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Using knee-trained  
Deep Neural Networks  
for Brain MRIs
Understanding Domain Shift in Learned 
Magnetic Resonance Imaging (MRI) 
Reconstruction: A Quantitative Analysis on 
fastMRI Knee and Neuro Sequences

We investigate the problem of domain shift in the context of 
state-of-the-art MRI reconstruction networks with respect to 
variations in training data. We provide visualization tools and 
support our findings with statistical analysis for the networks 
evaluated on the 1.5 T/ 3 T fastMRI knee/neuro data. We 
observe that the signal-to-noise ratio of the examined sequences 
plays an essential role, and we statistically prove the hypothesis 
that both the type and amount of training data are less 
important for low acceleration factors. 
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chest x-rays [17]. In medical imaging, 
DL has shown promising results for 
numerous types of problem statements 
and widely used imaging techniques, 
including Computed Tomography 
(CT) and Magnetic Resonance 
Imaging (MRI). Outside of radiology, 
AI has also been proposed to improve 
health systems, patient autonomy, 
data analysis, and computer-assisted 
diagnosis. 

Despite the fact that AI has already 
established its usage in many fields 
today, the application of this relatively 
new technology in such a sensitive field 
as medicine awaits many formidable 
roadblocks regarding regulatory and 
ethical approval and explainability 
in the near future. Although Deep 
Learning seems to be as reliable, AI 
solutions have shown limitations and 
require further clinical validation. 
Limitations include the susceptibility 
to security breaches as well as the 
requirement of human surveillance: 
As is often said, AI will not replace 
radiologists but rather support them in 
their diagnosis. 

1.2 Deep Learning in Magnetic 
Resonance Imaging 
Reconstruction

One of the most prominent use cases 
of DL is to compensate for the long 
acquisition duration of MRIs. While 
research on CT mainly focuses on 
decreasing the ionizing radiation, 
the long acquisition time is a major 
concern for MRI research. The quality 
of MRI acquisitions highly depends on 
the patient’s ability to remain still as 
movements during the scan negatively 
impact the image. Therefore, the 
acquisition duration can prove to be 
difficult for many patients including 
children and claustrophobic patients. 
Other drawbacks, including high 
costs and lacking patient comfort, are 
further incentives to reduce the MRI 
acquisition time. However, despite 
efforts in accelerating image acquisition 
without affecting the quality of the 
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1. Introduction

With the rapid development of digital 
technologies and the increasing 
complexity of required algorithms, 
Artificial Intelligence (AI) has become 
a terminology and methodology 
frequently used in a broad spectrum 
of applications. Applied in medical 
imaging, Deep Learning (DL), a further 
sub-field of AI and Machine Learning 
(ML), has enabled and improved several 
methodologies in radiology beyond 
what was previously thought possible. 
For instance, in order to automate 
brain tumor image segmentation, Deep 
Neural Networks (DNNs) were utilized 
to develop efficient AI solutions due to 
their versatility and performance [7].

1.1 Past, Present, and Future 
of Artificial Intelligence in 
Medicine

Simultaneously with the rise of DL, the 
usage of AI has increased in medical 
sciences. We are currently witnessing 
an emerging, new era of Medical 
Technologies (MTs), in which AI is 
fused into daily clinical decisions and it 
has become crucial for us to understand 
the development of AI in Medicine 
(AIM). 

Today, AI has found its usage in a wide 
variety of applications in the 4P model 
of medicine (Predictive, Preventive, 
Personalized, and Participatory). Above 
all, the application of DL to medical 
imaging has shown promising results, 
even outperforming the diagnosis of 
radiologists in detecting pneumonia in 
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recommendations for future research, 
application, and development are drawn.

2. Methods

2.1 Theoretical Foundations of 
DL-based Reconstruction

First, the theoretical foundations 
applicable to both DL-based 
reconstruction of static and dynamic 
imaging has to be outlined. There 
are many ML-based approaches to 
retrieving the image  x ∈  ℂ    ℕ  x     from the 
inverse problem in Eq. (1) including 
image denoising, physics-based 
reconstruction, and direct mapping. 
Accordingly, the task is also defined 
differently with varying network 
designs and input data [5].

2.1.1 Image Denoising

In image denoising, the definition of 
the image reconstruction problem 
is simplified to a regression task. 
Specifically, it is an image-to-image 
regression problem in which the neural 
network (NN) learns to predict a 
continuous outcome for each pixel in 
the given complex-valued input image 
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, generating an image 
in the respective number system. In 
mathematical terminology, the network 
is trained with the MRI data, which was 
previously transformed from k-space 
to image space, to learn the mapping 
function

reconstruction. The phenomenon of 
domain shift will be crucial for potential 
clinical applications, since a selected 
learning-based approach will often 
have to adapt to previously unseen data, 
different to the dataset used to train the 
network.

While prior research on MRI 
reconstruction has focused on the 
implementation of deep learning 
algorithms and their evaluation on 
image quality [1, 4, 10, 16, 20], the topic 
of domain shift has rarely ever been 
studied. However, due to a deep learning 
model’s natural dependency on the 
given data, this domain adaptation has 
proved to have a substantial impact on 
the performance of the deep learning 
algorithms in most other deep learning 
applications [11, 14]. This challenge is 
especially significant for academic and 
potential clinical applications of MRI 
reconstruction. The questions that then 
naturally arise are “How much of an 
impact do different data configurations 
of domain shift have on different 
networks?” and “Which networks 
are least prone to varying degrees 
domain shift in clinical applications?”. 
For this, we provide visualization 
tools and statistically investigate the 
impact of domain shift in the context 
of state-of-the-art MRI reconstruction 
networks with respect to variations 
in training data. Finally, based on the 
outcomes of our multifaceted analysis, 
generally applicable conclusions and 

output, the theoretical nature of this 
imaging approach limits the number of 
frequency samples able to be recorded 
during a short period of time.

