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1. Introduction

Natural scientists and engineers use a broad variety of methods to determine the ther-
mophysical properties of fluids. In this thesis, the potential of Dielectric-Constant Gas
Thermometry (DCGT) as a complementary method for the determination of density and
dielectric virial coefficients of gases is explored. This method of primary thermometry has
already been successfully used to determine combinations of density and dielectric virial co-
efficients, the so called DCGT virial coefficients [1–3]. The drawback of this approach is the
impossibility to distinguish between both contributions since capacitance and pressure data
is utilized in combination. That is why these experiments are coupled with Burnett and di-
electric expansion experiments where pressure and capacitance ratios are defined by repeated
expansion of gas from one into another volume [4–6]. From these ratios, the independent
density and dielectric virial coefficients can be determined without the need to assess the
absolute particle density. Both methods typically require large experimental setups whose
manual operation is time consuming. In this thesis, a new compact apparatus was developed
that combines both experimental approaches, whereas the expansions are fully automated.
To validate the performance of the device, measurements with argon were carried out

at the four temperatures 253.898 K, 273.161 K, 296.126 K and 302.913 K. The valuation of
the results is ensured by detailed uncertainty budgets, which were assigned in accordance
with the Guide to the Uncertainty of Measurements (GUM), as well as by comparison to
the relevant literature values. Unless stated otherwise, uncertainties in this thesis are given
as standard uncertainties with the corresponding coverage factor k = 1 [7]. The achieved
combined relative standard uncertainties are between 0.15 % and 0.3 % for the second DCGT
virial coefficient (BDCGT) and 1.5 % to 2.5 % for the third DCGT virial coefficient (CDCGT).
For the evaluation of the expansion data, two cases were studied. First, a free fit was applied
to the data resulting in combined relative standard uncertainties in the order of 1.5 % to 2.5 %
for the second density virial coefficient (B) and 25 % to 35 % for the second dielectric virial
coefficient (bε). In a second approach, the volume ratio defining the expansions was precisely
measured with helium and used as a constraint in the fit. This way the uncertainties can be
lowered by roughly a factor of two resulting in uncertainties of less than 1 % for B(T ) and in
the order of 15 % for bε. The experimental results agree among themselves and in comparison
to the established literature mostly on the level of the standard uncertainty but always for
the expanded standard uncertainty (coverage factor k = 2). It should be mentioned that
the assessment of the dielectric virial coefficients is experimentally challenging since they
are typically two orders of magnitude smaller than the density virial coefficients. Still, they
gain relevance especially due to the advances in optical measurements. To the knowledge of
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1. Introduction

the author, this work is the first in almost three decades that attempts to precisely measure
the dielectric virial coefficients of argon as a function of temperature including a detailed
uncertainty budget. Due to the small absolute value of bε, the uncertainty of the second
density virial coefficient can actually be further lowered to the order of 0.5 % and less if it is
calculated by B = BDCGT + bε.
That is why the gained results are not only used to validate the performance. They

are part of two European Metrology Programme for Innovation and Research (EMPIR)
projects dedicated to advances in gas metrology, a field that became particularly interesting
after the redefinition of the Systeme International d’unites (SI) in 2019. Both projects and
further motivation of the work is given in the short next chapter 2.
The theoretical background of the virial coefficients and the used working equations of the

methods are presented in chapter 3. A substantial amount of work was required to derive
new working equations for the expansion experiments. While these experiments are typically
carried out at isothermal conditions, the demand for automation in this thesis required to
stabilize the pressure sensors and valves of the gas-handling system at ambient temperature
while the measuring temperature is varied. Taking the resulting dead volumes at different
temperatures as well as the deformation of the cells under pressure into account, results in
long but at the same time well-structured working equations. A discussion on the required
fit orders for the evaluation of the data is carried out as well.
Further details on the design and construction of the apparatus as well as the used measur-

ing equipment is presented in chapter 4. This includes the concept of thermal stabilization as
well as a comprehensive investigation of the used cylindrical capacitors. Since the potential
of this method to be used by non National Metrology Institute (NMI)s is to be explored
as well, commercially available measuring equipment was used exclusively. It will be shown
that for the virial coefficients, the main contributions to uncertainty arise from statistical
scattering of pressure and capacitance. In contrast, the uncertainties of their absolute values
as well as the uncertainty of the absolute temperature are of secondary importance.
The final averaged results of a total of 19 isotherms measured with argon and the cor-

