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Abstract 

Integrating spectral data (spectral responsivities of photometers or spectral distributions of light 
sources) to calculate quantities such as tristimulus values is straightforward at first sight. 
However, estimating the measurement uncertainty of these integrated quantities is challenging. 
When calculating integral photometric quantities, some uncertainty contributions from the 
spectral data transfer to the final results, some "cancel out", some "average out" and others 
increase or decrease their weight by correlation.  

The spectral quantities are usually assumed to be uncorrelated when deriving other quantities 
by integration, which is typically not justified. Using Monte Carlo simulations (MCS) and 
orthogonal functions, this paper shows that the neglection of partial spectral correlations may 
lead to a significant underestimation of the measurement uncertainty of these integral 
quantities, and how to use this information for better estimation. 

Keywords: Photometry, Colorimetry, Measurement Uncertainty, Monte Carlo Simulation, 
Correlation 

1 Introduction 

Integration of spectral data is critical for calculating photometric quantities, non-visual effects, 
and photobiological safety. The main calculations to determine the value of the measurand, i.e., 
by weighted sums of spectral responsivities of photometers or spectral distributions (SD s), or 
similar, over the spectral range, are relatively simple, but calculating estimates for the 
associated measurement uncertainty immediately becomes complicated and challenging (CIE 
198-SP2:2018, 2018). The correlation of uncertainty components at different wavelengths can 
significantly contribute to the combined uncertainty of the integrated quantities  (Kärhä et al., 
2017, Schmähling et al., 2018). 

Based on Monte Carlo simulations (MCS) (JCGM 102:2011, 2011), and the application of 
orthogonal basis functions to describe correlations, a basic approach for the estimation of 
dependencies is developed, which allows a better insight into the origin of those significant 
contributions to the measurement uncertainty caused by correlations in the spectral data to be 
integrated. 

The main contribution of this work is that, in addition to the fully-correlated errors on the 
wavelength and responsivity scales, the partially correlated contributions are also investigated. 
For this purpose, a method that describes correlations through orthogonal basis functions was 
used in this work. 

2 Methods 

The proposed basic approach does not describe a specific measurement technique, and the 
impact of correlated spectral data on the calculated spectrally integrated quantities does not 
consider the physical background of a particular measurement setup or device under test (DUT)  
in a first step. Instead, predetermined input SDs are used as the outcome of fictitious 
measurements, whose data fluctuate around their mean values within given uncertaint ies. While 
the basis function approach accomplishes the (correlated) fluctuation , the calculation of the 
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desired output quantity is done by a classical MCS. In this way, calculating the spectrally 
integrated quantity of interest is decoupled from the measurement process and becomes 
universally valid. For the basic approach of the simulation, the variation of the wavelength and 
the variation of the amplitude of the signal are evaluated separately . 

On the one hand, the basic approach makes it possible to understand the main contributions of 
the spectral measurement uncertainties to the estimated combined measurement uncertainty 
and consider them for specific cases. On the other hand, this approach identifies possible 
correlations between the output quantities. For instance, the overlap of the CIE colour-matching 
functions (CIE15:2018, 2018) in the wavelength range generates correlations between the 
tristimulus values. In a second step, one can look for parts of physical models which can be 
modelled with the different parameters of the basic approach model (see section 2.3). 

According to the methodology to be presented, the uncertainty contribut ions of the spectral data 
are represented as values with specific probability distributions, divided into additive and 
multiplicative components, and, for both categories, in uncorrelated, fully-correlated and 
partially correlated values. The partially correlated values are modelled by orthogonal bas is 
functions (Kärhä et al., 2017) or by applying known covariance matrices from measurement  
results. 