The MRI reconstruction problem, 
in practical terms, can be defined as 
facilitating the acceleration of MRI. The 
goal is to find a function to retrieve the 
reconstruction (Fig. 1c)  x ∈  ℂ    ℕ  x     from 
the retrieved undersampled k-space 
MR signal  s ∈  ℂ    ℕ  y     corrupted by noise 
(Fig. 1a) resulting from the shortened 
imaging duration  ε ∈  ℂ    ℕ  y     following

 (1)

with a linear encoding operator  E  [15]. 
The target of this reconstruction task is 
the fully-sampled target MRI (Fig. 1b), 
not corrupted by noise.

1.3 Research Objectives  
and Outline

Without a doubt, Deep Learning is a 
powerful methodology accompanied 
by an extensive list of potential 
improvements and breakthroughs in 
the field of medical imaging. The focus 
of this paper is devoted to investigating 
domain generalization challenges faced 
to allow for practical multifaceted 
conclusions and usage suggestions. 

The objective is to shed light on the 
impact of domain shift in learned MRI 

a) Undersampled MRI b) Fully-sampled target MRI c) Reconstruction using SENSE

Fig. 1: Comparison of one Frame in 2D+t Cardiac MRI: a) Undersampled input with acceleration factor R = 8, b) 
fully-sampled target, and c) SENSE reconstruction. In the MRI reconstruction problem, given an undersampled 
MRI scan, an MRI reconstruction (c) is generated to be as similar as the respective fully-sampled target scan (b).
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 (2)

where N1 and N2 denote the 
dimensionality of the input and output 
image and are therefore equal (N1 = N2). 
The complex input image space is made 
up of a real and an imaginary number 
per pixel representing the pixel-wise 
intensity.

However, the mapping function 
in trained image denoising, as its 
name suggests, is confined to the 
MRI image space and therefore does 
not incorporate the raw k-space 
frequency signals during denoising. In 
consequence, the underlying extensive 
physical information crucial for image 
reconstruction in k-space is disregarded 
[5].

2.1.2 A Case of Physics-Based 
Reconstruction: Unrolled 
Optimization

To solve the inverse problem in Eq. (1) 
the regularized reconstruction problem 

 (3)

is minimized through learning. 
This reconstructed approximation 
of x incorporates a regularization 
term 
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 learned from data and 
the data consistency (DC) term 

Formeln Arbeit He

s = Ex + ϵ (1)

with

E : CNx → CNy

(K ∈ RN1 /K ∈ CN1 )

fθ(x) : KN1 → KN2 (2)

x∗ ∈ arg min
x∈CNx

λD[Ex, s] +R[x] (3)

R[x]

D[Ex, s] = 1
2 ∥Ex − s∥2

2

xit+ 1
2 = xit − fθit(xit) (4)

xit+1 = g(xit+ 1
2 , s, E) (5)

D[Ex, s].

ggd(xit+ 1
2 ) = xit+ 1

2 − λit A∗(Axit+ 1
2 − s) (6)

gpm(xit+ 1
2 ) = arg min ∈ CNx

x

1
2
∥x − xit+ 1

2 ∥2
2 +

λ

2
∥Ex − s∥2

2. (7)

1

 balanced by  λ  
in a “DC layer” [6]. The unrolled 
optimization algorithm for the MRI 
reconstruction problem is defined as 

 (4)

 (5)

by Hammernik et al [4, 6] for 
 0 ≤ it ≤ T  with current iteration it 
and total number of iterations T. For 
the regularization network    f  θ   (  x )     before 
each DC layer, we employ either a U-Net 
[16], 5-layer CNN, or DUNET [6] with 
complex-valued input and output as well 
as varying mathematical operations to 
process the complex-valued input. By 
including the DC layer, the optimization 

problem receives information regarding 
the physics of raw MR data and MR 
acquisition and is therefore able to assess 
the learning progress, in contrast to the 
k-space data-based image denoising [6]. 
Further physics-based reconstruction 
approaches involve k-space learning 
and hybrid learning [5].

2.1.3 Data Consistency Layers 
in Unrolled Optimization 
Networks 

Data consistency (DC) layers guarantee 
k-space consistency, and hence 
are essential to incorporating the 
underlying MRI physics in the raw 
data in learned MRI reconstruction [6]. 
Therefore, in unrolled optimization, 
the network is able to not only consider 
the information and similarity in 
image space, but also in k-space. In all 
networks we inspected, either Gradient 
Descent (GD) or Proximal Mapping 
(PM) was used to model the DC term 
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1

. A GD scheme can be used [4, 6].

Formel (6)

In certain networks we inspected, as well 
as the PM-DUNET examined in chapter 
3, DC was modelled by PM [1, 6].

Formel (7)

As a result, our unrolled optimization 
networks consist of a fixed number of 
iterations that comprise either a GD or 
a PM modelled DC layer and a N-layer 
CNN as the “denoising” regularization 
network as shown in Fig. 2. Formel (7)

Formel (6)

Fig. 2: CNN-Net Unrolled Optimization Reconstruction DNN containing N-layer CNN as the regularization network 
and a PM/GD-modelled DC layer. The network variable N as well as convolutional layer configurations vary 
between experiments.
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with a magnetic field strength of 1.5 T as 
shown in Tab. 2. This dataset comprises 
data of two sequences mainly used in 
human joint diagnostics as shown in 
Tab. 3 and Fig. 3. A noticeably higher 
overall Signal-to-Noise Ratio (SNR) 
for samples acquired with the CORPD 
pulse sequence compared to CORPDFS 
data could be observed. 

