Zhang, Y. Fu, and X. Zhou. “Investigation of Metallic Elliptical Nano-Pinholes
Structure-Based Plasmonic Lenses: From Design to Testing”. In: Insciences Journal
1.1 (2011), pp. 18–29. doi: 10.5640/insc.010118.

[163] E. Seo et al. “Far-field control of focusing plasmonic waves through disordered
nanoholes”. In: Optics Letters 39.20 (2014). doi: 10.1364/OL.39.005838.

https://doi.org/10.7795/110.20240308

https://doi.org/10.1117/12.884706
https://doi.org/10.1002/jemt.20118
https://doi.org/10.1038/srep15781
https://doi.org/10.1021/acsnano.6b05855
https://doi.org/10.1038/ncomms14992
https://doi.org/10.3390/nano9050761
https://doi.org/10.1038/srep19885
https://doi.org/10.1038/srep19885
https://doi.org/10.1063/1.4983831
https://doi.org/10.1364/OPTICA.4.000139
https://doi.org/10.1038/s41565-017-0034-6
https://doi.org/10.1038/s41565-017-0034-6
https://doi.org/10.1063/1.2710775
https://doi.org/10.1155/2008/148505
https://doi.org/10.1007/s11468-010-9131-1
https://doi.org/10.5640/insc.010118
https://doi.org/10.1364/OL.39.005838


Bibliography 119

[164] J. Zhang et al. “Plasmonic focusing lens based on single-turn nano-pinholes array”.
In: Optics Express 23 (14 2015), pp. 17883–17891. doi: 10.1364/OE.23.017883.

[165] B. Sturman, E. Podivilov, and M. Gorkunov. “Eigenmodes for metal-dielectric light-
transmitting nanostructures”. In: Physical Review B 76.12 (2007), p. 125104. doi: 10.
1103/physrevb.76.125104.

[166] S. I. Bozhevolnyi. Plasmonic Nanoguides and Circuits. Pan Stanford Publishing, 2008.
isbn: 978-981-4241-32-8. doi: 10.1364/meta_plas.2008.mwd3.

[167] I. N. Bronstein et al. Taschenbuch der Mathematik. 8th ed. Wissenschaftlicher Verlag
Harri Deutsch GmbH, Frankfurt am Main, 2012. isbn: 978-3-8171-2008-6.

[168] C. Stock et al. “Fully integrated stokes snapshot imaging polarimeter”. In: EPJ Web
of Conferences 238 (2020), p. 06018. doi: 10.1051/epjconf/202023806018.

[169] A. Zaidi et al. Metasurface-enabled compact, single-shot and complete Mueller matrix imag-
ing. 2023. doi: 10.48550/arXiv.2305.08704. arXiv: 2305.08704 [physics.optics].
url: https://arxiv.org/abs/2305.08704.

[170] I. Gereige et al. “Recognition of diffraction-grating profile using a neural network
classifier in optical scatterometry”. In: Journal of the Optical Society of America A 25.7
(2008), p. 1661. doi: 10.1364/josaa.25.001661.

[171] Y. Quéau et al. “Learning to classify materials using Mueller imaging polarime-
try”. In: Fourteenth International Conference on Quality Control by Artificial Vision. Ed.
by Christophe Cudel, Stéphane Bazeille, and Nicolas Verrier. SPIE, July 2019. doi:
10.1117/12.2516351.

[172] J. Liu et al. “Machine learning powered ellipsometry”. In: Light: Science and Applica-
tions 10.1 (2021). doi: 10.1038/s41377-021-00482-0.

[173] A. Arunachalam et al. “Machine learning approach to thickness prediction from
in situ spectroscopic ellipsometry data for atomic layer deposition processes”. In:
Journal of Vacuum Science and Technology A 40.012405 (2022). doi: 10.1116/6.00014
82.

[174] S. Liu et al. “Machine learning aided solution to the inverse problem in optical
scatterometry”. In: Measurement 191.110811 (2022). doi: 10.1016/j.measurement.
2022.110811.

[175] Y. Zhong et al. “A review on the GaN-on-Si power electronic devices”. In: Funda-
mental Research 2 (3 2022), pp. 462–475. doi: 10.1016/j.fmre.2021.11.028.

[176] A. Haar. “Zur Theorie der orthogonalen Funktionensysteme”. In: Mathematische An-
nalen 71 (1911), pp. 38–53. doi: 10.1007/BF01456927.

[177] C. P. Papageorgiou, M. Oren, and T. Poggio. “A general framework for object detec-
tion”. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271)
(1998), pp. 555–562. doi: 10.1109/ICCV.1998.710772.

https://doi.org/10.7795/110.20240308

https://doi.org/10.1364/OE.23.017883
https://doi.org/10.1103/physrevb.76.125104
https://doi.org/10.1103/physrevb.76.125104
https://doi.org/10.1364/meta_plas.2008.mwd3
https://doi.org/10.1051/epjconf/202023806018
https://doi.org/10.48550/arXiv.2305.08704
https://arxiv.org/abs/2305.08704
https://arxiv.org/abs/2305.08704
https://doi.org/10.1364/josaa.25.001661
https://doi.org/10.1117/12.2516351
https://doi.org/10.1038/s41377-021-00482-0
https://doi.org/10.1116/6.0001482
https://doi.org/10.1116/6.0001482
https://doi.org/10.1016/j.measurement.2022.110811
https://doi.org/10.1016/j.measurement.2022.110811
https://doi.org/10.1016/j.fmre.2021.11.028
https://doi.org/10.1007/BF01456927
https://doi.org/10.1109/ICCV.1998.710772


120

[178] P. Viola and M. Jones. “Rapid Object Detection Using a Boosted Cascade of Simple
Features”. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (2001).

[179] T. Käseberg et al. “Nanoform evaluation approach using Mueller matrix microscopy
and machine learning concepts”. In: EPJ Web of Conferences 266 (2022). Ed. by M. F.
Costa et al., p. 10007. doi: 10.1051/epjconf/202226610007.

[180] T.-T.-H. Pham et al. “Combined Mueller matrix imaging and artificial intelligence
classification framework for Hepatitis B detection”. In: Journal of Biomedical Optics
27.7 (2022). doi: 10.1117/1.JBO.27.7.075002.

[181] C. Rodríguez et al. “Optimizing the classification of biological tissues using ma-
chine learning models based on polarized data”. In: Journal of Biophotonics 16 (4
2023). doi: 10.1002/jbio.202200308.

[182] P.-I. Schneider et al. “Benchmarking five global optimization approaches for nano-
optical shape optimization”. In: ACS Photonics 6.11 (2019), pp. 2726–2733. doi: 10.
1021/acsphotonics.9b00706.

[183] W. A. Shurcliff and S. S. Ballard. Polarized Light. Princeton, New Jersey: D. van Nos-
trand Company, 1964.

https://doi.org/10.7795/110.20240308

https://doi.org/10.1051/epjconf/202226610007
https://doi.org/10.1117/1.JBO.27.7.075002
https://doi.org/10.1002/jbio.202200308
https://doi.org/10.1021/acsphotonics.9b00706
https://doi.org/10.1021/acsphotonics.9b00706


List of Figures

1.1 Tamagotchi and smartphone. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Polarization ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 States of polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 TM and TE polarized light . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 SPPs at the interface between two materials. . . . . . . . . . . . . . . . . . . 17
2.5 SPP dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Examples for polarization state analyzers. . . . . . . . . . . . . . . . . . . . . 23
3.2 Intensity modulation due to rotating optical elements. . . . . . . . . . . . . 23
3.3 Mueller matrix ellipsometry configurations . . . . . . . . . . . . . . . . . 25
3.4 Error compensation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Conventional spectroscopic ellipsometry measurement example. . . . . . . 29
3.6 Imaging ellipsometry in PCSCA configutation. . . . . . . . . . . . . . . . . . 30
3.7 Mueller matrix microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Custom Accurion EP4 imaging ellipsometer. . . . . . . . . . . . . . . . . . . 33
3.9 Nanoform structures for investigations on imaging ellipsometry. . . . . . . 34
3.10 Nanoform test wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.11 SEM images of nanoform structures . . . . . . . . . . . . . . . . . . . . . . . 35
3.12 SEM evaluation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13 SEM corner evaluation example . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.14 SEM image evaluation results. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.15 Nanoform wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.16 AFM images of selected structures from the nanoform sample. . . . . . . . 40
3.17 Row A measured at Mueller matrix microscope setup, corrected for drift. 42
3.18 Detailed view of drift corrected Mueller matrix element images. . . . . . 43
3.19 Structures of row C measured at the Mueller matrix microscope setup. . 44
3.20 Row A measured at the EP4 setup in PCSCA configuration. . . . . . . . . . 45
3.21 Nanoform sample measurements at EP4 setup in PCSA configuration. . . . 46
3.22 Averaged Mueller matrices over wavelength and corner radius. . . . . . . 47
3.23 Blur during measurement at Mueller matrix microscope. . . . . . . . . . 48
3.24 Thermal influences at Mueller matrix microscope, correlation matrix. . . 49
3.25 Thermal drift at Mueller matrix microscope setup. . . . . . . . . . . . . . 49

https://doi.org/10.7795/110.20240308



122

3.26 Thermal influences at EP4, correlation matrix. . . . . . . . . . . . . . . . . . 50
3.27 Thermal drift at EP4 setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.28 Drift correction algorithm, flow chart. . . . . . . . . . . . . . . . . . . . . . . 51
3.29 Mueller matrix images of A10, before and after drift correction. . . . . . . 52
3.30 Intentionally moving sample during Mueller matrix imaging. . . . . . . . 53