responding uncertainty budgets are presented in chapter 5. Besides the virial coefficients,
this chapter also includes results from the classical DCGT data evaluation in form of the
molar polarizability Aε, thermodynamic temperatures and effective compressibilities κeff of
the used capacitors. The more precise determination of the virial coefficients from the ex-
pansion experiments with a constraint fit is based on a precise assessment of the volume
ratio between the cells. The determination of this ratio with relative uncertainty on the level
of 5 ppm was carried out by measurements with helium.
Recommendations for the improvement of the method and a discussion of the potential

for this method to be used in a more commercial fashion is based on the uncertainty budgets
of chapter 5 and presented in the summary 6.
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2. The role of the virial coefficients for gas
metrology

Equation Of State (EOS) play an undeniably big role in many fields of science, technology
and industry offering a broad variety of aspects to motivate this work. For instance, the
apparatus presented in this thesis can contribute important measurements for hydrogen and
hydrogen mixtures. This potential future energy carrier is of special interest in regards of the
german “Energiewende”, “Power-to-Gas” and emerging hydrogen technologies. The different
output quantities that can be obtained with just one measurement also make this device de-
sirable for the solely purpose of determining highly precise gas properties. However, one field
that will particularly benefit not only from this new measuring concept but also from the
results presented in chapter 5 of this thesis is gas metrology. Here, a measuring gas with pre-
cisely known properties is used to asses other physical properties as for instance temperature
T , pressure p, density ρ or the refractive index n. Linking the thermodynamic properties is
ensured by an EOS with the simplest one being the ideal gas equation. The most precise
ones are reference EOS that are typically explicit in the Helmholtz free energy. They cover
a broad temperature and pressure range, are valid for different phases and allow to calculate
a variety of properties by partial differentiation. Furthermore, they can include numerous
pure substances and predict the p-ρ-T behavior of their mixtures. A very prominent and
important reference EOS is the GERG2008 that was developed for natural gas containing
up to 21 pure substances [8]. However, the complexity of these EOS is a disadvantage for
practical gas metrology. Often, only a certain pressure range at one temperature for one
pure substance is of interest. There are several other EOS as for instance relatively compact
two parameter equations like the EOS of Van-der-Waals, Redlich-Kwong or Peng-Robinson
and several modifications of them. They all have their certain fields of application but in
gas metrology the virial EOS, which will be introduced in detail in section 3.1, is certainly
favored. Its two big benefits are, first, that as well only a limited set of parameters, namely
the density virial coefficients, are required to precisely describe the p-ρ-T behavior of the gas.
They are the factors of a polynomial in particle density. Secondly, the required number of
these coefficients can be adapted to the required pressure range. This is visualized in figure
2.1 where the relative overall correction to the ideal gas pressure as well as the individual
contributions of the different virial coefficients are shown for argon at a temperature of 296 K.
The overall relative correction is dominated by the second density viral coefficient B defin-

ing the linear correction. Quadratic and cubic contributions in the correction due to the third
and fourth density virial coefficients C and D first gain relevance at higher pressures. De-
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2. The role of the virial coefficients for gas metrology
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Figure 2.1.: Relative correction of the pressure of an ideal gas in percent for argon at a

temperature of 296 K. The different contributions to the total correction are
shown as well with B, C and D denoting the contributions based on the second,
third and fourth density virial coefficients.

pending on the absolute pressure and the uncertainty demands of an experiment, the number
of included virial coefficients can thus be adapted. At low pressures, just one parameter,
namely B, may potentially already be sufficient to evaluate experiments. Another aspect
that may explain the popularity of this EOS in gas metrology is the structure as a polynomial
enabling fairly easy data fitting. Furthermore, the derivation of working equations often in-
clude the expansion into a Taylor series, which is of polynomial character as well. Generally,
the virial coefficients are temperature dependent, but since experiments of metrological char-
acter are typically carried out at isothermal conditions this is not an issue. Instead, it offers
the possibility to determine the virial coefficients at certain temperatures with high precision
and use the gas at this temperature as reference gas or for calibration purposes. This could
for instance be useful at the fix point temperatures of the International Temperature Scale
of 1990 (ITS-90) (see section 4.4 for more details on the ITS-90).
Especially after the overworking of the SI on the 20th of May 2019, some of the corre-