2.2 Experimental Setup

In this paper, we follow the experimental 
setup of Hammernik et al [6]. The key 
motivation of Hammernik et al [6] was to 
compare varying data consistency layers 
and regularization networks associated 
with reconstruction approaches, e.g. 
physics-based reconstruction, in state-
of-the-art reconstructions networks. 
As a result, an extensive collection of 
network performances evaluated on 
a per-patient basis along with its MR 
acquisition parameters is generated.

2.2.1 The fastMRI Dataset

As described in Hammernik et al [6], 
the fastMRI multi-coil train knee and 
neuro dataset was used to train and 
evaluate the examined DNNs. The 
experiments were focused on parallel 
imaging and were therefore limited to 
the multi-coil dataset, disregarding the 
single-coil samples. This large-scale 
dataset owned by New York University 
and NYU Langone Health consists of 
fully-sampled ground-truth images 
and k-space data acquired by scanners 
of a magnetic field strength of 1.5 Tesla 
(T) and of 3  T [20]. Specifically, all 
reconstruction networks were trained 
with varying data configurations shown 
in Tab. 1. Therefore, we will focus on the 
data acquisition parameters of the data 
configurations listed in Tab. 1 in the 
following. Further information on the 
MR sequence parameters is detailed in 
the original publication [20].

The knee and neuro datasets can be 
further divided into MR scanners 
and acquisition sequences distinctive 
for the respective anatomy. In simple 
terms, MRI sequences are combinations 
of pulses and gradients used during 
the acquisition process that result in 
different appearances of a particular 
sample.

The knee MR samples were acquired on 
four different MRI systems for clinical 
diagnostic usage, three of which had a 
magnetic field strength of 3 T and one 

The neuro MR samples were acquired 
on six different MRI systems for clinical 
diagnostic usage, four of which had 
a magnetic field strength of 3 T and 
two a magnetic field strength of 1.5 T 
(Tab. 2). This dataset comprises data of 
four sequences mainly used to detect 
structures in the central nervous system 
as shown in Tab. 3 and Fig. 3.

Tab. 1: An Overview of all fastMRI data configurations and their 
compositions [6].  x ∈  {25,50,100}  . For instance, “knee 50” 
corresponds to “50 % knee data”.

fastMRI data  
configurations Dataset composition

knee x knee data

joint x mixed knee and neuro data,  
number of training subjects 
correspond to number of training  
subjects in knee x

joint x uni mixed knee and neuro data with uniform 
distribution of pulse sequences, 
number of training subjects correspond to 
number of training subjects in knee x

Tab. 2: An Overview of all fastMRI MRI  
scanners/systems used for data acquisition.

Anatomy

Field 
Strength  
in Tesla MRI System

Number  
of Scans

knee 3 Siemens Magnetom Skyra 496

knee 3 Siemens Magnetom Prisma 47

knee 3 Biograph mMR 124

knee 1.5 Siemens Magnetom Aera 505

neuro 3 Siemens Magnetom Skyra 1625

neuro 3 Siemens Magnetom Prima 602

neuro 3 Siemens Magnetom Tim Trio 478

neuro 3 Biograph mMR 645

neuro 1.5 Siemens Magnetom Avanto 1274

neuro 1.5 Siemens Magnetom Aera 1223
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data distribution compared to the 
training dataset.

We differentiate between quantitative 
and qualitative analysis [8]. Quantitative 
analysis is based on objective criteria 
(i.e. mathematical metrics) to evaluate 
the quality of reconstructions and thus 
the performance of the reconstruction 
network. This way, conclusions on 
overall trends can be drawn from a 
statistical point of view, yet disregarding 
certain aspects such as the inequality 
of image similarity and medical 
value. Qualitative analysis for medical 
imaging reconstruction, on the other 
hand, requires human judgement from 
medical experts to access the medical 
value of the reconstruction results 
regarding diagnosis. 

2.3.1 Evaluation Metrics

In this section we present an overview 
on the statistical techniques and 
parameters we used to quantitatively 
inspect domain shift. 

The adequate and accurate assessment 
of the received DNN output is critical 
in AI development. In learned MRI 
reconstruction, the evaluation of the 
reconstruction quality is commonly 
based on metrics on the image-level 

All categories considered, we 
acknowledge the presence of imbalance 
between the amount of data acquired 
for the individual scanner models 
and MRI sequences, especially during 
model training. Instead of repeating 
the MR imaging procedure with a 
reduced duration in order to generate 
prospectively undersampled k-space 
data matching the fully-sampled target 
acquisitions, masking was employed 
retrospectively to simulate accelerations 
factors of R = 4 and R = 8 [20]. 

2.2.2 Evaluated Deep Neural 
Networks

We employed reconstruction networks 
of varying architectures, including 

 ■ three state-of-the art DL networks: 
U-Net [16, 20], MoDL [1], and VN 
[4] and

 ■ Down-Up Networks (DUNETs) 
incorporating three different 
data consistency (DC) layers as 
explained in methods, i.e. Gradient 
Descent (GD), Proximal Mapping 
(PM), and Variable Splitting (VS).

These networks along with the number 
of trainable parameters, reflecting on 
the complexity of the network, and the 
regularization networks are depicted in 
Tab. 4.