4.1 Interfaces between media with different permittivities. . . . . . . . . . . . . 57
4.2 Phase distribution and waveguide width. . . . . . . . . . . . . . . . . . . . . 58
4.3 Schematics of conventional and inverted plasmonic lenses. . . . . . . . . . 60
4.4 Intensity of conventional and inverted plasmonic lenses. . . . . . . . . . . . 60
4.5 Influence of waveguide length and aperture on the focal spot. . . . . . . . . 62
4.6 Particle swarm optimization for fixed ridge parameters. . . . . . . . . . . . 64
4.7 Intensity and FWHM of focal spot for different lens thicknesses l. . . . . . 64
4.8 SPP decay lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.9 Focal spot intensity and FWHM depending on coating thickness. . . . . . 66
4.10 Particle swarm optimization for the coating thickness dc. . . . . . . . . . . 66
4.11 Two types of ridge arrangement . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.12 Box plots of the ridge distances (upper) and widths (lower). . . . . . . . . . 70
4.13 Ridge coverage of the area of the final plasmonic lens designs. . . . . . . . 70
4.14 Focal spot intensity under Gaussian distribution of ridges. . . . . . . . . . 71
4.15 Simulated intensity and FWHM of the focal spot of a plasmonic lens. . . . 72
4.16 Inverted plasmonic lens chip design. . . . . . . . . . . . . . . . . . . . . . . 73
4.17 Plasmonic lens SEM images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.18 Example TSOM measurement of plasmonic lens OS-11. . . . . . . . . . . . 74
4.19 Wavelength dependent distances of peaks in the standard deviation. . . . . 75
4.20 Circular plasmonic waveguide comparison. . . . . . . . . . . . . . . . . . . 77
4.21 Numerical solutions of the characteristic equations for waveguides. . . . . 78
4.22 Simulated transmission and phase for resist waveguides in iridium. . . . . 79
4.23 Merged plasmonic lens concepts for up to four wavelengths. . . . . . . . . 80
4.24 Simulated intensity and phase for different lengths and widths. . . . . . . . 81
4.25 Curved waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.26 Simulated transmission and phase of light through curved waveguides. . . 82
4.27 Numerical model of the merged plasmonic lens proof-of-concept. . . . . . 83
4.28 Spot intensity and position of merged plasmonic lens. . . . . . . . . . . . . 84

5.1 Image of a plasmonic lens at Mueller matrix microscope. . . . . . . . . . 87
5.2 Mueller matrix image of plasmonic lens OS-00 at EP4. . . . . . . . . . . . 87
5.3 Mean Mueller matrix images of plasmonic lens OS-00, PCSA . . . . . . . 88
5.4 Mean Mueller matrix images of plasmonic lens OS-00, PCSCA . . . . . . 88
5.5 Standard deviation of the first matrix element in PCSCA configuration . . 89
5.6 Mean Mueller matrix images and standard deviations per focal plane. . . 90
5.7 FEM model nanoform sample. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

https://doi.org/10.7795/110.20240308



List of Figures 123

5.8 Simulated Mueller matrix images of row A structures. . . . . . . . . . . . 92
5.9 Selected measured and simulated Mueller matrix images. . . . . . . . . . 94
5.10 Quadrant mean value differences. . . . . . . . . . . . . . . . . . . . . . . . . 95
5.11 Simulation of plasmonic lens supported ellipsometry concept. . . . . . . . 97
5.12 Examples for Haar functions with different parameters u (a) and v (b). . . 99
5.13 Haar-like features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.14 Most prominent feature values depending on the corner radius. . . . . . . 100

B.1 Measured Mueller matrix images of row A without drift correction, 1. . . 156
B.2 Measured Mueller matrix images of row A without drift correction, 2. . . 157
B.3 Measured Mueller matrix images of row A with drift correction, 1. . . . . 158
B.4 Measured Mueller matrix images of row A with drift correction, 2. . . . . 159
B.5 Simulated Mueller matrix images of row A, part 1. . . . . . . . . . . . . . . 160
B.6 Simulated Mueller matrix images of row A, part 2. . . . . . . . . . . . . . . 161
B.7 Measured Mueller matrix images of row C without drift correction, part 1. 162
B.8 Measured Mueller matrix images of row C without drift correction, part 2. 163
B.9 Measured Mueller matrix images at different wavelengths, part 1. . . . . . 164
B.10 Measured Mueller matrix images at different wavelengths, part 2. . . . . . 165
B.11 Measured Mueller matrix images at different wavelengths, part 1. . . . . . 166
B.12 Measured Mueller matrix images at different wavelengths, part 2. . . . . . 167

https://doi.org/10.7795/110.20240308



124

https://doi.org/10.7795/110.20240308



List of Tables
3.1 Structure specifications of the designed nanoform structures. . . . . . . . . 34
3.2 Selected structures and AFM measurement results. . . . . . . . . . . . . . . 39

4.1 Plasmonic lens labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Optimal plasmonic lens thicknesses. . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Mean change of maximum Haar-like feature values per nanometer. . . . . 101

A.1 Overview of relevant Jones and Mueller matrices [58, 70, 183]. . . . . . . . 129
A.2 Fit parameters of Figure 3.14(a). . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.3 Fit parameters of Figure 3.14(c). . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.4 Fit parameters of Figure 3.14(b). . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.5 Fit parameters of Figure 3.14(d). . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.6 Fit parameters of Figure 3.25(a). . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.7 Fit parameters of Figure 4.28(b). . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.8 Design parameters of inverted plasmonic lenses . . . . . . . . . . . . . . . . 146
A.9 Periodic ridge arrangement, 5 µm focal length, part 1. . . . . . . . . . . . . 147
A.10 Periodic ridge arrangement, 5 µm focal length, part 2. . . . . . . . . . . . . 148
A.11 Periodic ridge arrangement, 10 µm focal length, part 1. . . . . . . . . . . . . 149
A.12 Periodic ridge arrangement, 10 µm focal length, part 2. . . . . . . . . . . . . 150
A.13 Successive ridge arrangement, 5 µm focal length. . . . . . . . . . . . . . . . 151
A.14 Successive ridge arrangement, 10 µm focal length. . . . . . . . . . . . . . . . 152
A.15 Successive ridge arrangement, 100 µm focal length. . . . . . . . . . . . . . . 153
A.16 Successive ridge arrangement, 1000 µm focal length. . . . . . . . . . . . . . 154
A.17 Proof-of-concept merged plasmonic lens parameters. . . . . . . . . . . . . . 154

https://doi.org/10.7795/110.20240308



126

https://doi.org/10.7795/110.20240308



A
Mathematical Details and
Derivations

A.1 Derivation of the Wave Equation and the
Helmholtz Equation

We start from Maxwell’s equations (1), from the law of induction (1c) to be specific, which
we apply the curl operator to:

∇×∇× E⃗ = ∇×
(
−∂B⃗

∂t

)
(77a)

= − ∂

∂t

(
∇× B⃗

)
. (77b)

Then we insert Equation (1d):

= − ∂

∂t

(
µ⃗j + εµ

∂E⃗
∂t

)
(78a)

= −µ
∂⃗j
∂t

− εµ
∂2E⃗
∂t2 . (78b)

We use the proportionality between current density and electric field from Equation (3):

= −µσ
∂E⃗
∂t

− εµ
∂2E⃗
∂t2 . (79)

For the left side, we use the following vector identity [167]:

∇×∇× E⃗ = ∇(∇ · E⃗)−∇2E⃗. (80)
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According to Equation (1a), the divergence of the electric field is a constant and the gradi-
ent of a constant vanishes [167], thus:

−∇2E⃗ = −µσ
∂E⃗
∂t

− εµ
∂2E⃗
∂t2 (81a)

1
εµ

∇2E⃗ =
σ

ε

∂E⃗
∂t

+
∂2E⃗
∂t2 (81b)

c2∇2E⃗ =
σ

ε

∂E⃗
∂t

+
∂2E⃗
∂t2 , (81c)

which is the wave equation in a conducting medium as stated in Equation (2).

In the charge- and current-free case (σ = 0 and j⃗ = 0⃗), the wave equation simplifies
to:

∇2E⃗ − 1
c2

∂2E⃗
∂t2 = 0. (82)

We can assume that the fields are time harmonic, so E⃗(⃗r, t) = E⃗(⃗r)e−iωt. Using this ansatz,
we get the Helmholtz equation [46, 61]:

∇2E⃗(⃗r) + k2
0E⃗(⃗r) = 0. (83)
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A.2 Mueller Matrices

Table A.1: Overview of relevant Jones and Mueller matrices [58, 70, 183].

Element Jones matrix Mueller matrix

Free space
(

1 0
0 1

) 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Filter, degree of transmission κ

(√
κ 0

0
√

κ

) 
κ 0 0 0
0 κ 0 0
0 0 κ 0
0 0 0 κ



Polarizer, linear horizontal
(

1 0
0 0

)
1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



Polarizer, linear vertical
(

0 0
0 1

)
1
2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0



Polarizer, linear ±45◦ 1
2

(
1 ±1
±1 1

)
1
2


1 0 ±1 0
0 0 0 0
±1 0 1 0
0 0 0 0



Polarizer, right- (+) and left-
circular (-)

1
2

(
1 ±i
∓i 1

)
1
2


1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1



Half-wave plate, fast axis at ±45◦
(

0 1
1 0

) 
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



Quarter-wave plate, fast axis ver-
tical (+) and horizontal (-)

(
e∓i π

4 0
0 e±i π

4

) 
1 0 0 0
0 1 0 0
0 0 0 ∓1
0 0 ±1 0
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A.3 Rotating Retarder Mueller Matrix Ellipsometry

A.3.1 Transition from Fourier Coefficients to Mueller Matrix
Elements

Section 3.1.3 focuses on the dual-rotating retarder configuration, or PCSCA. For this the-
sis, it is the more interesting case as it enables us to measure the full Mueller matrix.
However, the EP4 setup described in Section 3.2.2 also uses the PCSA configuration with
only one compensator. Hence, for the sake of completion, this configuration will be dis-
cussed here, too.

