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Deutscher Kalibrierdienst (DKD) – German Calibration Service 
 
Since its foundation in 1977, the German Calibration Service has brought together calibration 
laboratories of industrial enterprises, research institutes, technical authorities, inspection and 
testing institutes. On 3rd May 2011, the German Calibration Service was reestablished as a 
technical body of PTB and accredited laboratories. 
This body is known as Deutscher Kalibrierdienst (DKD for short) and is under the direction of 
PTB. The guidelines and guides developed by DKD represent the state of the art in the 
respective areas of technical expertise and can be used by the Deutsche 
Akkreditierungsstelle GmbH (the German accreditation body – DAkkS) for the accreditation 
of calibration laboratories.  
The accredited calibration laboratories are now accredited and supervised by DAkkS as legal 
successor to the DKD. They carry out calibrations of measuring instruments and measuring 
standards for the measurands and measuring ranges defined during accreditation. The 
calibration certificates issued by these laboratories prove the traceability to national 
standards as required by the family of standards DIN EN ISO 9000 and DIN EN ISO/IEC 
17025. 
 
Contact: 
Physikalisch-Technische Bundesanstalt (PTB) 
DKD Executive Office 
Bundesallee 100 38116 Braunschweig 
P.O. Box 33 45 38023 Braunschweig 
GERMANY 
Telephone:   +49 531 5 92-8021 
Internet:  www.dkd.eu 
 
  



 
 

Measurement uncertainty contribution in the 
quantisation of measurement values 

https://doi.org/10.7795/550.20220715 

DKD-E 13-1 

Edition: 10/2020 

Revision: 0 

Page: 3 / 19 

 
 
 
Suggestion for the citation of sources: 
Expert report DKD-E 13-1 Measurement uncertainty contribution in the quantisation of 
measurement values, Edition 10/2020, Revision 0, Physikalisch-Technische Bundesanstalt, 
Braunschweig and Berlin. DOI: 10.7795/550.20220715 
 
This document and all parts contained therein are protected by copyright and are subject to 
the Creative Commons user license CC by-nc-nd 3.0 
(http://creativecommons.org/licenses/by-nc-nd/3.0/de/). In this context, “non-commercial” 
(NC) means that the work may not be disseminated or made publicly accessible for revenue-
generating purposes. The commercial use of its contents in calibration laboratories is 
explicitly allowed. 
 

 
 
Authors: 
 
Dr.-Ing. Rudolf Frieling †, formerly ELMTEC Ingenieurgesellschaft mbH, Königslutter 
Dr.-Ing. Manfred Klonz, Physikalisch-Technische Bundesanstalt, Braunschweig 
Dr.-Ing. Torsten Funck, Physikalisch-Technische Bundesanstalt, Braunschweig 
Philip M. Fleischmann, esz AG calibration & metrology, Eichenau 
 
 
Published by the Physikalisch-Technische Bundesanstalt (PTB) for the German Calibration 
Service (DKD) as result of the cooperation between PTB and the DKD Technical Committee 
Measurement Uncertainty. 
 
  



 
 

Measurement uncertainty contribution in the 
quantisation of measurement values 

https://doi.org/10.7795/550.20220715 

DKD-E 13-1 

Edition: 10/2020 

Revision: 0 

Page: 4 / 19 

 
Foreword 
 
DKD expert reports aim to provide background information and references that are related to 
other DKD documents, such as the DKD guidelines; however, some of them go well beyond 
this and handle special aspects in more detail. They do not replace the original DKD 
documents, but they do provide extensive supplementary information worth knowing. In the 
expert reports, the authors' views are expressed, which do not necessarily have to be 
consistent in all details with the view of the Management Board or the Technical Committees 
of the DKD. 
 
The DKD expert reports are to present significant aspects from the field of calibration. The 
publication of these reports by the DKD will make them accessible to the large community of 
calibration laboratories both nationally and internationally.  
 
This expert report was approved by the Board of the DKD in December 2019.  
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1 Summary 
 
This report deals with the estimation of the measurement uncertainty contribution by way of 
quantisation for digitally indicating measuring instruments. Its aim is to describe quantisation 
processes in the best possible way based on the available information, and to make use of 
this information in practice. In addition to the usual consideration of the uncertainty influence 
of the readability of the last digit of a display value as a rectangular distribution within the 
limits of aR = ±0.5 Digit, this report is intended to provide information to better describe the 
quantisation process from a technical point of view. 
 