 Model for uncertainty contributions 

A vector representation describes spectral data, where vectors are represented with bold 
symbols, whereas scalar have italic symbols. For spectral data with 𝑁𝜆 elements (e.g., from 360 

nm to 830 nm in 5 nm steps → 𝑁𝜆 = 95), two vectors are used: 

• Amplitude vector: 𝐒 = [𝑆0, 𝑆1, 𝑆2, … , 𝑆𝑁𝜆−1] 

• Wavelength vector: 𝛌 = [𝜆0, 𝜆1, 𝜆2, … , 𝜆𝑁𝜆−1] 

where the variation of the values of the elements in the vectors can be originated either from a 
wavelength jitter, signal change, or both. Both vectors are used to calculate the spectrally 
integrated quantity of interest (see section 2.1.6). However, to better understand their influence, 
they will be simulated independently in the first step.  

 Amplitude vector 

For the basic approach introduced, the following model is used for the signal or amplitude 
uncertainty. 

𝑺r = 𝑺 ∙ 𝒌Sm-b(1 + 𝑺a-c + 𝑺a-uc + 𝑺a-b) (1) 

where 

𝑺r is the random variable for the amplitude scale in the MCS (vector);  

𝐒 is the nominal amplitude value of the amplitude (vector); 

𝒌Sm-b is the multiplicative uncertainty component modelled with the basis function approach 
(vector, systematic and random, e.g. amplification); 

𝑺a-c is the additive fully-correlated* uncertainty component (vector, systematic, e.g. order sorting 
filters); 

𝑺a-uc is the additive un-correlated uncertainty component (vector, random); 

𝑺a-b is the additive uncertainty component modelled with the basis function approach (vector, 
systematic). 

Formally the parameter 𝑘Sm-c and  𝑘Sm-uc are missing in the model, but the information is included 
in the basis function approach. 

 
* In the fully correlated case only one random number is generated for all elements in the vector.  
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 Wavelength vector 

For the basic approach introduced, the following model is used for the wavelength uncertainty: 

𝝀𝑟 = 𝑘λm-c ∙ (𝝀 + 𝝀a-c + 𝝀a-uc + 𝝀a-b) (2) 

where 

𝛌r is the random variable for the wavelength in the MCS (vector) ; 

𝑘λm-c is the fully-correlated factor for the wavelength scale (scalar, systematic, e.g., wavelength 
scale factor); 

𝛌 is the nominal wavelength (vector);  

𝝀a-c is the additive fully-correlated uncertainty component (vector (same value for all elements), 
systematic, e.g., offset); 

𝝀a-uc is the additive uncorrelated random uncertainty or noise (vector, random, e.g., noise); 

𝛌a-b is the additive uncertainty, modelled with the basis function approach (vector, systematic). 

Factors other than a correlated factor are not helpful for the wavelength scale. 

The different modelling of the wavelength and value vector is because wavelength errors are 
usually modelled as absolute quantities, and amplitude errors are usually modelled relatively.  

 Combination of amplitude and wavelength scale 

Pairs of wavelength and amplitude vectors together are necessary to define the spectral 
information 𝐗r for further calculations: 

𝑿SD
𝒓 = (𝝀r, 𝑺r) (3) 

For comparison using actual measurements of spectral irradiance from PTB, the random vector 
𝑺PTB

𝑟  is drawn from a multivariate normal distribution using the mean vector and the given 
covariance matrix (see Figure 3 and Figure 4). In this case, the uncertainty information of the 
wavelength scale is already included in the covariance matrix , and the nominal wavelength 
scale can be used for the value pairs: 

𝑿SD,PTB
𝑟 = (𝝀, 𝑺PTB

𝑟 ) (4) 

 Model parameter 

The basic approach uses additive (subscript 'a') and multiplicative (subscript 'm') model 
parameters linked to the values as uncertainty components.  
 
Furthermore, the uncertainty contributions will be implemented during the simulation as follows: 

• Uncorrelated (subscript 'uc'): Every vector element represents a different realisation of a 
random process in each of the 𝑁MC MC trials. A vector with random elements is drawn in 
each trial. Variations of the vector elements are independent.  