PCSCA Configuration

In general, for any ellipsometric system, the modulated intensity measured at the detector
comes from the Mueller matrix M of the sample, the Mueller matrix of the PSA, and
the Stokes vector coming from the PSG. As we are only interested in the intensity, we can
omit the other rows [70]:

S⃗′ = MPSA · M · S⃗PSG, (84a)
I
•
•
•

 =


ma,0 ma,1 ma,2 ma,3

• • • •
• • • •
• • • •

 ·


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 ·


Sg,0

Sg,1

Sg,2

Sg,3

 , (84b)

⇒ I =
3

∑
u,v=0

ma,umuvSg,v =
3

∑
u,v=0

µuvmuv, (84c)

with µuv = ma,uSg,v. We can specify this further, for the PCSCA configuration:

S⃗′ = MPSA · M · S⃗PSG (85a)
= Mpol · R(−θA) · Mλ/4 · R(θA) · M · R(−θG) · Mλ/4 · R(θG) · Mpol · S⃗. (85b)

The retarders of the PSA and PSG need to rotate with different speeds to obtain enough
modulation for the Fourier analysis. Though many different ratios for their speeds are
possible, we want to consider only the lowest possible one, which is 5:1 [70], so θG = θ and
θA = 5θ. Given that the source light is generally unpolarized and using trigonometric
identities, we get:

https://doi.org/10.7795/110.20240308



A.3 Rotating Retarder Mueller Matrix Ellipsometry 131

S⃗PSG = R(−θ) · Mλ/4 · R(θ) · Mpol · S⃗ (86a)

= R(−θ) · Mλ/4 · R(θ) · 1
2

( 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

)
·
( 1

0
0
0

)
(86b)

= R(−θ) · Mλ/4 ·
(

1 0 0 0
0 cos(2θ) sin(2θ) 0
0 − sin(2θ) cos(2θ) 0
0 0 0 1

)
· 1

2

( 1
1
0
0

)
(86c)

= R(−θ) ·
( 1 0 0 0

0 1 0 0
0 0 0 1
0 0 −1 0

)
· 1

2

(
1

cos(2θ)
− sin(2θ)

0

)
(86d)

=

(
1 0 0 0
0 cos(−2θ) sin(−2θ) 0
0 − sin(−2θ) cos(−2θ) 0
0 0 0 1

)
· 1

2

(
1

cos(2θ)
0

sin(2θ)

)
(86e)

=
1
2

( 1
cos2(2θ)

sin(2θ) cos(2θ)
sin(2θ)

)
, (86f )

and:

MPSA = Mpol · R(−5θ) · Mλ/4 · R(5θ) (87a)

= Mpol · R(−5θ) ·
( 1 0 0 0

0 1 0 0
0 0 0 1
0 0 −1 0

)
·
(

1 0 0 0
0 cos(10θ) sin(10θ) 0
0 − sin(10θ) cos(10θ) 0
0 0 0 1

)
(87b)

= Mpol ·
(

1 0 0 0
0 cos(−10θ) sin(−10θ) 0
0 − sin(−10θ) cos(−10θ) 0
0 0 0 1

)
·
(

1 0 0 0
0 cos(10θ) sin(10θ) 0
0 0 0 1
0 sin(10θ) − cos(10θ) 0

)
(87c)

=
1
2

( 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

)
·

 1 0 0 0
0 cos2(10θ) sin(10θ) cos(10θ) − sin(10θ)

0 sin(10θ) cos(10θ) sin2(10θ) cos(10θ)
0 sin(10θ) − cos(10θ) 0

 (87d)

=
1
2

(
1 cos2(10θ) sin(10θ) cos(10θ) − sin(10θ)

1 cos2(10θ) sin(10θ) cos(10θ) − sin(10θ)
0 0 0 0
0 0 0 0

)
. (87e)

When we neglect the factors of 1/2 because they are just intensity scaling factors, we get
for the respective vectors of PSA and PSG:(

ma,0 ma,1 ma,2 ma,3

)
=
(

1 cos2(10θ) sin(10θ) cos(10θ) − sin(10θ)
)

, (88)
Sg,0

Sg,1

Sg,2

Sg,3

 =


1

cos2(2θ)

sin(2θ) cos(2θ)

sin(2θ)

 . (89)
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Thus, with µuv = ma,uSg,v, the 16 elements of µuv are:

µ00 = 1,

µ01 = cos2(2θ) = 1
2 +

1
2 cos(4θ),

µ02 = sin(2θ) cos(2θ) = 1
2 sin(4θ),

µ03 = sin(2θ),

µ10 = cos2(10θ) = 1
2 +

1
2 cos(20θ),

µ11 = cos2(2θ) cos2(10θ) = 1
4 +

1
4 cos(4θ) + 1

4 cos(20θ)

+ 1
8 cos(16θ) + 1

8 cos(24θ),
µ12 = sin(2θ) cos(2θ) cos2(10θ) = 1

4 sin(4θ)− 1
8 sin(16θ) + 1

8 sin(24θ),

µ13 = sin(2θ) cos2(10θ) = 1
2 sin(2θ)− 1

4 sin(18θ) + 1
4 sin(22θ),

µ20 = sin(10θ) cos(10θ) = 1
2 sin(20θ),

µ21 = cos2(2θ) sin(10θ) cos(10θ) = − 1
8 sin(16θ) + 1

4 sin(20θ) + 1
8 sin(24θ),

µ22 = sin(2θ) cos(2θ) sin(10θ) cos(10θ) = 1
8 cos(16θ)− 1

8 cos(24θ),

µ23 = sin(2θ) sin(10θ) cos(10θ) = 1
4 cos(18θ)− 1

4 cos(22θ),

µ30 = − sin(10θ),

µ31 = − cos2(2θ) sin(10θ) = − 1
4 sin(6θ)− 1

2 sin(10θ)− 1
4 sin(14θ),

µ32 = − sin(2θ) cos(2θ) sin(10θ) = − 1
4 cos(6θ) + 1

4 cos(14θ),

µ33 = − sin(2θ) sin(10θ) = − 1
2 cos(8θ) + 1

2 cos(12θ).
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Next, we write out the intensity and rearrange it for the different harmonics:

I =
3

∑
u,v=0

µuvmuv

=µ00m00 + µ01m01 + µ02m02 + µ03m03 + µ10m10 + µ11m11 + µ12m12 + µ13m13

+ µ20m20 + µ21m21 + µ22m22 + µ23m23 + µ30m30 + µ31m31 + µ32m32 + µ33m33

=m00 +
1
2 m01 +

1
2 m01 cos(4θ) + 1

2 m02 sin(4θ) + m03 sin(2θ) + 1
2 m10 +

1
2 m10 cos(20θ)

+ 1
4 m11 +

1
4 m11 cos(4θ) + 1

4 m11 cos(20θ) + 1
8 m11 cos(16θ) + 1

8 m11 cos(24θ)

+ 1
4 m12 sin(4θ)− 1

8 m12 sin(16θ) + 1
8 m12 sin(24θ) + 1

2 m13 sin(2θ)− 1
4 m13 sin(18θ)

+ 1
4 m13 sin(22θ) + 1

2 m20 sin(20θ)− 1
8 m21 sin(16θ) + 1

4 m21 sin(20θ) + 1
8 m21 sin(24θ)

+ 1
8 m22 cos(16θ)− 1

8 m22 cos(24θ) + 1
4 m23 cos(18θ)− 1

4 m23 cos(22θ)− m30 sin(10θ)

− 1
4 m31 sin(6θ)− 1

2 m31 sin(10θ)− 1
4 m31 sin(14θ)− 1

4 m32 cos(6θ) + 1
4 m32 cos(14θ)

− 1
2 m33 cos(8θ) + 1

2 m33 cos(12θ)

=
(
m00 +

1
2 m01 +

1
2 m10 +

1
4 m11

)
+
(
m03 +

1
2 m13

)
sin(2θ)

+
( 1

2 m01 +
1
4 m11

)
cos(4θ) +

( 1
2 m02 +

1
4 m12

)
sin(4θ)

+
(
− 1

4 m32
)

cos(6θ) +
(
− 1

4 m31
)

sin(6θ) +
(
− 1

2 m33
)

cos(8θ)

+
(
−m30 − 1

2 m31
)

sin(10θ) +
( 1

2 m33
)

cos(12θ)

+
( 1

4 m32
)

cos(14θ) +
(
− 1

4 m31
)

sin(14θ)

+
( 1

8 m11 +
1
8 m22

)
cos(16θ) +

(
− 1

8 m12 − 1
8 m21

)
sin(16θ)

+
( 1

4 m23
)

cos(18θ) +
(
− 1

4 m13
)

sin(18θ)

+
( 1

2 m10 +
1
4 m11

)
cos(20θ) +

( 1
2 m20 +

1
4 m21

)
sin(20θ)

+
(
− 1

4 m23
)

cos(22θ) +
( 1

4 m13
)

sin(22θ)

+
( 1

8 m11 − 1
8 m22

)
cos(24θ) +

( 1
8 m12 +

1
8 m21

)
sin(24θ)

=a0 + b1 sin(2θ) + a2 cos(4θ) + b2 sin(4θ) + a3 cos(6θ) + b3 sin(6θ) + a4 cos(8θ)

+ b5 sin(10θ) + a6 cos(12θ) + a7 cos(14θ) + b7 sin(14θ) + a8 cos(16θ) + b8 sin(16θ)

+ a9 cos(18θ) + b9 sin(18θ) + a10 cos(20θ) + b10 sin(20θ) + a11 cos(22θ) + b11 sin(22θ)

+ a12 cos(24θ) + b12 sin(24θ)

=a0 +
12

∑
j=1

(
aj cos(2jθ) + bj sin(2jθ)