2.2.3 Training and Validation

All networks were trained 
simultaneously on identical training 
environments for a fixed number of 
60 epochs. During training on the 
same hardware setup, the ADAM 
optimizer [9] with predetermined 
configuration parameters along with 
identical loss functions was utilized. 
That being the case, we opted for no 
hyperparameter tuning prior to each  
experiment/training cycle, contrary 
to machine learning conventions. This 
was specifically designed to determine 
possible undesirable influences 
from factors not investigated in this 

context; hence, to ensure a generalized 
validation environment. When training 
the networks on the knee dataset, the 
entirety of the samples was split into 
80 percent training and 20 percent 
validation set, whereas the remarkably 
larger neuro dataset was split into 
70 percent training and 30 percent 
validation set.

Furthermore, in order to examine the 
varying MRI reconstruction network 
architecture performances uniformly, 
both training and evaluation of each 
network in the initial publication 
[6] were performed on different data 
configurations of the fastMRI multi-
coil validation knee and neuro dataset 
for the acceleration factors R  =  4 
and R  =  8 and interpreted using the 
Structural Similarity Index Measure 
(SSIM). Further quality metrics such 
as the Mean Squared Error (MSE), the 
Peak Signal-to-Noise Ratio (PSNR), and 
the Normalized Mean Squared Error 
(NMSE) were computed.

2.3 Methodological Approach

In the following we will elaborate on our 
approach to quantitatively analysing 
the different degrees of ramifications 
when the reconstruction networks are 
deployed on datasets with a different 

Tab. 3: An Overview of all fastMRI MRI  
sequences used for data acquisition.

MRI  
Sequence Anatomy Description

Number  
of Scans

CORPDFS knee Coronal proton-density  
weighted with fat-saturation

588

CORPD knee Coronal proton-density  
weighted w/o fat-saturation

584

AXFLAIR neuro Axial fluid-attenuated  
inversion recovery

451

AXT1 neuro Axial T_1 weighted 667

AXT1POST neuro Axial T_1 weighted with  
contrast agent

1236

AXT2 neuro Axial T_2 weighted 2515
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[20], not in k-space: In general, the 
MSE reconstruction quality metric is 
calculated through the mean squared 
pixel-wise differences between the target 
and reconstructed image. To calculate 
the NMSE measurement, the MSE is 
normalized by the mean squared image 
pixel value of the entire image [20]. The 
third error measurement often looked 
at, the PSNR, scales the MSE metric to 

the maximal pixel value of the reference 
image (R).

The MSE, NMSE, and PSNR all are 
mathematically accurate measures 
of errors in a reconstruction result 
compared to the target image [19]. 
However, quantifying errors does not 
entirely correlate with perceived visual 
quality. In general image reconstruction, 

the quality of reconstruction results can 
often be understood as the similarity of 
the network output to the target data 
(i.e. the ground-truth k-space data) 
[3, 20]. This visual similarity is often 
determined by the similarities of the 
visual image structures. The usage 
of the mathematical SSIM is a well-
established approach in identifying 
and assessing the differences between 
visible structures in order to directly 
evaluate them similar to a human visual 
perception system instead of pixel-wise 
comparison [19]. Possible values for 
the SSIM quality metric range from 
-1 to 1, with 1 denoting the identical 
reconstruction result. The SSIM-metric 
takes in the luminance, contrast, and 
structure of the target image and 
reconstruction into consideration. 
These three relatively independent 
measurements are weighted and 
combined to the SSIM calculation. 

Consequently, for the sake of 
comprehensibility and coherence as 
well as usability in graphical analysis, 
we quantitatively analysed domain shift 
in MRI reconstruction mainly based on 
the SSIM metric [19].

Tab. 4: Comparison of evaluated DNNs as described in [6].

Network
Parame-
ters Regularization Network

Data Consis-
tency Layer

U-Net 3,357,827 U-Net None

VN 131,051 Fields-of-Experts Model Gradient 
Descent

MoDL 113,155 5-layer CNN Proximal 
Mapping

GD-DUNET 3,372,985 DUNET Gradient 
Descent

PM-DUNET 3,372,985 DUNET Proximal 
Mapping

VS-DUNET 3,372,985 DUNET Variable 
Splitting

a) Knee CORPD (MRI scan) b) Knee CORPDFS (MRI scan) c) Neuro AXFLAIR (MRI scan) 

d) Neuro AXT1 (MRI scan) e) Neuro AXT1POST (MRI scan) f) Neuro AXT2 (MRI scan) 

Fig. 3: MR Sequences: Fig. (a) and (b) shows ground-truth samples acquired with the  
knee data pulse sequences. Fig. (c) to (f) shows ground-truth samples acquired with the neuro  
data pulse sequences.

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2024/01/JUWI-01-24-img-03.jpg
https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2024/01/JUWI-01-24-tab-04.jpg


doi: 10.7795/320.202401

 
 

  

network, and the data configuration the 
network was trained on.

Quantitative analysis of the knee and 
neuro data was fully completed in the 
high-level programming language 
Python [18] due to its versatility. We 
made use of the countless open-source 
libraries to accommodate the operations 
performed on the data.

When presented in graphical plots, 
the knee and neuro data was analysed 
from different perspectives using, 
mostly, three types of plots: We used 
conventional graphical techniques such 
as ranked lists/horizontal bar charts 
and scatterplots to investigate

 ■ the performance of individual 
reconstructions networks/types of 
reconstruction networks validated 
on certain cohorts (determined 
by e.g. acceleration factor, data 
configuration, scanner model, MRI 
sequence) from a broad view and 

 ■ the ability of individual 
reconstructions networks/types 

of reconstruction networks to e.  g. 
generalize and minimize the impact 
of domain shift. 