• Correlated (subscript 'c'): All vector element variations behave the same way in an MC step. 
The random number is drawn once for every trial only.  

• Basis function (subscript ' b'): The correlated variations of spectral data points are simulated 
by the variations of the vector elements with a periodic spectral dependence . The different 
vectors for the trials are calculated according to the bas is function approach introduced by 
(Kärhä et al., 2017) with Fourier or Chebyshev basis functions as described by (Vaskuri et 
al., 2018). See section 2.5 for details. 

 Input quantities 

Using the classical Monte Carlo procedure, spectral information is required to calculate 
photometric quantities like colour coordinates, correlated colour temperatures, etc. As 
examples of spectral data, Figure 1 shows the 𝑉(𝛌)-curve and the spectral responsivity of a 
photometer, and Figure 2 shows two examples of spectral distributions of light sources. 
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The simulated approach is compared with real measurement data from an FEL lamp at PTB 
operating at a CCT of about 3077 K (see Figure 3 and Figure 4), including covariance matrixes. 
The measured relative spectral distribution of the FEL lamp is very close to the relative spectral 
distribution of the blackbody radiator at the same CCT used for the basis function approach 
(see Figure 2). 

 
 

Figure 1 – V(λ) and sample detector spectral 
responsivity 

Figure 2 – Examples of spectral distributions 
of light sources  

 
 

Figure 3 – Spectral distribution of a FEL lamp 
measurement  

Figure 4 – Correlation matrix of the spectral 
distribution measurement of the FEL, shown 

in Figure 3  

 Output quantities 

To show the effect of the different measurement uncertainties, several integrated quantities are 
calculated from the simulated spectral distribution representing the spectral irradiance / 
radiance of an FEL lamp. According to (CIE15:2018, 2018, chap. 7) the tristimulus values 
should be calculated with the following equations (using the notation of this paper and the 
nominal wavelength scale and 𝒚̅(𝜆) = 𝑉(𝜆)): 

𝑋 = ∑ 𝒙(𝜆𝑖) ∙ 𝑺(𝜆𝑖) ∙ Δ𝜆
𝑁𝜆−2

𝑖=0 ; Y= ∑ 𝒚̅(𝜆𝑖) ∙ 𝑺(𝜆𝑖) ∙ Δ𝜆
𝑁𝜆−2

𝑖=0 ;  𝑍 = ∑ 𝒛̅(𝜆𝑖) ∙ 𝑺(𝜆𝑖) ∙ Δ𝜆
𝑁𝜆−2

𝑖=0  (5) 

Using the random numbers generated with the basic approach presented here, the tristimulus 
values can be calculated as follows: 
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𝑋 = ∑ 𝑥(𝝀𝒊
𝒓) ∙ 𝑿𝑖

𝒓 ∙ (𝝀𝑖+𝟏
𝒓 − 𝝀𝑖

𝒓)

𝑁𝜆−2

𝑖=0

 

(6) 

𝑌 = ∑ 𝑉(𝝀𝒊
𝒓) ∙ 𝑿𝑖

𝒓 ∙ (𝝀𝑖+𝟏
𝒓 − 𝝀𝑖

𝒓)

𝑁𝜆−2

𝑖=0

 

(7) 

𝑍 = ∑ 𝑧(𝝀𝒊
𝒓) ∙ 𝑿𝑖

𝒓 ∙ (𝝀𝑖+𝟏
𝒓 − 𝝀𝑖

𝒓)

𝑁𝜆−2

𝑖=0

 

(8) 

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
;  𝑦 =

𝑌

𝑋 + 𝑌 + 𝑍
 

(9) 

The correlated colour temperature (CCT) is calculated from the chromaticity coordinates (x,y) 
values based on standard algorithms according to (Robertson, 1968). 