)
= I(θ).
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Thus, we obtained expressions that connect Mueller matrix elements and Fourier co-
efficients of the measured intensity signal:

a0 = m00 +
1
2
(m01 + m10) +

1
4

m11 (91)

a1 = 0 a7 = 1
4 m32 b1 = m03 +

1
2 m13 b7 = − 1

4 m31

a2 = 1
2 m01 +

1
4 m11 a8 = 1

8 m11 +
1
8 m22 b2 = 1

2 m02 +
1
4 m12 b8 = − 1

8 m12 − 1
8 m21

a3 = − 1
4 m32 a9 = 1

4 m23 b3 = − 1
4 m31 b9 = − 1

4 m13

a4 = − 1
2 m33 a10 = 1

2 m10 +
1
4 m11 b4 = 0 b10 = 1

2 m20 +
1
4 m21

a5 = 0 a11 = − 1
4 m23 b5 = −m30 − 1

2 m31 b11 = 1
4 m13

a6 = 1
2 m33 a12 = 1

8 m11 − 1
8 m22 b6 = 0 b12 = 1

8 m12 +
1
8 m21

⇔

m00 = a0 − a2 + a8 − a10 + a12 m20 = −2b8 + 2b10 − 2b12

m01 = 2a2 − 2a8 − 2a12 m21 = 4b8 + 4b12

m02 = 2b2 + 2b8 − 2b12 m22 = 4a8 − 4a12

m03 = b1 + b9 − b11 m23 = 2(a9 − a11)

m10 = −2a8 + 2a10 − 2a12 m30 = b3 − b5 + b7

m11 = 4a8 + 4a12 m31 = −2(b3 + b7)

m12 = −4b8 + 4b12 m32 = 2(−a3 + a7)

m13 = 2(−b9 + b11) m33 = −a4 + a6

https://doi.org/10.7795/110.20240308



A.3 Rotating Retarder Mueller Matrix Ellipsometry 135

PCSA Configuration

Similar to the PCSCA case, we start with the modulated intensity:

S⃗′ = MPSA · M · S⃗PSG. (92a)

This time, we describe the PSG and PSA more generally:

S⃗PSG = R(−θG) · Mλ/4 · R(θG) · R(−θP) · Mpol · R(θP) · S⃗ (93a)

= R(−θG) · Mλ/4 · R(θG) · R(−θP) · Mpol ·
(

1 0 0 0
0 cos(2θP) sin(2θP) 0
0 − sin(2θP) cos(2θP) 0
0 0 0 1

)
·
( 1

0
0
0

)
(93b)

= R(−θG) · Mλ/4 · R(θG) · R(−θP) ·
1
2

( 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

)
·
( 1

0
0
0

)
(93c)

= R(−θG) · Mλ/4 · R(θG) ·
(

1 0 0 0
0 cos(−2θP) sin(−2θP) 0
0 − sin(−2θP) cos(−2θP) 0
0 0 0 1

)
· 1

2

( 1
1
0
0

)
(93d)

= R(−θG) · Mλ/4 ·
(

1 0 0 0
0 cos(2θG) sin(2θG) 0
0 − sin(2θG) cos(2θG) 0
0 0 0 1

)
· 1

2

(
1

cos(2θP)
sin(2θP)

0

)
(93e)

= R(−θG) ·
( 1 0 0 0

0 1 0 0
0 0 0 1
0 0 −1 0

)
· 1

2

(
1

cos(2θG) cos(2θP)+sin(2θG) sin(2θP)
− sin(2θG) sin(2θP)+cos(2θG) sin(2θP)

0

)
(93f )

=

(
1 0 0 0
0 cos(−2θG) sin(−2θG) 0
0 − sin(−2θG) cos(−2θG) 0
0 0 0 1

)
· 1

2

(
1

cos(2θG) cos(2θP)+sin(2θG) sin(2θP)
0

sin(2θG) cos(2θP)−cos(2θG) sin(2θP)

)
(93g)

=
1
2

 1
cos2(2θG) cos(2θP)+sin(2θG) cos(2θG) sin(2θP)

sin(2θG) cos(2θG) cos(2θP)+sin2(2θG) sin(2θP)
sin(2θG) cos(2θP)−cos(2θG) sin(2θP)

 , (93h)

and:

MPSA = R(−θA) · Mpol · R(θA) (94a)

=

(
1 0 0 0
0 cos(−2θA) sin(−2θA) 0
0 − sin(−2θA) cos(−2θA) 0
0 0 0 1

)
· 1

2

( 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

)
·
(

1 0 0 0
0 cos(2θA) sin(2θA) 0
0 − sin(2θA) cos(2θA) 0
0 0 0 1

)
(94b)

=

(
1 0 0 0
0 cos(−2θA) sin(−2θA) 0
0 − sin(−2θA) cos(−2θA) 0
0 0 0 1

)
· 1

2

(
1 cos(2θA) sin(2θA) 0
0 cos(2θA) sin(2θA) 0
0 0 0 0
0 0 0 0

)
(94c)

=
1
2

 1 cos(2θA) sin(2θA) 0
cos(2θA) cos2(2θA) sin(2θA) cos(2θA) 0
sin(2θA) sin(2θA) cos(2θA) sin2(2θA) 0

0 0 0 0

 . (94d)
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Again, we neglect the factors of 1/2 and obtain the respective vectors of PSA and PSG:(
ma,0 ma,1 ma,2 ma,3

)
=
(

1 cos(2θA) sin(2θA) 0
)

, (95)
Sg,0

Sg,1

Sg,2

Sg,3

 =


1

cos2(2θG) cos(2θP) + sin(2θG) cos(2θG) sin(2θP)

sin(2θG) cos(2θG) cos(2θP) + sin2(2θG) sin(2θP)

sin(2θG) cos(2θP)− cos(2θG) sin(2θP)

 . (96)

From this, we obtain µuv = ma,uSg,v again and flatten them out in regard of θG, because it
will be the rotating compensator that causes the intensity modulation:

µ00 = 1,

µ01 = 1
2 cos(2θP) +

1
2 cos(2θP) cos(4θG) +

1
2 sin(2θP) sin(4θG),

µ02 = 1
2 cos(2θP) sin(4θG)− 1

2 sin(2θP) cos(4θG) +
1
2 sin(2θP),

µ03 = cos(2θP) sin(2θG)− sin(2θP) cos(2θG),

µ10 = cos(2θA),

µ11 = 1
2 cos(2θA) cos(2θP) +

1
2 cos(2θA) cos(2θP) cos(4θG) +

1
2 cos(2θA) sin(2θP) sin(4θG),

µ12 = 1
2 cos(2θA) cos(2θP) sin(4θG)− 1

2 cos(2θA) sin(2θP) cos(4θG) +
1
2 cos(2θA) sin(2θP),

µ13 = cos(2θA) cos(2θP) sin(2θG)− cos(2θA) sin(2θP) cos(2θG),

µ20 = sin(2θA),

µ21 = 1
2 sin(2θA) cos(2θP) +

1
2 sin(2θA) cos(2θP) cos(4θG) +

1
2 sin(2θA) sin(2θP) sin(4θG),

µ22 = 1
2 sin(2θA) cos(2θP) sin(4θG)− 1

2 sin(2θA) sin(2θP) cos(4θG) +
1
2 sin(2θA) sin(2θP),

µ23 = sin(2θA) cos(2θP) sin(2θG)− sin(2θA) sin(2θP) cos(2θG),

µ30 = 0,
µ31 = 0,
µ32 = 0,
µ33 = 0.
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Here, we already see that we won’t be able to measure the last row of the Mueller matrix
with this configuration. We continue by rearranging for the different harmonics again:

I =
3

∑
u,v=0

µuvmuv

=µ00m00 + µ01m01 + µ02m02 + µ03m03 + µ10m10 + µ11m11 + µ12m12 + µ13m13

+ µ20m20 + µ21m21 + µ22m22 + µ23m23 + µ30m30 + µ31m31 + µ32m32 + µ33m33

=(m00 +
1
2 m01 cos(2θP) +

1
2 m02 sin(2θP) + m10 cos(2θA) +

1
2 m11 cos(2θA) cos(2θP)

+ 1
2 m12 cos(2θA) sin(2θP) + m20 sin(2θA) +

1
2 m21 sin(2θA) cos(2θP)

+ 1
2 m22 sin(2θA) sin(2θP))− (m03 sin(2θP) + m13 cos(2θA) sin(2θP)

+ m23 sin(2θA) sin(2θP)) · cos(2θG) + (m03 cos(2θP) + m13 cos(2θA) cos(2θP)

+ m23 sin(2θA) cos(2θP)) · sin(2θG) + ( 1
2 m01 cos(2θP)− 1

2 m02 sin(2θP)

+ 1
2 m11 cos(2θA) cos(2θP)− 1

2 m12 cos(2θA) sin(2θP) +
1
2 m21 sin(2θA) cos(2θP)

− 1
2 m22 sin(2θA) sin(2θP)) · cos(4θG) + ( 1

2 m01 sin(2θP) +
1
2 m02 cos(2θP)

+ 1
2 m11 cos(2θA) sin(2θP) +

1
2 m12 cos(2θA) cos(2θP) +

1
2 m21 sin(2θA) sin(2θP)

+ 1
2 m22 sin(2θA) sin(2θP)) · sin(4θG)

=a0 + a1 cos(2θG) + b1 sin(2θG) + a2 cos(4θG) + b2 cos(4θG)

=a0 +
12

∑
j=1

(
aj cos(2jθG) + bj sin(2jθG)

)
= I(θG).