The profound analysis of the measurement uncertainty of a digitally indicating measuring 
device shows that it makes sense to apply a triangular distribution density with a width 2aD of 
two quantisation steps (code jumps) for the entire measurement process. This yields a 
combined standard deviation (combined standard uncertainty) σD = uMU(UKombD) = 2aD ∙ 0.41. 
 
Assuming a normal distribution instead of a triangular distribution as an approximation, the 
estimated combined standard measurement uncertainty would be slightly too large. For this 
case, the standard deviation is σN = uMU(UKombN) = 2aN ∙ 0.5 (with a coverage probability of 
95 %), again with a width of distribution 2aN of two quantisation steps. 
 
This report represents a kind of alternative approach or consideration to the methods used in 
practice when dealing with quantisation processes (or rounding). It is not so much to be 
understood as a binding procedure or replacement of previous estimates. 
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2 Measurement uncertainty contribution in the 
quantisation of measurement values 

2.1 Preliminary considerations 
To illustrate the principle of quantisation, let’s take an analogue display instrument for 
voltages – with pointer and lines as scale. And let us assume that the deflection of the 
pointer is an error-free image of the applied voltage, without frictional influences or non-
linearities of the moving-coil system, etc. An applied voltage is visually perceived as an 
interpolation between two adjacent scale lines. The uncertainty of the reading due to the 
design of the instrument (mirror scale, pointer, inaccurate interpolation, etc.) shall not be 
further considered. However, to remain with the example, the following question should be 
raised: what about the accuracy and precision of the lines of the scale? In other words, a 
corresponding uncertainty of the reading is to be assumed for the resulting indication value. 
Hence, an uncertainty contribution of the measurement result due to inaccurate placement of 
the scale lines must be assumed. This could be called “scale uncertainty”. 
 
Completely separate from this, the reading could roughly be arranged in such a way that the 
value to which the lower scale line is assigned is interpreted as the result of the 
measurement; this would correspond to rounding (down). This naturally implies an 
uncertainty of the measurement result, given that all applied voltage values between two 
adjacent scale lines will always yield just this one measurement result. This uncertainty could 
be called “rounding uncertainty”. 
 
These preliminary considerations have been taken into account in the consideration of the 
measurement uncertainty of the quantisation. 

2.2 General information 
A digital voltmeter with the transmission factor V = 1 (the output voltage or indicated voltage 
UAnz divided by the applied input voltage UEin) will be used as an illustrative example. 
 

2.2.1 Assumptions for a “flawless” quantisation  

 

 “No missing code”: Any possible display value can be obtained by applying a voltage. 
 

 Monotonicity: With increasing (decreasing) values of the applied voltage, quantisation 
jumps of the indicated voltage only occur in ascending (descending) order. 

 
 The hysteresis in case of decreasing voltage (i.e. when reversing the applied voltage) 

is considered to be insignificantly small. 
 

 The change of the indicated voltage that is required for a code jump is everywhere 
the same. 

 
 The deviations of the indication that can be determined by means of calibration are to 

be compensated by a correction. 
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 The way the analogue/digital conversion is realised in a measuring instrument with 
digital display does not play a significant role in the analysis of the measurement 
uncertainty for quantisation (dual-slope integration method, parallel method, 
compensation method, weighing method, etc.). 

2.2.2 Terms and definitions 
 
Quantisation  
In digital signal processing, quantisation is a mapping that occurs when analogue signals are 
digitised. 
A continuously detectable measurement value is converted into a “digitised” form and can 
thus be represented as a number with a certain number of digits (with additional indication of 
the unit of the measurement value). 
 
Digitisation 
Digitisation is generally understood as the preparation of information (the process of 
changing data into a digital form) for processing or storage in a digital technical system. The 
original information is available in any type of analogue form and is then converted into a 
digital signal – possibly over several stages – merely consisting of discrete values. 
 
Classification (Classing)  
Classification refers to the division of statistical series into separate classes of size. 
Depending on its value on the corresponding variable, each element is assigned to exactly 
one class. All values of a class lie within the upper and the lower limits of a class; the 
difference between the upper and the lower limit of the class is the class width. In this report, 
the classification of the measurement values is equivalent to a rounding. 
 
Discretisation 
Representation of a function y(x) by values yi(xi) at a finite number of sampling points xi. 
(The term “discretisation” is not relevant in this report. It is related, for example, to the term 
“sampling” and must be distinguished from the terms “digitisation” and “quantisation”). 
 
Quantisation step (code jump; size of the jump) 
Step height of a (the smallest possible) digit (digital step) in the indication. The corresponding 
value will be referred to in this report as ΔUCode. 
 