Furthermore, our graphical analysis 
incorporated statistical graphs as box 
plots that display the spread and locality 
of the data. The visually estimated 
L-estimators -- particularly the trimean, 
interquartile range, midhinge, and 
range revealed more in-depth trends, 
supporting the ensuing statistical tests. 
For the majority of statistical plots, the 
data points consisted of a pair of SSIM-
values for data cohorts characterized 
by two contrasting variables (e.g. 
R  =  4 versus R  =  8). The data cohorts 
represented in the plots (i.e. bars or 
boxes) were ranked in descending order 
by their highest SSIM-value when it 
proved to be feasible and reasonable. 
The training dataset or validation 
network of every categorical data point 
(bar, box, dot) is identifiable through 
its colouring, shape, or border. For 
clarity, both the x-/y-axis limits and 
steps in all plot types were uniform for 
every subplot of an experiment (e.g. 
universal x-/y-axis limits/steps for every 

2.3.2 Examined Parameters 

Apart from data configurations, the 
fastMRI knee and neuro dataset can 
be further broken down into several 
additional categories. The acquired 
MRI subjects were evaluated for the 
following three MRI acquisition 
variables: MRI pulse sequence, scanner 
model, and scanner magnetic field 
strength. Due to their significant impact 
on the SNR, the appearance, and, hence, 
the perception of the undersampled 
MRI, we will especially be focusing 
on these three variables of the MRI 
acquisition procedure in the following 
investigation.

2.3.3 Evaluation Environment

All computed metric values (“data”) for 
each reconstructed undersampled MRI 
sample were stored along with each 
sample’s attributes based on the sample’s 
anatomy (neuro/knee), dataset (train/
validation), and acceleration factor R 
(R  =  4/R  =  8). Attributes include the 
respective patient sample ID, scanner 
model, pulse sequence, reconstruction 

Tab. 5: L-Estimators of box plot for reconstruction networks for fastMRI knee and neuro training datasets 
evaluated on the neuro validation dataset at R = 8. Both UNETs show surprisingly low  ∆ W  compared to 
reconstruction networks for the same training dataset.

Network Anatomy Lower Whisker Median Upper Network Whisker  ∆ W 

PM-DUNET neuro 0.9114 0.9548 0.9900 0.0785

GD-DUNET neuro 0.9053 0.9481 0.9832 0.0779

VS-DUNET neuro 0.9052 0.9471 0.9827 0.0775

MoDL neuro 0.8585 0.9285 0.9846 0.1262

VN neuro 0.8384 0.9156 0.9806 0.1422

PM-DUNET knee 0.8350 0.9132 0.9817 0.1466

VS-DUNET knee 0.8386 0.9086 0.9731 0.1346

GD-DUNET knee 0.8198 0.8983 0.9685 0.1487

U-Net neuro 0.8295 0.8890 0.9464 0.1170

MoDL knee 0.8010 0.8882 0.9671 0.1661

VN knee 0.7888 0.8791 0.9650 0.1762

U-Net knee 0.7611 0.8375 0.9094 0.1483
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MRI pulse sequence when plotting the 
SSIM against the validation dataset 
configuration).

2.3.4 Statistical Significance

In order to identify key parameters 
and relationships determining the 
distribution of the networks’ behaviours 
over the given data domains, we used the 
Mann-Whitney U Test [12, 13] with a 95 
percent confidence interval required to 
reject the null hypothesis and regard the 
distribution as statistically significant.

In the non-parametric Mann-Whitney 
U Test, also referred to as the Wilcoxon 
Rank Sum Test, we analyse two network 

performance data groups to investigate 
a possible statistical significance in 
the network performance measured 
in SSIM when trained on two different 
data configurations (dataset 1 and 2), 
the “base” configuration that is tested 
against (dataset 1) being the same 
dataset the network is evaluated on [13]. 
The significance test examines whether 
the two given dataset distributions are 
correlated. The presence of statistical 
significance for two fastMRI training 
datasets would point towards lacking 
network generalization for the 
examined network when trained on 
training dataset 2, the dataset unequal 
to the validation dataset. Accordingly, 
the amount of training datasets 

the analysed network proves to be 
statistically significant and could be an 
indicator for the overall ability of the 
network to generalize, and, hence, to 
perform under the impact of domain 
shift.

3. Results

This chapter investigates the impact of 
domain shift in the context of state-of-
the-art MRI reconstruction networks 
with respect to variations in training 
data. In particular, we thoroughly 
examine a wide range of factors and 
imaging parameters of the fastMRI knee 
and neuro dataset that contribute to a 
change in the networks’ performances 

a) Validation dataset: neuro

b) Validation dataset: knee

Fig. 4: Ranked box plots for fastMRI neuro/knee training and validation datasets at R = 4 and R = 8. All physics-
based reconstruction networks (VN, MoDL, DUNETs), when trained on identical datasets, outperform the image 
denoising network U-Net regarding the upper whisker- and median SSIM-value in all experiments without 
exception. Preliminary results reveal varying degrees of generalization for different networks.

https://www.junge-wissenschaft.ptb.de/fileadmin/paper/2024/01/JUWI-01-24-img-04.jpg


doi: 10.7795/320.202401

 
 

  

DUNET trained on neuro data (MoDL 
[1]) with a  ∆ W  of 0.1262/IQR of 0.0340. 
For the configuration knee evaluation 
dataset and R  =  8, we report a  ∆ W  of 
0.1638/IQR of 0.0440 for U-Net [16] 
trained on neuro data compared to the 
least dispersed non-DUNET trained 
on neuro data (VN [4]) with a  ∆ W  of 
0.1890/IQR of 0.0542. Tab. 5 presents a 
detailed overview on the exact values of 
the metrics calculated in the experiment 
for networks evaluated on the neuro 
fastMRI dataset with R = 8 (Fig. 4(a) 
R = 8).