Like in the PCSCA configuration, we obtained expressions that connect Mueller ma-
trix elements and Fourier coefficients. The Fourier coefficients can be obtained from
the intensity measurement as in Equation (53). However, in order to solve this system of
equations for Mueller matrix elements, we would have to perform at least four measure-
ments at different combinations of polarizer and analyzer angles, e.g. for θP = 0◦ and
θA = [−45◦, 0◦, 45◦, 90◦].
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A.3.2 Error Compensation
When performing the Fourier transform for a dual-rotating retarder configuration under
consideration of the misalignments of the optical elements as described in Section 3.1.4,
we obtain the following Fourier coefficients [70]:

a0 = 1
2 m00 +

1
4 β3m01 +

1
4 β4 cos(2ε5)m10 b0 = 0

+ 1
8 β3β4 cos(2ε5)m11 +

1
4 β4 sin(2ε5)m20

+ 1
8 β3β4 sin(2ε5)m21

a1 = 1
2 sin(δ1) sin(2ε3)m03 b1 = 1

2 sin(δ1) cos(2ε3)m03

+ 1
4 β4 sin(δ1) sin(2ε3) cos(2ε5)m13 + 1

4 β4 sin(δ1) cos(2ε3) cos(2ε5)m13

+ 1
4 β4 sin(δ1) sin(2ε3) sin(2ε5)m23 + 1

4 β4 sin(δ1) cos(2ε3) sin(2ε5)m23

a2 = 1
4 β1 (cos(4ε3)m01 + sin(4ε3)m02) b2 = 1

4 β1 (− sin(4ε3)m01 + cos(4ε3)m02)

+ 1
8 β1β4(cos(4ε3) cos(2ε5)m11 + 1

8 β1β4(cos(4ε3) cos(2ε5)m12

+ sin(4ε3) cos(2ε5)m12 − sin(4ε3) cos(2ε5)m11

a3 = − 1
8 β1 sin(2δ2) sin(α3)m31 b3 = − 1

8 β1 sin(δ2) cos(α3)m31

− 1
8 β1 sin(δ2) cos(α3)m32 + 1

8 β1 sin(δ2) sin(α3)m32

a4 = − 1
4 sin(δ1) sin(δ2) cos(α1)m33 b4 = 1

4 sin(δ1) sin(δ2) sin(α1)m33

a5 = 1
2 sin(δ2) sin(α5)m30 b5 = − 1

2 sin(δ2) cos(α5)m30

+ 1
4 β3 sin(δ2) sin(α5)m31 − 1

4 β3 sin(δ2) cos(α5)m31

a6 = 1
4 sin(δ1) sin(δ2) cos(α2)m33 b6 = − 1

4 sin(δ1) sin(δ2) sin(α2)m33

a7 = − 1
8 β1 sin(δ2) sin(α4)m31 b7 = − 1

8 β1 sin(δ2) cos(α4)m31

+ 1
8 β1 sin(δ2) cos(α4)m32 − 1

8 β1 sin(δ2) sin(α4)m32

a8 = 1
16 β1β2 cos(α9) (m11 + m22) b8 = − 1

16 β1β2 sin(α9) (m11 + m22)

+ 1
16 β1β2 sin(α9) (m21 − m12) − 1

16 β1β2 cos(α9) (m12 − m21)

a9 = 1
8 β2 sin(δ1) sin(α6)m13 b9 = − 1

8 β2 sin(δ1) cos(α6)m13

+ 1
8 β2 sin(δ1) cos(α6)m23 + 1

8 β2 sin(δ1) sin(α6)m23

a10 = 1
4 β2 cos(α11)m10 +

1
8 β2β3 cos(α11)m11 b10 = − 1

4 β2 sin(α11)m10 − 1
8 β2β3 sin(α11)m11

+ 1
4 β2 sin(α11)m20 +

1
8 β2β3 sin(α11)m21 + 1

4 β2 cos(α11)m20 +
1
8 β2β3 cos(α11)m21

a11 = − 1
8 β2 sin(δ1) sin(α7)m13 b11 = 1

8 β2 sin(δ1) cos(α7)m13

− 1
8 β2 sin(δ1) cos(α7)m23 − 1

8 β2 sin(δ1) sin(α7)m23

a12 = 1
16 β1β2 cos(α10) (m11 − m22) b12 = − 1

16 β1β2 sin(α10) (m11 − m22)

+ 1
16 β1β2 sin(α10) (m12 + m21) + 1

16 β1β2 cos(α10) (m12 + m21)
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These expressions use the following supporting parameters α and β:

α1 = 2ε4 − 2ε3 − 2ε5 α2 = 2ε4 + 2ε3 − 2ε5 α3 = 2ε4 − 4ε3 − 2ε5

α4 = 2ε4 + 4ε3 − 2ε5 α5 = 2ε5 − 2ε4 α6 = 2ε5 − 4ε4 + 2ε3

α1 =2ε4 − 2ε3 − 2ε5

α2 =2ε4 + 2ε3 − 2ε5

α3 =2ε4 − 4ε3 − 2ε5

α4 =2ε4 + 4ε3 − 2ε5

α5 =2ε5 − 2ε4

α6 =2ε5 − 4ε4 + 2ε3

α7 =2ε5 − 4ε4 − 2ε3

α8 =− 2ε5 + 4ε4 − 2ε3

α9 =4ε4 − 4ε3 − 2ε5

α10 =4ε4 + 2ε3 − 2ε5

α11 =4ε4 − 2ε5

β1 =1 − cos(δ1)

β2 =1 − cos(δ2)

β3 =1 + cos(δ1)

β4 =1 + cos(δ2)

δ1 = cos−1
(

a10 cos(α9)− a8 cos(α11)

a10 cos(α9) + a8 cos(4ε3 − 2ε5)

)
δ2 = cos−1

(
a2 cos(α9)− a8 cos(α11)

a2 cos(α9) + a8 cos(4ε3 − 2ε5)

)

ε1 =δ1 − 90◦

ε2 =δ2 − 90◦

ε3 =
1
4

tan−1
(

b8

a8

)
− 1

4
tan−1

(
b10

a10

)
ε4 =

1
2

tan−1
(

b2

a2

)
− 1

2
tan−1

(
b6

a6

)
+

1
4

tan−1
(

b8

a8

)
− 1

4
tan−1

(
b10

a10

)
ε5 =

1
2

tan−1
(

b2

a2

)
+

1
2

tan−1
(

b8

a8

)
− 1

2
tan−1

(
b10

a10

)
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For the Mueller matrix elements follows:

m00 =4a0 −
1
2

β3m01 −
1
2

β4 cos(2ε5)m10 −
1
4

β3β4 cos(2ε5)m11 −
1
2

β4 sin(2ε5)m20

− 1
4

β3β4 sin(2ε5)m21

m01 =
1

2β1
(16a2 cos(4ε3)− 16b2 sin(4ε3)− β1β4 cos(2ε5)m11 − β1β4 sin(2ε5)m21)

m02 =
1

2β1
(16a2 sin(4ε3) + 16b2 cos(4ε3)− β1β4 cos(2ε5)m12 − β1β4 sin(2ε5)m22)

m03 =− 1
2

β4 cos(2ε5)m13 +
4b1

cos(2ε3) sin(δ1)
− 1

2
β4 sin(2ε5)m23

m10 =
1

2β2
(16a10 cos(α11)− 16b10 sin(α11)− β1β3m11)

m11 =
16

β1β2
(a8 cos(α9) + a12 cos(α10)− b8 sin(α9)− b12 sin(α10))

m12 =
16

β1β2
(−a8 sin(α9) + a12 sin(α10)− b8 cos(α9) + b12 cos(α10))

m13 =
8

β2 sin(δ1)
(a9 sin(α6)− b9 cos(α6)− a11 sin(α7) + b11 cos(α7))

m20 =− 1
2β2

(β2β3m21 − 16b10 cos(α11)− 16a10 sin(α11))

m21 =
16

β1β2
(a8 sin(α9) + a12 sin(α10) + b8 cos(α9) + b12 cos(α10))

m22 =
16

β1β2
(a8 cos(α9)− a12 cos(α10)− b8 sin(α9) + b12 sin(α10))

m23 =
8

β2 sin(δ1)
(a9 cos(α6) + b9 sin(α6)− a11 cos(α7)− b11 sin(α7))

m30 =− β3m31

2
− 4b5

cos(α5) sin(δ2)

m31 =− 8
β1 sin(δ2)

(a3 sin(α3) + b3 cos(α3) + a7 sin(α4) + b7 cos(α4))

m32 =
8

β1 sin(δ2)
(−a3 cos(α3) + b3 sin(α3) + a7 cos(α4)− b7 sin(α4))

m33 =
4

sin(δ1) sin(δ2)

(
− a4

cos(α1)
+

a6

cos(α2)

)
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A.4 Fit Parameters
Parameters for Chapter 3

Table A.2 – Fit parameters of Fig-
ure 3.14(a).

Eq. Size = A · (Dose Factor)B

A 4994.1 ± 2.3

B 0.0139 ± 0.0005

χ2 (red.) 0.00494

Table A.3 – Fit parameters of Fig-
ure 3.14(c).

B C

Eq. Deviation = A + B · e−
Dose Factor

C

A 61.47 ± 9.86 7087.5 ± 793109

B −81.04 ± 7.12 −7093.9 ± 793106

C 2.80 ± 0.68 660.75 ± 74118

χ2 (red.) 0.0041 0.025

Table A.4 – Fit parameters of Fig-
ure 3.14(b).

Left Corner Right Corner

Eq. Deviation = A + B · e−
rc
C

A 4.088 ± 0.527 4.892 ± 1.106

B 59.80 ± 15.38 160.2 ± 181.4

C 259.1 ± 50.36 97.06 ± 58.11

χ2 (red.) 0.645 2.343

Table A.5 – Fit parameters of Fig-
ure 3.14(d).

B C

Eq. Deviation = A · wB

A 3265.1 ± 498.9 2473.5 ± 1851.1

B −0.947 ± 0.026 −0.952 ± 0.126

χ2 (red.) 0.035 0.804

Table A.6 – Fit parameters of Figure 3.25(a).

Eq. T = A + B · e−
t
C

A 21.993 ± 0.001

B (9.014 ± 1.918) · 1010

C 0.0626 ± 0.0005

χ2 (red.) 8.861 · 10−4

Parameters for Chapter 4

Table A.7 – Fit parameters of Figure 4.28(b).