Switching threshold (jump discontinuity; switching point)  
Value of the measured variable causing the digital display to switch from one digit to another. 
 
Expanded measurement uncertainty UMU 
Since in this report voltage values are referred to as U, the expanded measurement 
uncertainty which is usually also represented by U(…) is to be given the index “MU”, i.e. UMU. 
By using an additional index, it is possible to indicate if a specific expanded measurement 
uncertainty is meant. 
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Width of a distribution density 
Here indicated as 2a, i.e. a as half-width of the distribution or the distribution density function. 
Outside of this half-width there are normally no values of the function. 
 
Scale [VIM 3.5]  
Part of a displaying measuring instrument, consisting of an ordered set of marks together 
with any associated quantity value. In this report the markings are called scale points. 
 
Scale interval 
The respective range defined by two adjacent scale points. 
 
Note regarding the use of the term rounding in this report: 
In the broadest sense, quantisation in digital display devices is a rounding of the 
measurement values on the display (indicated values). In a measuring device, it is realised in 
a specific way as a design feature (rounding up, rounding down or rounding in the strict 
mathematical sense, or commercial rounding). Frequently, details are not known and are 
usually not given in the technical data. However, the type of rounding has a slight influence 
on the measurement result. After calibration, this influence is eliminated by correction. 
 
Rounding down, which is frequently encountered in quantisation, is assumed in the present 
report. Technically, it is probably most easily realised, and it is also easily explained (cutting 
off the surplus digits). 
 
It is important to mention that the type of rounding (rounding down, rounding up or 
commercial rounding) does not contribute to the measurement uncertainty – always provided 
that the assumed correction of the measurement result has been carried out properly. 

2.3 Model of evaluation for the indication of a digital voltmeter 
The model equation (model of evaluation) for the indication of a digital voltmeter is given as 
follows: 
 
 

���� +  ������ =  ���� +  ∆���� + ������� +  ������� + �������   

(Equation 1) 

  
UAnz  Indication value of the digital voltmeter 
UEin  Voltage applied to the input of the digital voltmeter 
ΔUAnz Indication error (display deviation), e.g. determined by calibration 
UKomb Unknown or indeterminably small deviation carrying an uncertainty attributed 

to the indication value of the digital voltmeter 
USkale Unknown or indeterminably small deviation of the position of the scale points 

being the cause of a corresponding uncertainty (see below) 
URund Unknown or indeterminably small deviations due to rounding down, i.e. 

allocation to scale intervals, which are the cause of a corresponding 
uncertainty (see below) 

USonst Placeholder for other unknown or indeterminably small deviations that may 
occur during measurement with a digital voltmeter and may be the cause of 
further uncertainty contributions. They will not be considered in this report. 
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2.3.1 Measurement uncertainty contribution due to the unknown position 
of the scale points 

The digital voltmeter includes a scale against which the input voltage of the voltmeter is 
compared. Thus, an internal mapping of the input voltage is available as a reference to the 
almost correct scale points which were calibrated and adjusted as well as possible during 
production. However, when comparing the position of the realised scale points with a 
reference scale that represents “correct” values of the position of the scale points, certain 
deviations USkale(i) = USkale(i) – URef(i) will be detectable in each scale interval i (see Figure 1, 
upper part). 
Using a sufficiently accurate adjustable calibrator, it would in theory even be possible to 
determine these deviations for each scale interval. However, this would be very time-
consuming and is hardly ever done. On the other hand, this would provide a statistical 
indication of the scale deviation of the specific voltmeter in question. 
A common and useful practice is to make a general statistical statement regarding the 
deviations USkale(i) in order to obtain an estimate of the corresponding measurement 
uncertainty contribution. Generally, the following information is available:  

1. The deviation USkale(i) can be max. plus or minus half the width of a scale interval, i.e. 
a total of one scale interval width. With the scale interval width ΔUSkale(i), this can be 
specified as –0.5·ΔUSkale(i) ≤ USkale(i) < +0.5·ΔUSkale(i). This applies to all scale intervals 
i. The half-width of the distribution density function is a = ΔUSkale(i)/2. 

2. Since information on the distribution density of the deviation USkale(i) is usually not 
available, only a uniform distribution can be assumed. 

 
The contribution to the measurement uncertainty due to the possible deviation of the position 
of the scale points is therefore:  
 

���(�������) =  
0.5 ∙ ∆������(�)

√3
 ≈

0.5 ∙ ∆�����

√3
 

(Equation 2) 

 
on the assumption of a uniform distribution.  
 