3.2 Network Generalization

The scatter plots in Fig. 5 compare the 
correlation of SSIM values separately on 
the fastMRI knee and neuro validation 
dataset, for R = 4 and R = 8, for networks 
that were trained separately on knee 
and neuro data. The positioning of 
SSIM values on the linear function 
y  =  x, i.e., SSIM-knee = SSIM-neuro, 
would represent the perfect model 
generalization. The scatter plots show 
larger discrepancies between the yellow 
and white outlined markers for R  =  8 
than R = 4, representing a weaker, less 

linear association between the results 
when trained on the neurological and 
the brain dataset than for R = 4. 

Furthermore, to examine the impact 
of scanner models on network 
generalization, we plotted ranked 
horizontal bar charts for VN [4] 
trained only on neuro or knee data. 
The performance of the reconstruction 
network VN evaluated on knee and 
neuro data at R  =  4/R  =  8 categorized 
into the respective scanner models is 
illustrated in Fig. 6a (knee validation 
dataset, R = 4), Fig. 6b (knee validation 
dataset, R = 8), Fig. 6c (neuro validation 
dataset, R  =  4), and Fig. 6d (neuro 
validation dataset, R = 8).

We confine our third experiment to a 
single network, the PM-DUNET [6] as 
the best performing network in most 
scenarios. We explicitly accounted for 
the performance of PM-DUNET for 
different scanner models, and thus 
specifications. The boxplots in Fig. 7 
show the performance of PM-DUNET 
trained only on knee and neuro data [6], 
evaluated for scanner models at 1.5  T 
and 3 T on the knee and neuro data at 

based on statistical analysis.

3.1 General Network  
Performance

In addition to the ranked bar charts 
for networks evaluated on knee and 
neuro data examined by Hammernik et 
al. [6], we enhance the analysis on the 
reconstruction networks over the entire 
knee/neuro dataset with ranked box 
plots with descending median SSIM-
values in Fig. 4, giving us a more in-
depth understanding of the capabilities 
of different reconstruction network 
designs. We observe that for R = 4, the 
best iteration of U-Net (neuro: 0.8845/
knee: 0.9170) achieves lower SSIM 
values than all other networks (e.g. 
MoDL: 0.9160/VN : 0.9248).

The L-estimators visible in the box plots, 
in particular the difference between the 
upper/lower whisker  ∆ W  and the IQ 
range, shed new light on this surprising 
phenomenon. For the configuration 
neuro evaluation dataset and R = 8, we 
report a  ∆ W  of 0.1170/IQR of 0.0295 
for U-Net [16] trained on neuro data 
compared to the least dispersed non-

Fig. 5: Scatter plots for variations in training data, for all acquisition types, for all examined networks at R = 4  
and R = 8. Distribution of data points along the blue line represents the ideal scenario, i.e., best generalization. 
Data points with a yellow border were tested on knee data, without border on neuro data.
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R = 4 and R = 8. Statistical differences 
(p  <  0.001) between knee and neuro 
training data are found within 
scanner models of neuro validation 
data, indicating that the number of 
training subjects plays a vital role to 
span a larger solution manifold. For 
knee validation data, we only observe 
statistical differences for Skyra at R = 4 
(p < 0.01), Skyra at R = 8 (p < 0.001), and 
Aera at R = 8 (p < 0.01). The plots reveal 
a remarkably smaller interquartile 
range for both R = 4 and R = 8 for the 
neuro validation dataset.

The performance of PM-DUNET  
trained on all data configurations, 
evaluated for the knee MRI sequences 
CORPD-FBK/CORPDFS-FBK at R  =  4 
(Fig. 8a) and R = 8 (Fig. 8b) is illustrated 
in Fig. 8. Based on these box plots, we 
study the reconstruction results of 
PM-DUNET evaluated individually 

on the sequences CORPD-FBK and 
CORPDFS-FBK of the fastMRI knee 
validation set at R  =  4 and R  =  8. 
Significant differences (p  <  0.05) 
between training with knee 100 against 
all other anatomies are marked with 
red stars. It is important to note that 
CORPDFS-FBK measurements have 
lower SNR compared to CORPD-FBK.

3.3 Subject-to-Network 
Performance Visualization 
Tool

We propose a visualization tool to depicts 
the SSIM values for each individual 
subject of a reconstruction experiment. 
For us, we illustrated the SSIM values 
of each reconstructed sample in the 
fastMRI knee and neuro validation 
set, reconstructed with the six state-of-
the-art networks. Specifically, we use a 
ranked scatterplot to show the selection 

of a specific reconstruction sample 
computed by for instance GD-DUNET. 
Moreover, the reconstruction samples 
can be further categorized, for instance 
into scanner designs, MR sequences, 
field strength, and other variables 
in order to dissect the performance 
distributions. The categories, being the 
reconstruction networks, are visualized 
as ranked lists with descending 
maximum reconstruction quality 
measured in SSIM. This visualization 
allows us to examine which subjects 
were reconstructed best/worst for 
the individual networks, and identify 
outliers.