One-Wavelength Lens Fit Two-Wavelength Lens Fit

Equation f = A + Bλ + Cλ2

A / µm 3.129 ± 0.081 1.479 ± 0.057

B / µm / nm (−61.70 ± 2.339) · 10−4 (−16.70 ± 1.645) · 10−4

C / µm / nm2 (3.420 ± 1.650) · 10−7 (6.011 ± 1.160) · 10−7

χ2 (reduced) 8.258 · 10−5 4.085 · 10−5

https://doi.org/10.7795/110.20240308



142

A.5 Derivation of the Characteristic Equation for
Surface Plasmon Polaritons

This section gives a detailed derivation of the characteristic Equation (61) for the propa-
gation of SPPs in metal-dielectric waveguides [48, 61, 125].

We consider two opposing interfaces as depicted in Figure 4.1(b). In this configuration,
we distinguish three regions. We can find the field components for these three regions
for the TM case. For the outer regions (z > w/2 or z < −w/2):

III: Ex = iA
1

ωε0ε3
k3eiβxe−k3z, (98a)

Hy = Aeiβxe−k3z, (98b)

Ez = −A
β

ωε0ε3
eiβxe−k3z, (98c)

II: Ex = −iB
1

ωε0ε2
k2eiβxek2z, (98d)

Hy = Beiβxek2z, (98e)

Ez = −B
β

ωε0ε2
eiβxek2z, (98f )

and for the middle region (−w/2 < z < w/2):

I: Ex = −iC
1

ωε0ε1
k1eiβxek1z + iD

1
ωε0ε1

k1eiβxe−k1z, (99a)

Hy = Ceiβxek1z + Deiβxe−k1z, (99b)

Ez = C
β

ωε0ε1
eiβxek1z + D

β

ωε0ε1
eiβxe−k1z. (99c)

Hy and Ex need to be continuous at the interfaces (z = ±w/2). For Hy at the upper
interface (III/I, z = w/2):

Hy,3 = Hy,1 (100a)
Aeiβxe−k3z = Ceiβxek1z + Deiβxe−k1z (100b)

Ae−k3z = Cek1z + De−k1z (100c)
Ae−k3

w
2 = Cek1

w
2 + De−k1

w
2 (100d)

For Hy at the lower interface (II/I, z = −w/2):

Hy,2 = Hy,1 (101a)
Beiβxek2z = Ceiβxek1z + Deiβxe−k1z (101b)

Bek2z = Cek1z + De−k1z (101c)
Be−k2

w
2 = Ce−k1

w
2 + Dek1

w
2 (101d)
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For Ex at the upper interface (III/I, z = w/2):

Ex,3 = Ex,1 (102a)

iA
1

ωε0ε3
k3eiβxe−k3z = −iC

1
ωε0ε1

k1eiβxek1z + iD
1

ωε0ε1
k1eiβxe−k1z (102b)

A
k3

ε3
e−k3z = −C

k1

ε1
ek1z + D

k1

ε1
e−k1z (102c)

A
k3

ε3
e−k3

w
2 = −C

k1

ε1
ek1

w
2 + D

k1

ε1
e−k1

w
2 (102d)

For Ex at the lower interface (II/I, z = −w/2):

Ex,2 = Ex,1 (103a)

−iB
1

ωε0ε2
k2eiβxek2z = −iC

1
ωε0ε1

k1eiβxek1z + iD
1

ωε0ε1
k1eiβxe−k1z (103b)

−B
k2

ε2
ek2z = −C

k1

ε1
ek1z + D

k1

ε1
e−k1z (103c)

−B
k2

ε2
e−k2

w
2 = −C

k1

ε1
e−k1

w
2 + D

k1

ε1
ek1

w
2 (103d)

These four conditions form a linear system which can be solved to obtain an implicit
expression for the dispersion relation. Inserting Equation (100d) in (102d):

k3

ε3

(
Cek1

w
2 + De−k1

w
2

)
=

k1

ε1

(
−Cek1

w
2 + De−k1

w
2

)
(104a)

k3

ε3
Cek1

w
2 +

k3

ε3
De−k1

w
2 = − k1

ε1
Cek1

w
2 +

k1

ε1
De−k1

w
2 (104b)

k3

ε3
Cek1

w
2 +

k1

ε1
Cek1

w
2 =

k1

ε1
De−k1

w
2 − k3

ε3
De−k1

w
2 (104c)

Cek1
w
2

(
k1

ε1
+

k3

ε3

)
= De−k1

w
2

(
k1

ε1
− k3

ε3

)
(104d)

k1
ε1
+ k3

ε3
k1
ε1
− k3

ε3

=
D
C

e−2k1
w
2 (104e)
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Equation (101d) in (103d):

− k2

ε2

(
Ce−k1

w
2 + Dek1

w
2

)
=

k1

ε1

(
−Ce−k1

w
2 + Dek1

w
2

)
(105a)

− k2

ε2
Ce−k1

w
2 − k2

ε2
Dek1

w
2 = − k1

ε1
Ce−k1

w
2 +

k1

ε1
Dek1

w
2 (105b)

− k2

ε2
Ce−k1

w
2 +

k1

ε1
Ce−k1

w
2 =

k2

ε2
Dek1

w
2 +

k1

ε1
Dek1

w
2 (105c)

Ce−k1
w
2

(
k1

ε1
− k2

ε2

)
= Dek1

w
2

(
k1

ε1
+

k2

ε2

)
(105d)

k1
ε1
− k2

ε2
k1
ε1
+ k2

ε2

=
D
C

e2k1
w
2 (105e)

Now we compare Equations (104e) and (105e) which yields:

e−4k1
w
2 =

k1
ε1
+ k3

ε3
k1
ε1
− k3

ε3

k1
ε1
+ k2

ε2
k1
ε1
− k2

ε2

(106)

Let’s now consider the special case that regions 2 and 3 are of the same material. We
assume these outer regions to be metal (index m) and the inner region to be dielectric
(index d). This simplifies equation 106 to:

e−4kd
w
2 =

( kd
εd
+ km

εm
kd
εd
− km

εm

)2

(107)

Taking the square root from this has two solutions:

e−2kd
w
2 =

kd
εd
+ km

εm
kd
εd
− km

εm

(108a)

e−2kd
w
2 = −

kd
εd
+ km

εm
kd
εd
− km

εm

(108b)

For the moment, let’s just focus on the first one of these. The left part of the equation can
be rewritten using hyperbolic identities:

tanh(x) = 1 − 2
e2x + 1

⇔ e2x =
2

1 − tanh(x)
− 1 (109a)

⇒ e−2kd
w
2 =

2
1 + tanh(kd

w
2 )

− 1 (109b)
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Together with the right part, this leads to:

2
1 + tanh(kd

w
2 )

− 1 =

kd
εd
+ km

εm
kd
εd
− km

εm

(110a)

=
2εdkm

εmkd − εdkm
+ 1 (110b)

1
1 + tanh(kd

w
2 )

=
εdkm

εmkd − εdkm
+ 1 (110c)

=
εdkm + εmkd − εdkm

εmkd − εdkm
=

εmkd
εmkd − εdkm

(110d)

1 + tanh
(

kd
w
2

)
=

εmkd − εdkm
εmkd

= 1 − εdkm
εmkd

(110e)

tanh
(

kd
w
2

)
= − εdkm

εmkd
(110f )

tanh
(

w
2

√
β2 − k2

0εd

)
= − εd

εm

√
β2 − k2

0εm√
β2 − k2

0εd

, (110g)

which describes modes of even vector parity, with k2
d = β2 − k2

0εd. The other solution is
derived in a similar way and describes modes of odd vector parity [46, 48, 61, 83, 125].
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A.6 Plasmonic Lens Parameters
Design parameters as well as ridge widths wi and positions xi of the fabricated inverted
plasmonic lenses, for either lens design. Positions are relative to the central ridge.

Table A.8 – Design parameters of inverted plasmonic lenses

Label Aperture a (Thickness l) # Ridges Wavelength λ0 Focal Length f

CP-00 / OP-00 50 µm 200 nm 71 455 nm 5 µm
CP-01 / OP-01 100 µm 200 nm 89 532 nm 5 µm
CP-02 / OP-02 100 µm 300 nm 77 632 nm 5 µm
CP-03 / OP-03 100 µm 400 nm 111 1064 nm 5 µm
CP-04 / OP-04 100 µm 600 nm 141 1550 nm 5 µm
CP-10 / OP-10 50 µm 200 nm 69 455 nm 10 µm
CP-11 / OP-11 100 µm 200 nm 89 532 nm 10 µm
CP-12 / OP-12 100 µm 200 nm 75 632 nm 10 µm
CP-13 / OP-13 100 µm 200 nm 117 1064 nm 10 µm
CP-14 / OP-14 100 µm 600 nm 147 1550 nm 10 µm
CS-00 / OS-00 50 µm 200 nm 93 455 nm 5 µm
CS-01 / OS-01 50 µm 200 nm 79 532 nm 5 µm
CS-02 / OS-02 50 µm 300 nm 67 632 nm 5 µm
CS-03 / OS-03 100 µm 400 nm 85 1064 nm 5 µm
CS-04 / OS-04 100 µm 600 nm 59 1550 nm 5 µm
CS-10 / OS-10 50 µm 200 nm 79 455 nm 10 µm
CS-11 / OS-11 50 µm 200 nm 67 532 nm 10 µm
CS-12 / OS-12 50 µm 200 nm 57 632 nm 10 µm
CS-13 / OS-13 100 µm 200 nm 79 1064 nm 10 µm
CS-14 / OS-14 100 µm 600 nm 55 1550 nm 10 µm
CS-20 / OS-20 100 µm 200 nm 65 455 nm 100 µm
CS-21 / OS-21 100 µm 200 nm 59 532 nm 100 µm
CS-22 / OS-22 100 µm 200 nm 49 632 nm 100 µm
CS-23 / OS-23 100 µm 300 nm 29 1064 nm 100 µm
CS-24 / OS-24 100 µm 500 nm 25 1550 nm 100 µm
CS-30 / OS-30 100 µm 200 nm 57 455 nm 1000 µm
CS-31 / OS-31 100 µm 200 nm 55 532 nm 1000 µm
CS-32 / OS-32 100 µm 200 nm 49 632 nm 1000 µm
CS-33 / OS-33 100 µm 300 nm 23 1064 nm 1000 µm
CS-34 / OS-34 100 µm 500 nm 33 1550 nm 1000 µm

https://doi.org/10.7795/110.20240308



A.6 Plasmonic Lens Parameters 147

Table A.9 – Periodic ridge arrangement, 5 µm focal length, part 1.