The spectral mismatch correction factor 𝐹 (according to (ISO/CIE, 2014)) is defined by the 
following integral ratio, with the notation of this paper: 

𝐹 =
∫ 𝑠rel(𝜆)𝑆A(𝜆)𝑑𝜆

𝜆max

𝜆min

∫ 𝑉(𝜆)𝑆A(𝜆)𝑑𝜆
830 nm

360 nm

∫ 𝑉(𝜆)𝑆(𝜆)𝑑𝜆
830 nm

360 nm

∫ 𝑠rel(𝜆)𝑆(𝜆)𝑑𝜆
𝜆max

𝜆min

 

(10) 

The spectral mismatch correction factor 𝐹 for the measurement of the modelled spectral 

distribution 𝑿𝒓 is calculated using the spectral responsivity of the photometer ( 𝑠rel(λ), Figure 1) 

without any uncertainty contribution, calibrated at CIE standard illuminant A, SA(λ). 

𝐹 =
∑ 𝑠rel(𝝀𝒊

𝒓) ∙ 𝑺𝑨(𝝀𝒊
𝒓) ∙ (𝝀𝑖+𝟏

𝒓 − 𝝀𝑖
𝒓)

𝑁𝜆−2

𝑖=0

∑ 𝑉(𝝀𝒊
𝒓) ∙ 𝑺𝑨(𝝀𝒊

𝒓) ∙ (𝝀𝑖+𝟏
𝒓 − 𝝀𝑖

𝒓)
𝑁𝜆−2

𝑖=0

∙
∑ 𝑉(𝝀𝒊

𝒓) ∙ 𝑿𝑖
𝒓 ∙ (𝝀𝑖+𝟏

𝒓 − 𝝀𝑖
𝒓)

𝑁𝜆−2

𝑖=0

∑ 𝑠rel(𝝀𝒊
𝒓) ∙ 𝑿𝑖

𝒓 ∙ (𝝀𝑖+𝟏
𝒓 − 𝝀𝑖

𝒓)
𝑁𝜆−2

𝑖=0

 
(11) 

For simplicity, only one wavelength scale is used here. In practice, one would have to use 
separate wavelength scales for the spectral responsivity of the photometer, for the 
measurement of the spectral distribution of the DUT and for the spectral distribution of the 
calibration light source for which random numbers are generated independently.  

Note: 

Using a non-nominal wavelength scale usually requires interpolation for further 
calculations. It is essential not to interpolate the values 𝐒r to the nominal wavelength 

scale 𝛌. The standard functions (e.g., colour matching functions, luminous efficiency 
functions, illuminants) used in the calculations should be interpolated to the usually non -
equidistant random wavelength scale (CIE15:2018, 2018, chap. 7.2.3). 

Only in case of passing on to another user the value vector should be interpolated to a 
usually equidistant wavelength vector. Thereby the measurement uncertainties of the 
wavelength vector are converted to the amplitude values and their measurement 
uncertainties and correlations. This is comparable with the luminous flux measurement 
at a standard lamp. Here, the operating current is also specified as a nominal value (i.e. 
without measurement uncertainty) and the uncertainty in the setting/measurement o f 
the operating current is included in the measurement uncertainty of the luminous flux 
value. 

 Parameters for random numbers 

For simplicity, the random numbers used for simulating the uncorrelated and correlated 
contributions introduced above are drawn from normal distributions: 
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• Additive components (mean value = 0): 𝑋r ∼ 𝒩(0; σ) 

• Multiplicative components (mean value = 1): 𝑋r ∼ 𝒩(1; σ) 

The standard deviation parameter is selected in a way that one can adapt the result of the 
simulation conveniently to the situation in a concrete measurement setup: 

• Uncertainty of the wavelength scale parameters is 1 nm. 

• Uncertainty of the amplitude scale parameters is 1 %. (Usually, normalised data.) 

• The uncertainty for the wavelength scale factor 𝑘λm-c is modelled with 𝑘λm−c
𝑟 ∼ 𝒩(1; 0,001) due 

to the high sensitivity of this contribution.  