4. Discussion

Using graphical techniques and 
statistical tests, we were able to identify 
key parameters and relationships 
determining the performance 

a) VN trained on knee at R = 4,  
Validation dataset: neuro

b) VN trained on knee at R = 8,  
Validation dataset: neuro

c) VN trained on neuro at R = 4,  
Validation dataset: neuro

d) VN trained on neuro at R = 8,  
Validation dataset: neuro

Fig. 6: Ranked Bar Charts for fastMRI neuro/knee training and validation datasets, evaluated for Scanner Models 
using reconstruction network VN [4] at R = 4 and R = 8. The number of training samples for each individual 
scanner model is labelled next to the respective colored bars. No clear correlation between the number of training 
samples per scanner model and the network performance can be identified. When evaluated on data  
acquired on 1.5 T scanners (Avanto, Aera) with lower SNR, reconstructions of VN tend to have lower  
SSIM than for 3 T data.
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two further findings. First, when 
evaluated on (neuro/knee) data 
acquired with R  = 4, even the worst 
reconstruction network based on the 
median SSIM-value impacted by domain 
shift outperforms the best iteration of 
U-Net [16], i.e. U-Net trained on neuro 
and knee data. Second, we observe 
predominantly lower dispersion in 
reconstruction quality in two of our four 
experiments (neuro R = 8/knee R = 8). 
This observation reveals a pattern for 
those evaluated on data undersampled 
with R = 8, and hence evaluated on data 
with naturally lower SNRs. 

Looking at the difference between the 
upper/lower whisker  ∆ W , the U-Net 

[16] outperforms all reconstruction 
networks, including the DUNETs [6], 
when the analysis is confined to the 
dispersion rate. Together, the results 
from examining  ∆ W  and the IQ-range 
point towards “intra-cohort” network 
generalization that is equally well, if not 
even better than state-of-the-art non-
DUNET approaches when applied on 
low SNR data (R = 8). This observation 
is further verified by the lower standard 
deviation, another measurement of the 
data variance/dispersion, that can be 
measured for U-Net [16] when evaluated 
on R = 8, that is, when evaluated on 
data with low SNR translating to low 
acquisition quality.

distribution of the networks over the 
data configurations.

4.1 General Network 
Performance

We verify the claims made by 
Hammernik et al. [6]: Incorporating the 
L-estimators, from our point of view, 
supports the premise that physics-based 
reconstruction networks (VN, MoDL, 
DUNETs), when trained on identical 
datasets, outperform the image 
denoising network U-Net regarding the 
upper whisker- and median SSIM-value 
in all experiments without exception. 

Additionally, the results demonstrate 

a) Evaluation of PM-DUNET on neuro data R = 4 b) Evaluation of PM-DUNET on neuro data R = 8

c) Evaluation of PM-DUNET on knee data at R = 4 d) Evaluation of PM-DUNET on knee data R = 8

Fig. 7: Comparison of PM-DUNET when trained on knee (green bars) and neuro (orange bars) data, evaluated for 
scanner models at R = 4 and R = 8. In (a) and (b), statistical differences (p < 0.001) are found within all scanner 
models for neuro data. Furthermore, we observe substantially worse reconstruction quality for 1.5 T Avanto,  
and large outliers and standard deviations for 1.5 T Aera. In (c) and (d), statistical differences are found  
within scanner models in knee data for Skyra at R = 4 (p < 0.01), Skyra at R = 8 (p < 0.001) and Aera at  
R = 8 (p < 0.01).
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4.2 Network Generalization

Google Developers have noted that 
network generalization “refers to your 
model’s ability to adapt properly to new, 
previously unseen data, drawn from 
the same distribution as the one used 
to create the model” [2], revealing the 
inverse correlation between network 
generalization and the impact of domain 
shift on reconstruction networks. 
With our experiments, we explicitly 
accounted for the performance impact 
on individual reconstruction networks 
when introducing variations in data 
distribution between training on 
test data. Often, our experiments 
dissected the influence of specific 
factors such as MRI sequence, scanner 
model, and acceleration factor in the 
greatly imbalanced and heterogeneous 
fastMRI knee and neuro dataset 
[20]. For this purpose, we examined 
the generalization potential for the 

investigated reconstruction networks 
using box plots and scatterplots to 
visualize the networks’ behaviour under 
different circumstances for scanner 
models, and knee/neuro sequences.

We observe that the models for R  =  4 
generalize substantially better than for 
R = 8, hence, the type of training data 
is less important for low accelerations. 
The best performing network in all 
cases is PM-DUNET [6] and the worst 
performing network U-Net [16]. 

Furthermore, we observe no clear 
correlation between the number of 
training samples for each individual 
scanner model and the network 
performance when evaluated on 
samples acquired on the individual 
scanner models. In fact, contrary to 
deep learning beliefs – “The more 
data, the better”, scanner models 
with the smallest percentage of total 

training data (Prisma fit) show the 
best performance for VN in certain 
scenarios (knee R = 4, knee R = 8, neuro 
R = 4). On the contrary, scanner models 
that take up a large share of the knee/
neuro training dataset (Aera, Aera/
Avanto, Aera) show moderate to poor 
performance for VN. Our results also 
reveal that when evaluated on data 
acquired on 1.5 T scanners with lower 
SNR, reconstructions tend to have lower 
SSIM than for 3.0 T data. Consequently, 
we conclude that network generalization 
is not based on the amount of data, but 
is rather dependent on the quality of the 
data (SNR).