P-00 P-01 P-02 P-03 P-04
i xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm

0 0 40 0 44 0 55 0 40 0 34
1 200 41 200 45 200 57 200 40 200 34
2 400 47 400 51 400 63 400 42 400 35
3 600 59 600 63 600 77 600 45 600 37
4 800 89 800 91 800 109 800 51 800 39
5 1000 158 2400 50 2600 57 1000 60 1000 42
6 2200 43 4400 92 3800 63 1200 76 1200 48
7 2400 143 5200 134 4800 76 1400 108 1400 55
8 3200 52 6600 140 8000 60 3600 60 1600 67
9 4000 61 7200 67 8800 111 3800 133 1800 86
10 5400 128 7800 47 10200 80 5200 57 2000 123
11 6000 119 11400 44 11600 88 6600 57 4400 44
12 6600 151 12000 53 13000 141 7800 41 4600 65
13 7600 41 12600 69 13600 60 8000 97 4800 120
14 8200 76 13200 103 15000 115 9200 81 6400 35
15 9200 44 15400 53 15600 58 10400 83 6600 53
16 9800 133 16000 85 17000 141 11400 40 6800 97
17 10800 111 18200 68 17600 69 11600 101 8400 46
18 11800 120 18800 144 19600 103 12600 47 8600 80
19 12800 154 20400 69 20200 60 13800 61 10200 50
20 13200 46 22000 46 22200 104 15000 92 10400 96
21 14200 66 22600 84 22800 62 16000 50 11800 39
22 15200 121 24200 57 24800 129 17200 77 12000 67
23 15600 42 24800 127 25400 74 18200 47 13400 34
24 16600 73 25800 44 28000 102 19400 74 13600 55
25 17600 161 26400 83 28600 64 20400 47 13800 118
26 18000 56 28000 62 31200 96 21600 79 15200 49
27 19000 133 28600 157 31800 62 22600 50 15400 97
28 19400 48 29600 50 34400 100 23800 90 16800 46
29 20400 116 30200 110 35000 65 24800 56 17000 88
30 20800 45 31800 84 37600 114 25800 40 18400 45
31 21800 110 33400 69 38200 72 26000 112 18600 84
32 22200 44 35000 60 40800 144 27000 65 20000 44
33 23200 113 35600 156 41400 85 28000 45 20200 84
34 23600 46 36600 53 42000 59 29200 82 21600 45
35 24600 125 37200 126 44600 108 30200 54 21800 87
36 38200 48 45200 71 31400 111 23200 46
37 38800 106 48400 90 32400 67 23400 91
38 39800 44 49000 62 33400 47 24800 49
39 40400 92 34600 90 25000 99
40 42000 82 35600 59 26400 51
41 43600 75 36600 43 26600 110
42 45200 69 36800 136 28000 55
43 46800 65 37800 78 28200 126
44 48400 61 38800 53 29400 35
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Table A.10 – Periodic ridge arrangement, 5 µm focal length, part 2.

P-00 P-01 P-02 P-03 P-04
i xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm

45 39800 40 29600 60
46 40000 114 31000 38
47 41000 70 31200 66
48 42000 50 32600 41
49 43200 101 32800 74
50 44200 65 34200 44
51 45200 47 34400 85
52 46400 93 35800 48
53 47400 61 36000 99
54 48400 45 37400 54
55 49600 87 37600 120
56 38800 35
57 39000 60
58 40400 38
59 40600 68
60 42000 42
61 42200 79
62 43600 47
63 43800 94
64 45200 52
65 45400 115
66 46600 35
67 46800 59
68 48200 38
69 48400 69
70 49800 43
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Table A.11 – Periodic ridge arrangement, 10 µm focal length, part 1.

P-10 P-11 P-12 P-13 P-14
i xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm

0 0 40 0 44 0 55 0 40 0 34
1 200 40 200 45 200 56 200 40 200 34
2 400 43 400 47 400 59 400 41 400 34
3 600 48 600 52 600 64 600 42 600 35
4 800 56 800 60 800 74 800 45 800 36
5 1000 72 1000 75 1000 91 1000 48 1000 38
6 1200 102 1200 104 1200 123 1200 53 1200 40
7 1400 155 3400 59 3800 112 1400 60 1400 42
8 3200 66 4800 58 5200 58 1600 70 1600 46
9 4400 46 6000 94 7600 74 1800 86 1800 50
10 4600 155 7000 117 8600 72 2000 113 2000 56
11 5600 153 7800 54 9600 120 4800 44 2200 64
12 6400 75 9400 44 10400 57 5000 66 2400 76
13 7200 69 10200 58 13000 144 5200 123 2600 93
14 8000 111 11000 116 16000 66 7000 55 2800 122
15 8600 41 12400 115 16800 121 7200 110 5800 34
16 9400 128 13000 51 18200 67 8800 71 6000 44
17 10000 69 14400 128 20400 139 10200 44 6200 59
18 10600 50 15000 73 21800 141 10400 93 6400 89
19 11200 44 15600 52 23800 63 11800 79 8600 41
20 11800 43 22800 44 25200 88 13000 42 8800 60
21 12400 46 23400 52 27200 66 13200 95 9000 103
22 13000 56 24000 66 28600 127 14400 56 10800 39
23 13600 78 24600 90 29200 59 15600 42 11000 59
24 14200 135 25200 139 30600 124 15800 103 11200 109
25 15200 41 27400 51 31200 61 17000 79 12800 37
26 15800 76 28000 73 32600 149 18200 70 13000 57
27 17400 82 28600 124 33200 69 19400 68 13200 107
28 18400 50 30200 44 35200 90 20600 71 14800 44
29 19000 152 30800 65 37200 142 21800 81 15000 74
30 20000 109 31400 115 37800 71 22800 40 16600 40
31 21000 90 33000 48 39800 118 23000 101 16800 67
32 22000 85 33600 77 40400 65 24000 46 18400 42
33 23000 91 35800 65 42400 115 25200 57 18600 71
34 24000 108 36400 131 43000 65 26400 76 20200 47
35 38000 61 45000 127 27400 42 20400 88
36 38600 125 45600 71 27600 119 21800 36
37 40200 64 48200 83 28600 55 22000 59
38 40800 139 29800 82 22200 133
39 42400 72 30800 46 23600 46
40 44000 48 32000 67 23800 86
41 44600 91 33000 41 25200 39
42 46200 59 33200 116 25400 66
43 46800 130 34200 59 26800 34
44 48400 79 35400 102 27000 55
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Table A.12 – Periodic ridge arrangement, 10 µm focal length, part 2.

P-10 P-11 P-12 P-13 P-14
i xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm

45 36400 56 27200 119
46 37600 98 28600 48
47 38600 56 28800 95
48 39800 99 30200 44
49 40800 57 30400 82
50 42000 106 31800 41
51 43000 60 32000 73
52 44000 41 33400 39
53 44200 120 33600 68
54 45200 66 35000 38
55 46200 44 35200 65
56 47400 75 36600 37
57 48400 49 36800 63
58 49600 89 38200 37
59 38400 62
60 39800 37
61 40000 62
62 41400 37
63 41600 63
64 43000 37
65 43200 65
66 44600 38
67 44800 67
68 46200 40
69 46400 71
70 47800 41
71 48000 75
72 49400 43
73 49600 80
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Table A.13 – Successive ridge arrangement, 5 µm focal length.

S-00 S-01 S-02 S-03 S-04
i xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm

0 0 156 0 199 0 229 0 585 0 448
1 269 164 320 222 359 279 3440 646 4240 483
2 2185 158 2369 202 2594 234 5090 670 6379 484
3 3154 159 3435 205 3775 233 6490 593 8259 481
4 3939 157 4305 204 4750 232 7789 591 10029 493
5 4640 158 5085 208 5630 236 9030 607 11730 455
6 5285 157 5804 203 6449 233 10230 615 13399 463
7 5899 161 6489 201 7234 240 11400 588 15049 504
8 6485 161 7150 201 7990 235 12559 666 16669 470
9 7049 160 7790 201 8724 230 13700 681 18280 457
10 7599 159 8414 200 9450 242 14820 593 19889 504
11 8139 160 9029 204 10160 244 15939 606 21479 474
12 8670 160 9635 207 10859 244 17050 585 23070 482
13 9190 159 10229 206 11550 236 18159 630 24649 460
14 9705 159 10819 208 12234 234 19259 614 26230 462
15 10215 160 11400 200 12914 234 20359 645 27810 484
16 10720 161 11980 203 13590 232 21450 597 29380 462
17 11220 161 12555 204 14264 245 22550 703 30950 456
18 11715 159 13124 202 14929 233 23629 599 32520 461
19 12209 161 13695 207 15594 233 24720 641 34090 477
20 12700 161 14259 207 16260 243 25799 585 35660 504
21 13185 158 14820 201 16919 242 26890 669 37220 474
22 13670 157 15380 200 17574 231 27969 650 38780 454
23 14155 159 15939 204 18235 245 29049 647 40350 502
24 14635 157 16495 200 18890 247 30130 659 41910 493
25 15114 157 17049 199 19540 235 31210 682 43469 489
26 15594 159 17605 202 20195 248 32280 596 45030 490
27 16075 162 18160 209 20844 246 33360 641 46590 495
28 16550 161 18710 206 21490 229 34439 695 48150 504
29 17024 161 19260 205 22139 235 35510 637 49699 453
30 17494 157 19810 208 22790 245 36580 586
31 17970 159 20355 199 23435 239 37659 664
32 18440 157 20905 206 24079 236 38730 626
33 18915 162 21450 202 24725 235 39800 595
34 19385 161 21995 200 40879 690
35 19849 156 22545 211 41950 669
36 20320 158 23084 200 43020 653
37 20790 160 23630 202 44090 641
38 21255 156 24175 206 45160 633
39 21725 160 24719 211 46230 628
40 22190 158 47300 627
41 22655 156 48370 630
42 23125 161 49439 635
43 23590 161
44 24055 161
45 24520 162
46 24979 157
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Table A.14 – Successive ridge arrangement, 10 µm focal length.