sponding gas metrological measurement methods became strikingly attractive for the direct
realization of units. Generally, the seven base units do no longer rely on artifacts like the
Ur-kilogram or triple point cells. Instead, they have been linked to natural constants that
do not change over time. The implementation of this new SI and especially the progress in
gas metrology is supported by a variety of projects in the frame of the EMPIR. Two of them
benefit directly from the apparatus presented in this thesis and the measured results. The
first, “Real K”, explores methods for the realization of the unit of temperature, the kelvin,
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2.1. Project: “Realising the redefined kelvin”

which is now defined by the Boltzmann constant k rather than by the triple point of water.
In the second project, “Quantum Pascal”, the goal is to study and develop dielectric and
optical methods that can be used as primary pressure standards with competitive uncertain-
ties compared to established mechanical methods. An aspect that is equal in both projects
is the desire to promote argon as a measuring gas instead of the typically used helium. He-
lium has the big advantage that due to its simple atomic structure its properties can be
calculated with very low uncertainties by ab initio methods. In fact, these uncertainties can-
not be obtained experimentally at this point. However, the drawback is that the dielectric
and optical measuring effect is very low due to the low polarizability. On the one hand this
makes experiments vulnerable to impurities, on the other hand it requires very accurate and,
thus, expensive measuring equipment to achieve low uncertainties. These drawbacks could
be ovcerome by using argon whose polarizability is a factor of eight higher. It fulfills almost
all other demands to a metrological measuring gas like non toxicity, non flammability and
availability in high purity at moderate prices. Unfortunately, it will be also shown in the next
chapter that calculation of its properties are rather demanding because of the more complex
atomic structure. That is why both projects aim to further develop these calculations. The
work of the theoreticians is supported by accurately measured density and dielectric virial
coefficients, which are presented in chapter 5 of this thesis. Further information on the un-
derlying principals of the calculations will be given in sections 3.1.1 and 3.1.3. Both projects
will be briefly summarized in the following, whereas further contributions of this thesis will
be emphasized.

2.1. Project: “Realising the redefined kelvin”

Prior to the before mentioned redefinition of the kelvin, traceability to this unit was realized
exclusively by the use of temperature scales, as for instance the currently valid ITS-90.
Now, certain methods of primary thermometry are included in the Mise en Pratique as
direct realizations of the kelvin. Room for innovation and development in the future has
been created and further methods may be included. Though the direct realization of the
kelvin appears strikingly attractive, the methods included are bulky, complicated and rather
expensive. Therefore, this project “Real-K” aims in two directions. On the one hand it
shall be ensured that the currently used temperature scale ITS-90 can be further used until
primary methods of thermometry can compete. NMIs, institutes and consumers world wide
have established and are used to a metrological infrastructure based on this temperature
scale. Changes and acceptance of these will thus take time. On the other hand the long
time goal is to establish a number of primary thermometry methods that may be used
practically for the realization and especially dissemination of the kelvin. Currently included
methods are radiation thermometry based on the Planck law for temperatures above 1235 K,
Johnson noise thermometry based on the noise voltage of thermally moved charge carriers
in a suitable measuring resistor and a variety of gas thermometric methods based on the
gas law, namely Acoustic Gas Thermometry (AGT), DCGT and Refractive Index Gas
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Thermometry (RIGT) covering the important temperature range from several kelvin up to
several hundred kelvin. On the one hand the potential of DCGT to be used at temperatures
above the triple point of water as a practical primary thermometer is explored with this
apparatus. On the other hand precisely measured density virial coefficients also contribute
important input for the other gas thermometric methods. This is particularly true for argon
which could be used to perform relative primary thermometry with lower demands to the
measuring equipment for the dissemination of the kelvin.