 Connection to physical models 

The basic approach proposed here can be linked to the physical properties of measurement 
systems or at least to some properties usually used in "Black Box" models. A very first overview 
will be given here: 

Table 1 – Connection to physical models 

Symbol Description Origin in other (physical) models 

𝑘λm-c Wavelength scale factor 

The measurement result of several narrowband 
spectral lamps for the wavelength calibration is the 
scale factor in nm/pixel or nm/° of the 
spectroradiometric system. The uncertainty of this 
scale factor can be used to model 𝑘λm-c . 

𝜆a-c 
Wavelength scale shift 
of the whole scale 

The stability (reproducibility or repeatability) of the 
homing/initialisation of a monochromator can be used 
to model 𝜆a-c . 

𝝀a-uc 
Wavelength scale shift 
of single measurement 
points 

Reproducibility or repeatability of the wavelength 
setting at a single wavelength position.  

𝛌a-b 
General uncertainty of 
the wavelength scale  

A complicated relationship between different 
wavelength settings can be modelled by  
𝛌a-b. An example of a physical-based modelling for 
such a parameter can be found in (White et al., 2012). 
The basis function approach can model the described 
behaviour if the correction is not possible.  

𝒌Sm-b 

Uncertainty of the 
absolute/relative 
amplitude calibration 
factor. 

A sophisticated modelling of the calibration factor can 
be introduced, e.g., aging causing correlations 
between the calibration factors of different wavelength 
regions. 

𝑆a-c 
Correlated uncertainty 
of a global offset 

Modelling the global dark signal (e.g., generated by 
clamping). 

𝑺a-uc 
Uncorrelated 
uncertainty of the offset 
signals 

Modelling the individual dark signal at every 
measurement position. 

𝑺a-b 
Uncertainty modelling 
for the offset. 

A time-depended offset of a reference voltage can 
cause wavelength dependent offset values in the 
amplitude scale. 
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 Basis function approach 

The basis function approach is explained in (Kärhä et al., 2017) for Fourier basis functions and 
in (Vaskuri et al., 2018) for Chebyshev basis functions in detail. The implementation can be 
found in (19nrm02, 2023) in the MC Toolbox of the package in the file FourierNoise.py. A 

short summary is given below. 

Table 2 – Basis function approach 

 Wavelength scale Value scale 

Random numbers 𝛌a-b
r = λ + 𝑢𝜆 ⋅ 𝛅 𝑺m-b

r = 𝑺(1 + 𝑢𝑆 ⋅ 𝛅) 

Deviation function 𝜹 = ∑ 𝛾𝑘𝒇𝑘
𝑁B
𝑘=0  or 𝜹 = ∑ 𝛾𝑘𝒄𝑘

𝑁B
𝑘=0  

Deviation function (single 
function with k = NB) 

𝜹𝑠 = 𝛾𝑘𝒇𝑘 or 𝜹𝑠 = 𝛾𝑘𝒄𝑘 

With the generated standard normal distributed random numbers 𝑌𝑘 ∼ 𝒩(0; 1) one calculates 

the normalised weighting factors γ𝑘 with γ𝑘 = 𝑌𝑘/√∑ 𝑌𝑗
2𝑘

𝑗=0  

Fourier basis functions Chebyshev basis functions 

𝒇0(λ) = 1 

𝑔0(λ) = 𝑻0(λ) = 1 

𝑻𝑘(λ) = cos (𝑘 arccos (
2𝜆 − 𝜆1 − 𝜆2

𝜆2 − 𝜆1

)) 

𝒈𝑘(λ) = 𝑻𝑘(λ)/σ𝑘 

𝑓𝑘(λ) = √2sin (2𝜋𝑘
𝜆 − 𝜆1

𝜆2 − 𝜆1

+ 𝜙𝑘) 𝒄𝑘(λ) = cos(𝜙𝑘)𝑔2𝑘−1 + sin(𝜙𝑘)𝑔2𝑘 

𝜙𝑘 is a uniformly distributed random number in the range of [0,2𝜋] and the wavelength range is 

described with [λ1; λ2]. σ𝑘 is the standard deviation of 𝑻𝑘(λ). 