S-10 S-11 S-12 S-13 S-14
i xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm

0 0 156 0 199 0 299 0 585 0 448
1 264 160 314 212 349 253 810 809 629 594
2 535 169 644 234 739 314 4739 615 5779 450
3 3055 158 3304 199 3614 235 6870 639 8469 478
4 4365 158 4734 200 5184 230 8610 632 10709 465
5 5405 159 5874 205 6445 233 10170 668 12750 471
6 6304 158 6864 203 7549 237 11609 620 14670 473
7 7119 157 7765 201 8554 230 12979 601 16509 462
8 7880 158 8605 201 9499 234 14300 604 18300 472
9 8594 158 9400 200 10395 230 15580 598 20049 481
10 9280 159 10164 208 11260 243 16829 593 21769 491
11 9935 158 10895 201 12089 236 18059 630 23460 462
12 10569 157 11610 207 12899 237 19270 660 25140 484
13 11189 159 12299 200 13690 235 20459 646 26799 478
14 11795 160 12979 203 14465 234 21639 668 28449 487
15 12385 160 13644 202 15229 243 22800 592 30090 499
16 12964 160 14299 203 15980 241 23960 622 31719 505
17 13535 160 14944 204 16720 238 25110 633 33339 494
18 14094 159 15580 202 17450 230 26249 612 34950 463
19 14650 159 16209 205 18174 231 27390 663 36559 466
20 15195 157 16829 201 18894 237 28519 662 38170 499
21 15739 160 17450 210 19605 230 29640 602 39770 498
22 16275 158 18059 209 20315 241 30760 593 41360 458
23 16805 156 18665 207 21014 233 31879 628 42960 502
24 17335 159 19265 204 21715 241 32990 588 44550 502
25 17860 161 19864 209 22410 245 34099 585 46130 457
26 18380 161 20454 201 23100 244 35210 615 47720 488
27 18894 160 21045 199 23785 236 36320 677 49300 472
28 19404 156 21635 205 24469 239 37420 647
29 19920 161 22219 206 38520 644
30 20425 158 22800 201 39620 664
31 20930 158 23380 201 40710 587
32 21434 160 23959 207 41810 649
33 21935 159 24534 206 42900 610
34 22435 160 43990 588
35 22930 157 45090 702
36 23424 156 46169 591
37 23919 158 47260 613
38 24415 160 48350 649
39 24905 159 49439 697
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Table A.15 – Successive ridge arrangement, 100 µm focal length.

S-20 S-21 S-22 S-23 S-24
i xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm

0 0 156 0 199 0 229 0 585 0 448
1 269 157 309 200 340 232 709 615 560 457
2 539 158 619 204 690 239 1490 719 1139 488
3 810 160 940 210 1049 251 2369 816 1769 557
4 1079 163 1259 218 1419 269 14629 591 2529 738
5 1349 166 1589 226 1809 291 20740 586 3839 1653
6 1629 168 1929 233 2219 310 25470 592 17680 453
7 1910 170 2269 235 11269 233 29489 605 25099 460
8 9559 157 10329 200 15950 229 33050 585 30849 451
9 13529 158 14629 201 19569 233 36299 592 35760 457
10 16580 156 17940 200 22630 232 39309 596 40130 458
11 19170 157 20740 199 25340 232 42130 589 44120 451
12 21459 158 23220 200 27800 230 44800 592 47839 474
13 23529 157 25470 201 30080 237 47350 629
14 25439 156 27550 203 32200 231 49779 599
15 27230 157 29489 204 34209 236
16 28910 156 31320 204 36119 242
17 30509 157 33050 199 37940 242
18 32040 159 34710 201 39679 233
19 33499 159 36299 201 41370 243
20 34900 156 37830 200 42990 234
21 36260 157 39309 202 44569 240
22 37579 160 40740 200 46100 239
23 38850 158 42130 200 47590 240
24 40090 158 43490 208 49040 235
25 41299 160 44800 201
26 42479 161 46089 205
27 43629 160 47350 209
28 44750 158 48580 208
29 45850 156 49779 202
30 46940 161
31 47999 160
32 49040 159
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Table A.16 – Successive ridge arrangement, 1000 µm focal length.

S-30 S-31 S-32 S-33 S-34
i xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm xi / nm wi / nm

0 0 156 0 199 0 229 0 585 0 448
1 269 156 309 199 340 230 699 588 560 449
2 539 156 619 200 680 230 1400 596 1119 452
3 810 157 929 200 1020 231 2109 611 1679 456
4 1079 157 1240 201 1360 233 2840 634 2250 463
5 1349 157 1549 202 1700 235 3599 664 2829 472
6 1620 158 1859 204 2049 238 4389 702 3419 484
7 1889 158 2170 205 2399 241 5220 746 4019 499
8 2159 159 2489 207 2749 244 6099 788 4639 518
9 2429 160 2810 209 3109 248 7009 813 5279 542
10 2699 161 3129 211 3469 253 7930 812 5949 575
11 2970 161 3449 214 3839 258 46150 589 6660 618
12 3239 162 3780 216 4210 264 7420 678
13 3509 163 4110 219 4590 271 8249 768
14 3780 164 4439 222 4970 277 9200 918
15 4049 165 4769 224 5359 284 10379 1219
16 4330 166 5109 227 5759 291 11920 1645
17 4609 167 5449 229 6169 298
18 4889 167 5789 231 6580 305
19 5170 168 6129 233 7000 310
20 5449 169 6469 234 7420 314
21 5730 169 6809 235 7850 317
22 6009 170 7159 235 35560 230
23 6289 170 32629 200 35920 279
24 30169 156 32949 223 36329 314
25 30439 165 33289 234
26 30719 169 46150 200
27 42680 157 46479 230
28 42949 167

Table A.17 – Proof-of-concept merged plasmonic lens parameters. Lens thickness l = 200 nm.

532 nm 532 nm 632 nm 632 nm
i xi / nm wi / nm xi / nm wi / nm

0 0 22 0 13

1 127 23 118 13

2 260 29 238 15

3 406 51 361 19

4 1040 22 491 29

5 1191 69 666 109

6 1652 22 1161 13

7 2223 22 1284 22

8 1869 13

9 1993 24
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Further Figures

Mueller matrix images tend to need a lot of memory. For example, the measurement
of Figure 5.1 alone used up 17.1 GB of hard drive space. The measurements of Mueller
matrix images at different focus positions from Section 5.1.2 even used up more than
250 GB. Boiling this information down to one image of 300 dpi resolution still ends up
as a file with about 100 KB per matrix image, albeit at the cost of several pixels of the
original images. Therefore, it should be self-evident that not each and every Mueller
matrix image measured for this thesis can be visualized here. In this part of the Appendix,
however, a few matrix images that might be helpful for the comprehensibility of this work
are collected.
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B.1 Mueller Matrix Images of the Nanoform Sample
B.1.1 Row A, without drift correction
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Figure B.1 – Measured Mueller matrix images of row A at Mueller matrix microscope with-
out drift correction, part 1.
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Figure B.2 – Measured Mueller matrix images of row A at Mueller matrix microscope with-
out drift correction, part 2.

https://doi.org/10.7795/110.20240308



158

B.1.2 Row A, with drift correction
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Figure B.3 – Measured Mueller matrix images of row A at Mueller matrix microscope with
drift correction, part 1.
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Figure B.4 – Measured Mueller matrix images of row A at Mueller matrix microscope with
drift correction, part 2.
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B.1.3 Row A, simulated
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Figure B.5 – Simulated Mueller matrix images of row A, part 1.
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Figure B.6 – Simulated Mueller matrix images of row A, part 2.
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B.1.4 Row C
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Figure B.7 – Measured Mueller matrix images of row C without drift correction, part 1.

https://doi.org/10.7795/110.20240308



B.1 Mueller Matrix Images of the Nanoform Sample 163

-1

-0.5

0

0.5

1

(a) C7

-1

-0.5

0

0.5

1

(b) C8

-1

-0.5

0

0.5

1

(c) C9

-1

-0.5

0

0.5

1

(d) C10

Figure B.8 – Measured Mueller matrix images of row C without drift correction, part 2.
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B.2 Mueller Matrix Images of Plasmonic Lenses
B.2.1 OS-00, Measurement at EP4, PCSA
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Figure B.9 – Measured Mueller matrix images at different wavelengths, part 1.
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Figure B.10 – Measured Mueller matrix images at different wavelengths, part 2.
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B.2.2 OS-00, Measurement at EP4, PCSCA
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Figure B.11 – Measured Mueller matrix images at different wavelengths, part 1.

https://doi.org/10.7795/110.20240308



B.2 Mueller Matrix Images of Plasmonic Lenses 167

-1

-0.5

0

0.5

1

(a) 607 nm

-1

-0.5

0

0.5

1

(b) 632 nm

-1

-0.5

0

0.5

1

(c) 657 nm

-1

-0.5

0

0.5

1

(d) 682 nm

-1

-0.5

0

0.5

1

(e) 707 nm

-1

-0.5

0

0.5

1

(f ) 732 nm

-1

-0.5

0

0.5

1

(g) 757 nm

-1

-0.5

0

0.5

1

(h) 782 nm

-1

-0.5

0

0.5

1

(i) 807 nm

Figure B.12 – Measured Mueller matrix images at different wavelengths, part 2.
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