2.2. Project: “Towards quantum-based realisations of the pascal”

This second project “Quantum Pascal” is dedicated to the realization of the unit of pressure,
the pascal. Pressures are typically realized by their mechanical definition of force per unit
area. The most precise pressure measurement devices are either u-tube manometers filled
with mercury or pressure balances with piston cylinder assemblies that can reach relative
uncertainties in the order of 1 ppm [9]. Scientists at National Institute of Standards and
Technology (NIST) were the first to seriously discuss the idea of an alternative pressure
standard based on dielectric measurements in 1998 [10]. The basic idea is identical to the
DCGT principle, which will be introduced in more detail in section 3.2. The dielectric
constant of the measuring gas is measured with a capacitor and the density is calculated
by the Clausius-Mosotti equation (see section 3.1.3 for further details). The pressure is
then calculated from the density with an EOS. Precise knowledge of the polarizability as
well as the dielectric and density virial coefficients are required in this process which is why
helium was proposed as the measuring gas. Still, by that time the uncertainties of these
properties were limiting the reachable pressure uncertainties to more than 20 ppm. Profiting
from the tremendous progress made in the calculation of ab initio properties of helium since
then, Gaiser et al. have recently proven that this principle has actually the potential to be a
pressure standard with competitive uncertainties in the order of a few ppm [11]. The idea was
also captured by Pendrill who adapted it to refractometry and optical methods in 2004 after
the improvements in lasers and optics of that time [12]. Instead of measuring the dielectric
constant of a gas, the refractive index n is measured. If the refractivity and the refractive
virial coefficients of the measuring gas are known, the particle density can be calculated
with the Lorentz-Lorenz equation (see appendix D). Work in this field is recently rising
with several groups working on the topic [13–16]. Besides the already mentioned drawbacks
of helium, an additional problem occurs for these optical experiments. The small helium
atom tends to permeate into certain glasses which can cause errors due to deformation and
changes of length that are harmful especially in optical experiments. The permeation can
also lead to outgassing which causes drifts and errors in the measurement signal at quasi
stable conditions.
This is where the “Quantum Pascal” project pursues the recent considerations into two di-

rections. Firstly, a variety of methods including primarily Fabry-Pérot based refractometers
but also microwave resonators, Rayleigh scattering, DCGT and absorption spectroscopy is
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investigated for its potential to realize pressures in the broad range from 1 Pa up to 3 MPa.
Secondly, the potential of argon as measuring gas is explored and improved by big efforts
in the field of ab initio calculations of the polarizability and the dielectric virial coefficients
including their frequency dependence. The relation between the static and the dynamic
properties is shown in appendix D. It is important to emphasize that the frequency correc-
tions to the static values are typically only in the order of a few percent. Furthermore, these
corrections can be calculated with reasonable uncertainties allowing to utilize the dielectric
virial coefficients of argon that are determined in this thesis also for the optical experiments.
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The apparatus presented in this thesis combines three different methods for the determina-
tion of real gas properties. Namely DCGT for the determination of the molar polarizability
Aε and DCGT virial coefficients (BDCGT, CDCGT,...), the classic Burnett method for the
determination of density virial coefficients (B, C,...) and a respective dielectric expansion
method for the determination of dielectric virial coefficients (bε, cε,...). First, a short intro-
duction on these properties and the corresponding declarations used throughout this thesis
are given. As discussed in the previous chapter, ab initio calculations of the quantities play a
major role for primary metrology. Therefore, the underlying principles and the current state-
of-the-art is shortly summarized for each of them. After this, the principles and working
equations for the tree different methods are presented. The lengthy derivations of the equa-
tions is mainly transferred to the appendix, while in this chapter only the starting equations
and final results are given. In the appendix, the virial coefficients are written as B, C, et
cetera without indicating the temperature dependence (B(T ), C(T ) et cetera) to ease read-
ability. The derivations for the expansion methods including different corrections typically
follow the same pattern which is why the principle is explained exemplary in section 3.3.1 for
the ideal case and in section 3.3.2 for corrections. In case of the expansion experiments, the
corrections due to the gas volume at different temperatures are only shown for the second
virial coefficients. The derivations for the higher virials are getting exponentially complex,
require further approximations and are, thus, content of future work. Results for the third
virial coefficients are, therefore, only given for the DCGT virial coefficients and the results
at room temperature where only the deformation of the cells requires correction.