As a statistical quantity, the distance of a scale point ΔUSkale(i) is generally not precisely 
known, but on average ΔUSkale(i) ≈ ΔUCode, with the quantisation level ΔUCode being determined 
by the hardware of the digital voltmeter; its value can be used in equation 3. 

2.3.2 Measurement uncertainty due to rounding of the measured value 
As described, an input value falls within a defined scale interval of the internally realised 
scale of the voltmeter and is then rounded down1 according to the “scale points” of the 
internal scale. The rounded value URund(i) thus leads to the digital indication. Intermediate 
values which, for example, might be obtained through interpolation, are suppressed by the 
rounding process. This classification (classing) of the measured values is the actual 
quantisation process. Obviously, the original input voltage is displayed somewhat coarser 
(less accurate). This leads to an unknown or indeterminably small deviation which is 
presented as URund(i) = URund(i) – UEin (see Figure 1, lower part). In other words, all input 
voltage values that are within a certain rounding interval will produce the same indication 
(same display value). Here, it is no longer possible to determine the magnitude of the 

 
1 technical design feature 
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difference URund(i). A measurement uncertainty contribution must therefore be applied. The 
width of the distribution density function is 2aR = ΔURund(i) ≈ ΔUCode. 
Since an input voltage can have any value within the measuring range, the same is true for a 
rounding interval, where any value can occur, with a uniform distribution.  
Thus, the contribution to the measurement uncertainty due to rounding is:  
 

���(������) =  
0.5 ∙ ∆�����

√3
 

(Equation 3) 

on the assumption of a uniform distribution. 
 

 
Figure 1: Scale section 

Referenz-Skalenpunkt = reference scale point 
Referenz-Skale = reference scale 
Skalenintervall, in dem ein realer Skalenpunkt zum Referenz-Skalenpunkt i liegen kann = Scale interval in which an actual scale 
point may be located with respect to the reference scale point i 
Realisierter Skalenpunkt = realised scale point 
Realisierte Skale = realised scale 
Rundungsintervall = rounding interval 
Eingangswert = input value / Beispiel = example 
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2.3.3 Measurement uncertainty budget 
It is to be noted that the two contributions  
 

1. standard uncertainty contribution (scale uncertainty) due to the possible deviation of 
the position of the scale points uMU(USkale) and  

2. measurement uncertainty (inaccuracy of the rounding) due to rounding uMU(URund) 
 
are independent from each other, i.e. uncorrelated. 
 
The combined standard uncertainty from both contributions is: 
 

���(������) =  �(���(�������))� + (���(������))� 
(Equation 4) 

Hence:   

���(������) =  
∆�����

√6
 = 0.4082 ∙ ∆�����  

(Equation 5) 

 
Unfortunately, this result does not indicate its associated distribution density or the width of 
its distribution density (2aD). However, this information is of importance for further use of the 
result. Especially if the two stated uncertainty contributions are of a significant nature and a 
reliable coverage factor for the determination of the expanded measurement uncertainty of 
the digital indication is required. This missing information is examined in the following 
section. 
 

2.3.4 Distribution density function of the combined standard uncertainty  
As illustrated, there are two significant contributions to the measurement uncertainty when 
using a digital voltmeter (see sections 2.3.1 and 2.3.2), namely: 

1. measurement uncertainty contribution (scale uncertainty, (equation 2)) due to the 
possible deviation of the position of the scale points and 

2. measurement uncertainty (rounding inaccuracy, (equation 3)) due to rounding: 
uMU(URund)  

 
If both are uniformly distributed, each with a width of one interval ΔUCode ≈ ΔUSkale(i) to 
determine the distribution density of the combined uncertainty, the mathematical process of 
convolution (see Appendix) must be applied [PAPOULIS]. For the present (simple) case, 
however, the result can often be found in the corresponding literature [e.g. GUM]. The result 
of the convolution is a triangular distribution density function with the width 2aD = 2∙ΔUCode 
(double interval width equalling two quantisation steps). 
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This triangular distribution density function [see GUM] involves a standard deviation D 
(standard measurement uncertainty uMU(UKombD), also see section 0) 
 

���(�������) =  �� =
2 ∙ ∆�����

2 ∙  √6
= 0.4082 ∙ ∆����� 

(Equation 6) 

(half the width of the distribution density function divided by the root of six in case of 
triangular distribution) 
 
as well as a coverage factor kD = 1.902. 