  

Figure 5 – Sample Fourier basis functions 𝒇𝒌 

with 𝝓𝒌 = 𝟎 

Figure 6 – Sample Chebyshev basis 
functions 𝒄𝒌with 𝝓𝒌 = 𝟎 
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Figure 7 –Combined Fourier basis  
functions 𝜹𝒌 

Figure 8 – Combined Chebyshev basis 
functions 𝜹𝒌 

The partially correlated realisation of the random number 𝝀a−b
𝑟  with 𝑁B orthogonal basis functions 

𝑓𝑘(𝜆) (based on Fourier or Chebyshev basis functions), the weighting factors 𝛾𝑘 and the standard 

uncertainty 𝑢λ=1 nm (here, 𝑢λ is a parameter of the simulation, representing the standard 
deviation of the noise to be generated) are expressed as shown in Table 2. 

Using the deviation function with a single basis function only, as shown in the last line of Table 
2 and Figure 5 and Figure 6, checks the direct influence of a specific basis function order. An 
example of the combination of basis functions is shown in Figure 7 for Fourier basis functions 
and Figure 8 for Chebyshev basis functions. 

Iterating the MCS over several basis functions 𝑁B = 0 … 𝑁𝜆/2 − 1 will result in a lot of information. 

𝑁𝜆/2 − 1 is the maximum number of basis functions possible due to the Nyquist rule. Besides 
the basis function number for the maximum impact on the final uncertainty, three specific points 
are usually of particular interest: 

• The evaluations based on the FEL measurement results from the PTB are  shown as an 
additional point (and a corresponding horizontal line) in the graphs (description 'PTB'). 

• The fully-correlated case is also shown in the graphs as a separate point (description 'corr'). 

• 𝑁B = 𝑁𝜆/2 − 1: The fully-uncorrelated case is separately marked (description 'un-corr'). 

Therefore, modelling using the additional scalar values 𝑘Sm-c and  𝑘Sm-uc was not necessary in 
(1) because both special cases are included in the basis function approach . 

 Model application 

The subsequent application of these types of contributions (and all together at the end) 
estimates the possible sensitivity coefficients (the variation of the output quantity concerning 
the variation of the input quantity). This kind of sensitivity analysis proposed by (JCGM 
101:2011, 2011) in Annex B is called one factor at a time (Razavi and Gupta, 2015). 

3 Results 

A blackbody spectral distribution is used as input quantity to make the simulation as simple as 
possible. Based on the theoretical blackbody radiator, the amplitude and wavelength values are 
modified during the MCS as described above. With the modified spec tral distributions, one can 
calculate output integral quantities (e.g., tristimulus value 𝑌, chromaticity coordinates 𝑥 and 𝑦, 

the correlated colour temperature 𝐶𝐶𝑇 and the spectral mismatch correction factor 𝐹) and study 
their behaviour during the simulation. These data estimate the probability distribution functions 
and statistical parameters for all output quantities, including mean and standard deviation. As 
a first step, their relations are described with linear correlation coefficients and corr elation plots. 
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The implementation of this simulation can be found in (19nrm02, 2023). All diagrams, tables 
and calculations based on this Python package are made in the Jupyter Notebook 
MCSim_PM.ipynb. Calculations in the MCS were performed with 20 000 trials. 

 Overview 

For the first setting, the basis functions are modelled with cumulative Chebyshev basis functions 

of order 𝑁B = 7 (description: "basis c 7"). A separate analysis of the influence of the kind of 
basis function, the order, and the difference between a single basis function and the cumulative 
approach will be shown in section 3.2. 

Table 3 shows the output table of a measurement uncertainty ca lculation with the uncertainty 
contributions of every input quantity of the model to selected output quantities.  

Figure 9 and Figure 10 show the probability distribution function for the relative tristimulus value 
𝑌 the variation of the different model parameters.  