3.1. Ideal and real gas

In an ideal gas, relations between pressure p and molar particle density ρm are derived
from the assumption that the gas particles haven an infinitely small volume and may only
conduct elastic scattering with other particles and the walls of the vessels containing it.
These assumptions lead to the well known ideal gas equation:

p = ρmRT (3.1)

In this formula, R = NAk is the molar gas constant, NA is the Avogadro constant, k is the
Boltzmann constant and T is the thermodynamic temperature. Equation (3.1) describes the
behavior of highly diluted real gases to some extend, but deviations from experimental results
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3. Theoretical background

increase with rising particle densities. On the one hand this is due to the increasing effect of
the volume of the particles themselves. On the other hand multi particle scattering needs to
be taken into account. To describe his experimental data, one way to describe a real gas was
empirically introduced by Kammerlingh Onnes. He developed an expansion in terms of the
particle density with the corresponding factors being the density virial coefficients explained
in the next section.

3.1.1. Density and pressure virial coefficients

To properly describe real gas behavior, the density virial expansion includes correction terms
to the ideal gas in form of temperature dependent factors B(T ), C (T ), D(T ), E(T )... that
take multi particle interaction into account. They are multiplied with powers of the particle
density and are referred to as density virial coefficients of second, third, fourth and fifth...
order. The order also indicates the number of particles whose interactions are considered.
The biggest correction to the ideal gas, thus, arises from the second virial coefficient B(T )
taking into account two particle interaction.

p = ρmRT
(
1 +B (T ) ρm + C (T ) ρ2

m +D (T ) ρ3
m + E (T ) ρ4

m + ...
)

(3.2)

In some works, the term in brackets is referred to as compressibility factor Z.

Z =
(
1 +B (T ) ρm + C (T ) ρ2

m +D (T ) ρ3
m + E (T ) ρ4

m + ...
)

(3.3)

For the derivation of the working equations used in this thesis, it is more convenient to
work with an expansion in the experimentally accessible pressure rather than in particle
density.

p = ρmRT
(
1 +Bp (T ) p+ Cp (T ) p2 +Dp (T ) p3 + Ep (T ) p4 + ...

)
(3.4)

In equation 3.4, Bp (T ), C p (T ), Dp (T ), Ep (T ), ... denote the pressure virial coefficients
of second, third, fourth, fifth, ... order respectively. A general relation between these two
types of virial coefficients of any order was derived by Putnam and Killpatrick by means of
functional theory [17]. Essentially, a comparison of the compressibility factors of equations
3.2 and 3.4, while replacing the pressure p with equation 3.2, is carried out. Comparing the
factors of powers of the particle density is shown in Appendix A and reveals the following
simple relations for the orders relevant in this thesis:
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3.1. Ideal and real gas

B (T ) = Bp (T ) ·RT

C (T ) = Cp (T ) · (RT )2 + (B (T ))2

D (T ) = Dp(T ) · (RT )3 + 3C(T )B(T )− 2(B(T ))3

E (T ) = Ep (T ) · (RT )4 + 2(C (T ))2 + 4B (T )D (T )− 10(B(T ))2C (T ) + 5(B(T ))4

(3.5)

The theoretical background of equation 3.2 will be introduced to the required extend since
it is the basis for ab initio calculations of the virial coefficients. State-of-the-art calcula-
tions are introduced while their discussion and comparison to the experimental results of
this thesis is carried out in section 5.6.1. The extensive derivation of equation 3.2 is for
instance comprehensively described in [18] in two different manners. One option is to use
the classical virial theorem while the other one starts with the partition function. The latter
is summarized in appendix C since it can be easily adapted to include quantum mechanical
considerations, which is also shown in the appendix.
As shown there, a closed-form solution resulting from classical mechanics can be derived

for the second density virial coefficient for the assumption of an angle independent potential,
which is valid for noble gases:

B′(T ) = −2π
∫ ∞

0

(
exp

(−ϕ(r)
kT

)
− 1

)
r2dr (3.6)

Here, ϕ(r) is the interaction potential between two particles separated by distance r.
The prime indicates that these are the microscopic rather than the molar virial coefficients.
The conversion is simply carried out by B(T ) = B′(T ) · NA with NA being the Avogadro
constant. It can be shown that this formula can be adapted to include quantum mechanics
(see appendix C as well) and then may be written as:

B′(T ) =λ3
(
±2−

5
2 − 2

3
2
∑
l

(2l + 1)
∑
n

e

(
−Enl
kT

)
−

2 3
2

π

∑
l

(2l + 1)
∫ ∞

0
e

(
− ~2κ2

2µmkT

) (
dδl
dκ

)
dκ

) (3.7)