Also, we conclude that the large number 
of neuro training data generalizes well 
for knee data. Furthermore, we observe 
substantially worse reconstruction 
quality of neuro data at 1.5 T Avanto 
and Aera. We suspect a potential source 
of this behaviour in a low SNR. We 

a) R = 4 b) R = 8

Fig. 8: Boxplots for variations in training data, evaluated individually for CORPD-FBK and CORPDFS-FBK of the 
fastMRI knee validation set, for PM-DUNET at R = 4 and R = 8. CORPDFS-FBK is statistically less affected by 
domain shift compared to CORPD-FBK. The red stars mark statistical significance (p-values < 0.05) of the “knee 
100” evaluation set against the training anatomy. One star represents p-values of less than 0.05, two stars 
represent p-values of less than 0.01, and three stars represent p-values of less than 0.001.
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reconstruction data points using the 
proposed visualization tool, they would 
be able to efficiently conduct qualitative 
analysis of individual samples and 
variables accessible in the evaluation 
dataset. We had previously not been 
able to specifically dig into individual 
samples in a time-efficient manner 
and hence were limited to quantitative 
analysis. Another potential use case 
could be to identify the subjects that 
were reconstructed the best/worst for 
the individual networks.

5. Conclusion

Over the past few decades, the vision of 
AI-based methodologies in medicine 
have developed into one of the most 
popular ideas in MT literature, 
including a wide range of possible 
applications and benefits. Nevertheless, 
many gaps in literature and technical 
prerequisites still remain. In learned 
MRI reconstruction, a fundamental 
problem had previously been the 
absence of a large-scale, high-quality, 
diverse dataset of MRI samples for 
the research and development of DL-
based approaches. The introduction of 
the fastMRI knee and neuro dataset 
[20] provided an opportunity to 
examine and dissect effects between 
scanner models, field strengths, and 
anatomies for domain shift. In spite 
of merely incorporating 2D high-field 
strength (1.5 T, 3.0 T) MRI acquisitions, 
the investigation of DL-based 
undersampled MRI reconstruction 
based on fastMRI data shed light on 
the key parameters and their respective 
influence on reconstruction quality 
in general. Similarly, conclusions 
for network design and selection for 
undersampled MRI reconstruction in 
general can be derived from exploring 
the fastMRI dataset in conjunction with 
ML evaluation results. For instance, a 
superiority of physics-based learning 
and the respective reconstruction 
neural networks could be identified in 
an environment experiencing domain 
shift. Key factors such as the ability 
to adapt to previously unknown data, 

different to the dataset used to train 
the network [2], identified by this paper 
are crucial for potential future approval 
and usage in real-world clinical 
environments.

Hence, in this work, the impact of 
domain shift for state-of-the-art 
neural networks in undersampled 
MRI reconstruction on the highly 
heterogeneous fastMRI dataset was 
investigated. First, the claims made by 
Hammernik et al [6] regarding general 
network performance were verified. The 
validation of these claims also reveals 
the varying ability for networks to 
generalize partially due to their varying 
ability to model the acquisition physics 
(physics-based reconstruction vs image 
denoising). This paper statistically 
proved that networks trained for R = 4 
are less prone to domain shift, hence, 
the type and amount of training data 
are less critical at low accelerations. 
However, different reactions for the knee 
and neuro data to domain shift could be 
observed, and the results indicate that 
this might be related to differences in 
SNR rather than differences in anatomy. 
However, to gain a more comprehensive 
view of the varying generalizability over 
the vast model landscape, one would 
have to expand the scope of research 
to investigate further approaches such 
as bregmanized total variation or 
shearlet transform. Furthermore, our 
investigations disregard the drawbacks 
of mathematical image quality 
quantifiers. For clinical applicability, 
quantitative analysis of image quality is 
not sufficient and support from medical 
specialists, though with substantial 
overheads, is required to individually 
rate the reconstructed images with 
respect to their diagnostic value.

Accordingly, the experiments also 
identified the lack of transparency and 
the inefficiency in consequence when it 
comes to large-scale qualitative analysis 
in the field of MRI reconstruction. 
Therefore, the design of a scalable 
interactive tool was implemented to 
simplify the inspection of network 

also partially confirm the assumption 
that the networks generalize better 
for R  =  4 than for R  =  8 regarding 
the training data configurations: The 
boxplots in Fig.  7 for PM-DUNET 
evaluated on neuro at R = 8 show a clear 
aggregation of neuro and knee training 
data, regardless the scanner model; we 
observe a clear segregation between the 
worst applicable scanner model Avanto 
for PM-DUNET trained on neuro and 
the best applicable scanner model 
Biograph nMR for PM-DUNET trained 
on knee, whilst the performance on the 
scanner models at R  =  4 for the neuro 
and knee training datasets seem more 
evenly distributed.

With PM-DUNET, we observe that 
training with knee 100, knee 50, and 
joint uni 100 data yields no statistical 
difference for CORPD-FBK, at R  =  4 
and R  =  8. Therefore, our statistical 
analysis supports that the type and 
amount of training data are critical for 
R  =  8. Low SNR, i.e, CORPDFS-FBK, 
data generalize better for a wide range 
of training configurations, while having 
a lower SSIM and a high standard 
deviation.

4.3 Subject-to-Network 
Performance Visualization 
Tool

During the evaluation of the 
reconstruction networks’ performances, 
we identified the lack of transparency 
regarding the SSIM-distribution of 
individual patient samples. Therefore, 
we propose an interactive tool organized 
as a ranked scatterplot illustrating 
all data samples and their respective 
anatomy categorized by networks 
and sorted by the SSIM-values. This 
way, having the ability to inspect the 
undersampled MRI input, ground-
truth, and learned reconstructions, 
our tool will aid researchers to further 
examine possible underlying factors 
(wrong labels, poor acquisition quality) 
to the discrepancies in reconstruction 
quality (based on the SSIM metric). As 
researchers looks into individual MR 
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performances on individual MRI 
subjects. This provides a good starting 
point for further qualitative analysis of 
domain shift from a medical point of 
view and can be found encapsulated in a 
Jupyter Notebook, along with the source 
code, at https://github.com/h3seas0n/
ismrm2022-domainshift-fastMRI.
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