Figure 11 and Figure 12 show the influence of the different model parameters on the evaluated 
chromaticity coordinates. 

Figure 13 to Figure 15 show selected correlation matrixes of the generated SD inside the MSC. 
Figure 13 shows the correlation matrix for the SD based on the 𝒌Sm-b modelling with 𝑁B = 7 and 
Chebyshev basis functions. Figure 14 shows the same calculation with Fourier basis functions. 
Figure 15 shows a correlation matrix for the configuration of Figure 14 but with a single basis 
function of order 7 only. 

Figure 16 shows the PDF of all selected output quantities and their correlation.  

 Evaluation of different basis functions 

Observing the influence of the model parameter 𝒌Sm-b only, we can vary the kind of basis 
function, the number of basis functions 𝑁B and how we use the basis functions (all together up 
to a specific order as called cumulative or as a single basis function ('s') only). 

Figure 17 to Figure 21 show the effect of the number of basis functions and the kind of basis 
function modelling on the measurement uncertainty of the different selected output quantities.  

4 Discussion 

The simulations show the expected behaviour, i.e., uncorrelated and fully -correlated 
contributions have no significant influence on chromaticity coordinates and the other evaluated 
quantities. The exception is the contribution from the additive, fully -correlated errors in the 
values of the wavelengths (e.g., caused by the homing/initialising procedure of a 
monochromator or by the wavelength adjustment of an array spectroradiometer with a few 
spectral lines only), which makes significant contributions to nearly all investigated output 
quantities. 

However, it was shown by modelling with orthogonal basis functions that partial correlations 
contribute significantly to the measurement uncertainty . In the case of the slowly changing 
tristimulus functions, only the long-wave basis functions (𝑁B is small) produce effects that do 
not cancel each other out. Therefore, these reflect the possible maximum effects of correlations. 
This is a possible contribution to the measurement uncertainty that needs to be considered for 
physical models.  

The approach based on using single basis functions generally provides information about the 
most sensitive frequency for the basis function approach. It is usually observed for intermediate 
and more specific spectral frequencies, those related to correlations whose disregard leads to 
a greater underestimation of the uncertainty.  

The behaviour for the spectral mismatch correction factor 𝐹 (Figure 21) is different from the 
other integral data evaluations. This is because the high frequency difference between the 
𝑉(λ) function and the photometer #73 (Figure 1) used here also contains higher frequencies. 

Therefore, higher orders of the basis function cause more deviation in 𝐹 than lower orders. 
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Table 3 – Evaluation table for the MU calculation using the basic approach 

Quantity Unit Mean StdDev. Distribution 𝑌 𝑢(𝑌) 𝑥 𝑢(𝑥) 𝑦 𝑢(𝑦) 𝐶𝐶𝑇 / K 𝑢(𝐶𝐶𝑇) / K 𝐹 𝑢(𝐹) 

𝑇 K 3077,0 1,000 normal 1,000 0 0,002 7 0,431 55 0,000 07 0,402 16 0,000 03 3077,0 1,0 1,002 4 0,000 010 

𝜆a-c nm 0,0 1,000 normal 1,000 0 0,005 8 0,431 55 0,000 56 0,402 15 0,000 25 3077,0 7,7 1,002 4 0,000 074 

𝜆a-uc nm 0,0 1,000 normal 1,000 0 0,000 5 0,431 55 0,000 10 0,402 15 0,000 12 3077,0 1,7 1,002 4 0,000 023 

𝜆a-b nm 0,0 1,000 basis c 7 1,000 1 0,006 5 0,431 54 0,000 85 0,402 15 0,000 78 3077,2 13,8 1,002 4 0,000 106 

𝑘λm-c 1 1,0 0,001 normal 1,000 0 0,003 2 0,431 56 0,000 21 0,402 16 0,000 08 3077,0 3,1 1,002 4 0,000 031 