 
Figure 2: Visualisation of the actual quantisation 

Ideale Quantisierungsfunktion = ideal quantisation function 
Verteilungsdichtefunktion der möglichen Sprungstelle zum Intervall i = distribution density function of the possible jump 
discontinuity to interval i  
Sprung der Diskretisierungsfunktion bei hohen Werten der angelegten Spannung zum Intervall i = jump of the discretisation 
function to interval i in case of high values of the applied voltage 
Sprung der Diskretisierungsfunktion bei niedrigen Werten der angelegten Spannung zum Intervall i = jump of the discretisation 
function to interval i in case of low values of the applied voltage 
Angelegte Spannung = applied voltage 

 

 
With some upward room left for the measurement uncertainty, an approximation of the 
triangular distribution by a normal distribution (for example with a coverage probability of 
95.45 % corresponding to 2N) can be justified.  
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Figure 3: Comparison of the triangular distribution density with that of the normal distribution 

This means that the standard uncertainty is calculated with the standard deviation as follows 
 

���(�������) = �� =  
2 ∙  ∆�����

2 ∙  2
=  

∆�����

2
= 0.5 ∙ ∆�����  

(Equation 7) 

(half the width of the distribution density function divided by 2 in case of normal distribution) 
 
Here, the coverage factor is kN = 2.0; therefore, the expanded measurement uncertainty is 
UMU(UKombN) = ΔUCode. In practice, this simple approach is suitable for most applications (see 
section 2.5). 

2.4 Ideal quantisation 
However, there are cases of quantisation where no scale is involved; consequently, there is 
no contribution to the measurement uncertainty due to a possible deviation of the position of 
the scale points. This means that in the ideal case the quantisation point is 
 

UEin = UAnz (i)  @ i = 1, … , n 
with 
n being the number of quantisation steps. 
 
Thus, a certain value of the indication UAnz (i) may be caused by an applied voltage in the 
interval UAnz (i) ≤ UEin < UAnz (i) + ΔUCode, given a uniform distribution in the interval. Due to 
rounding, there is just this one contribution to the measurement uncertainty. Formally, this 
corresponds to the mathematical process of rounding down (see section 2.3.2). 
The width of the rectangular distribution density is 2aI = ΔUCode, i.e. one quantisation step. 
This yields a standard deviation of 
 

I = 0.5 ∙ ΔUCode ∙ 1 √3⁄  = 0.2887 ∙ ΔUCode 
(Equation 8) 

(half the width of the density function divided by the root of 3 in case of uniform 
distribution) 
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The coverage factor is kI = 1.653. 

 
Figure 4: Visualisation of the ideal quantisation process 

Ideale Quantisierungsfunktion = ideal quantisation function 
Verteilungsdichtefunktion für das Intervall i = distribution density function for interval i 
Angezeigte Spannung = indicated voltage 
Angelegte Spannung = applied voltage 

2.5 Practical recommendations 
There are two suggestions on how to proceed in practice when wishing to (verifiably) 
estimate the measurement uncertainty contribution for a quantisation process: 
 
1. If requiring a reliable but not an excessively high value for the measurement uncertainty, 
the triangular distribution is applied over two intervals. Thus the associated standard 
measurement uncertainty can be calculated as standard deviation with 
 

�� =
 ∆�����

√6
= 0.4082 ∙ ∆����� 

(Equation 9) 

and the coverage factor kD = 1.9 can be used to determine the expanded measurement 
uncertainty UMU(UKombD). This would be: 
 

���(�������) = �� ∙ �� = 0.7757 ∙ ∆�����    (Equation 9.1) 
 
This procedure is based on the assumption that the undefined position of the switching point 
is uniformly distributed within the quantisation intervals. Normally, further information is not 
known or available. Real A/D converters in digital display units will probably have a more 
favourable distribution density (if only for manufacturing reasons). This means that the 
assumption of a uniform distribution is very conservative, and the actual 
measurement uncertainty is certainly not underestimated. 
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2. If there is some upward room for the measurement uncertainty, an approximation of the 
triangular distribution by a normal distribution (for example with a coverage probability of 
95.45 % corresponding to 2N) may be justified (see Figure 3). This means the standard 
uncertainty together with the standard deviation results in 
 

�� =  
2 ∙  ∆�����

2 ∙ 2
=  ∆�����/2 

(Equation 10) 

 
The coverage factor is kN = 2.0; thus the expanded measurement uncertainty is 
UMU(UKombN) = ΔUCode. 
 
In everyday practice, this simple approach is suitable for most applications. It does not 
overestimate the measurement uncertainty and, with the coverage factor kN = 2 for a normal 
distribution of a combined measurement uncertainty, it fits well into a superordinate 
uncertainty analysis for a system with further uncertainty contributions. 
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4 Appendix 

4.1 Characteristic data for different distribution density functions 

Type of distribution σ P95 k-Faktor UMU 

Normal distribution (95.45%) σN = 1/2 = 0.5 PN95 = 0.9545 kN95 = 2 UN95 = 1.000 

Uniform distribution σR = 1 √3⁄ = 0.5774 PR95 = 0.950 kR95 = 1.653 UR = 0.954 

Triangular distribution σD = 1 √6⁄ = 0.4082 PD95 = 0.776 KD95 = 1.902 UD = 0.766 

U-shaped distribution σU = 1 √2⁄ = 0.707 PU95 = 0.998 kU95 =1.411 UU = 1.000 

Parabolic distribution σP = 1 √5⁄ = 0.4472 PP95 = 0.811 kP95 = 1.814 UP = 0.363 

Cubic distribution σK = �2 15⁄ = 0.365 PK95 = 0.691 kP95 = 1.892 WK = 0.363 

     
Normal distribution (99.00%) 0.388  2 0.766 
Normal distribution (99.45%) 0.333 (3σ)  2 0.666 
     
R → N 0.577  2 1.154 
D → N 0.408  2 0.816 

Table 1: Characteristic data for different distribution density functions (with a = 1, half the 
width of the distribution density function) 

4.2 Convolution 

4.2.1 Mathematical definition 

Assumption: F1(t) and F2(t) are integrable functions for –∞ < t < +∞. The integral: 

 ��(�) ∗ ��(�) = ∫ ��(� − �) ∙ ��(�)�� 
��

��
denotes the convolution of F1(t) and F2(t). 

 

4.2.2 Convolution in a game of dice (Alea iacta est) 
 
The numbers (of spots) on the sides of a dice (1 to 6) are uniformly distributed. However, the 
sums of the numbers when tossing two dice are not. When playing with two dice, the 
following 6 ∙ 6 = 36 combinations are possible:  
 
(1;1), (1;2), (1;3), (1;4), (1;5), (1;6), 
(2;1), (2;2), (2;3), (2;4), (2;5), (2;6), 
(3;1), (3;2), (3;3), (3;4), (3;5), (3;6), 
(4;1), (4;2), (4;3), (4;4), (4;5), (4;6), 
(5;1), (5;2), (5;3), (5;4), (5;5), (5;6), 
(6;1), (6;2), (6;3), (6;4), (6;5), (6;6), 
 
By forming the respective sums and arranging them systematically, we get the following 
picture:  
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Frequency 2)  1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 

       (6;1)      
      (5;1) (5;2) (6;2)     
     (4;1) (4;2) (4;3) (5;3) (6;3)    
    (3;1) (3;2) (3;3) (3;4) (4;4) (5;4) (6;4)   
   (2;1) (2;2) (2;3) (2;4) (2;5) (3;5) (4;5) (5;5) (6;5)  
  (1;1) (1;2) (1;3) (1;4) (1;5) (1;6) (2;6) (3;6) (4;6) (5;6) (6;6) 
Sum  2 3 4 5 6 7 8 9 10 11 12 
 
There are 11 different sum values (≠ 0), though with varying frequency. From this, we can 
discern a distribution density3) for the sum of the numbers when rolling two dice, although it is 
only a discrete one given such a small number of values. The shape is approximately 
triangular. Its maximum is 7, the mean value of all possible sum values, and it is (almost) 
twice as wide (11) as the known discrete uniform distribution density ** of the number of 
points of each of the dice involved (1; 2; 3; 4; 5; 6), i.e. 6 different values in each case.  
Here it becomes obvious that the sum of two uniformly distributed (discrete) random values 
is again a random value, but with a triangular (discrete) distribution density ** of (almost) 
double width. 
Mathematically, this is referred to as “convolution” for two random numbers. Generally, the 
calculation of a convolution is quite complicated. It is described in publications on stochastic 
processes [e. g. PAPOULIS]. 
 
 

 
2 The frequency values are represented by the divisor 36, which is supposed to formally indicate the scaling, so 
that their sum is 1. 
3 It would be mathematically exact to imagine the discrete distribution density function with a number of Dirac 
impulses, as “needles” of infinite height, but defined areas, because in the case of rolling a dice the density is 
naturally only defined for whole numbers. 
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