𝑆a-c 
 0,0 0,010 normal 1,000 1 0,010 1 0,431 55 0,000 00 0,402 16 0,000 00 3077,0 0,0 1,002 4 0,000 000 

𝑆a-uc 
 0,0 0,010 normal 1,000 0 0,000 8 0,431 55 0,000 14 0,402 16 0,000 13 3077,0 3,0 1,002 4 0,000 038 

𝑆a-b  0,0 0,010 basis c 7 1,000 1 0,011 3 0,431 56 0,000 97 0,402 14 0,000 88 3076,8 19,9 1,002 4 0,000 150 

𝑘Sm-b  0,0 0,010 basis c 7 0,999 9 0,011 4 0,431 56 0,000 98 0,402 14 0,000 88 3076,8 20,1 1,002 4 0,000 151 

All     1,000 2 0,021 2 0,431 55 0,001 72 0,402 12 0,001 51 3076,9 32,5 1,002 4 0,000 255 

 

  

Figure 9 – Histogram of the relative tristimulus value 𝒀rel based on the 
wavelength uncertainty contributions  

Figure 10 – Histogram of the relative tristimulus value 𝒀rel based on the 
value uncertainty contributions  
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Figure 11 – Covariance for the chromaticity coordinates based on the 

wavelength uncertainty contributions  
Figure 12 – Covariance for the chromaticity coordinates based on the 

value uncertainty contributions  
 

   

Figure 13 – Correlation matrix for the SD base 
on the 𝒌Sm-b modelling with 𝑵𝐁 = 𝟕 Chebyshev 

basis functions  

Figure 14 – Correlation matrix for the SD base 
on the 𝒌Sm-b modelling with 𝑵𝐁 = 𝟕 Fourier 

basis functions  

Figure 15 – Configuration like Figure 14 with a 
single basis function only  
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Figure 16 – Correlation of the integral output quantities for the  

𝒌Sm-b  part of the model  
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The graphs Figure 17 to Figure 21 show the 
number of basis functions on the horizontal 
axis (log scale) and the measurement 
uncertainty of different quantities (tristimulus 
value 𝑌, chromaticity coordinates (𝑥, 𝑦), 𝐶𝐶𝑇 
and spectral mismatch correction factor 𝐹) 

caused by the model parameter 𝒌Sm-b only on 
the vertical axis. 

The four different versions show: 

PTB Calculated with PTB data 

corr Fully-correlated random numbers 

un-corr Fully-uncorrelated random numbers 

f Fourier basis functions (cumulative) 

f s Fourier basis function (single) 

c Chebyshev basis function (cumulative) 

c s Chebyshev basis function (single) 

 

Figure 17 – Influence of the basis function 
setting on the tristimulus value 𝒀 evaluation  

  

Figure 18 – Influence of the basis function 
setting on the 𝒙 evaluation  

Figure 19 – Influence of the basis function 
setting on the 𝒚 evaluation  

 
 

Figure 20 – Influence of the basis function 
setting on the 𝑪𝑪𝑻 evaluation  

Figure 21 – Influence of the basis function 
setting on the spectral mismatch correction 

factor 𝑭 evaluation  

5 Conclusion 

The proposed basic modelling approach is an easy tool to understand the origin of possible 
significant contributions to measurement uncertainty caused by correlation in the spectral data 
used as input quantities or by the evaluation process.  



Krüger, U. et al. SENSITIVITY EVALUATION OF SPECTRAL DATA FOR CALCULATED INTEGRAL QUANTITIES 

   

 

MCS has shown that when measuring quantities derived from spectral integrations, the full -
correlated and uncorrelated errors contribute much less to the uncertainty than the partially 
correlated errors modelled by the basis functions. As expected, the basis functions with fewer 
terms (functions with low spectral frequencies representing errors with short autocorrelation 
length) provide a more considerable uncertainty in measuring these spectrally integrated 
quantities and thus provide a reasonable estimate of the maximum uncertainty. 
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