In this formula, µm = m1m2/(m1 + m2) is the reduced mass, λ = h/(2πmkT )1/2 is
the thermal wavelength and κ = (2µmEn) 1

2 /~. Enl are the discrete energy states of the
system, δl(κ) is the phase-shift of the energy states, which is caused by scattering, and the
summation is carried out over the angular momentum l of the two particle system. The
Planck constant is denoted by h and ~ = h/(2π). Equation 3.7 is applicable for Bose
and Fermi spin statistics. In Boson statistics (for instance helium-4), the first term has
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3. Theoretical background

a negative sign and the summation is only carried out over even values of l. For Fermi
statistics (for instance helium-3), the ideal term has a positive sign and the summation is
only carried out over odd values of l. This selection of angular momenta is a consequence of
the quantum mechanical restriction that wave functions of bosons are symmetrical while the
one for fermions have to be antisymmetrical. The different contributions in formula 3.7 are
the ideal term, the term for weakly bound particles and the last term which takes collisions
between two particles into account. In principal B(T ) may be calculated now. However, there
are three major challenges. First of all, the potential in equation 3.6 describing the interaction
between the particles needs to be known very precisely and from ab initio considerations as
well. In equation 3.7, the potential is implicitly included by Enl and δl(κ). Secondly, the
energy levels En need to be calculated, which requires to solve the Schrödinger equation. In
most cases, two different approaches are chosen in this case. Either the theory of coupled
clusters is applied or, where possible, the full configuration interaction (FCI) is taking into
account all available excited states making it generally more precise. Last but not least, the
calculation itself contains to solve complicated integrals. These integrals tend to get more
complicated with higher orders. Additionally, already the third virial coefficient requires
the solution of a three-body problem, which does not have a general closed-form solution
any more. This accounts for the derivation of the potential as well, whereas here another
challenge lies in the inclusion of quantum mechanics.

Due to its comparably simple atomic structure, helium has been extensively used for
calculations. Considerable progress was made in preparation for the redefinition of the SI,
since it was for instance used as a measuring gas for the determination of the Boltzmann
constant [19]. To ensure independence from other experiments, the required properties had
to be calculated exclusively ab initio and with reliable as well as sufficiently low uncertainties.
By that time, two highly accurate potentials were used to calculate the virial coefficients.
One from a group of the university of Rostock [20] and one from a group from the university
of Warsaw [21]. Though independent and different potentials were used, the agreement
between both calculations is excellent. Deviations are well within the uncertainty given in
[21] indicating a certain reliability of the computations. In 2017, the polish group improved
their helium pair potential again by one order of magnitude [22]. It was recently used to
recalculate the virial coefficients of helium-3 and helium-4 [23]. The latest adaptions to the
potential and the influence on the virial coefficients are presented in a submission to Physical
Review A, which is accepted but not yet published [24].

As explained in the previous text, the calculation of the higher virial coefficients is much
more complicated. The first calculation of the third virial coefficient based on a real three-
body potential was carried out by Garberoglio et al. in 2009 [25]. They used a path integral
method for the calculation of the virial coefficients and refined the values by including spin
statistics in 2011 [26]. To include the quantum mechanical contributions to the classical
formulation, perturbation theory was used. Resulting terms were incorporated into existing
potentials to different orders. For the higher virial coefficients, most precise values were
computed by Shaul et al. [27, 28]. It shall be noted that currently the uncertainties of the
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Figure 3.1.: Temperature dependence of the second density virial coefficient of argon as cal-

culated by Jäger et al. [29].

computed values for helium are at least one order of magnitude lower than the most precise
experimental determinations.
For argon, the situation is different. Here, experimental values are yet more precise than

the calculated ones. This is simply due to the more complex atomic structure with 18 protons
and electrons making computations of the potential and the virial coefficients much harder.
Calculations for B(T ), C(T ) and D(T ) were carried out by Jäger et al. [29] and Wiebke et al.
[30], whereas the potential used by Wiebke et al. is not independent from [29]. Furthermore,
exact values of B(T ) are given in [31] and ab initio values for C(T ) are published in [32].
The values are summarized in section 5.6.1.
In general, the virial coefficients are temperature dependent. The behavior shown in figure

3.1 for the second density virial coefficient of argon can be qualitatively explained. For lower
temperatures, the molecules move slowly and tend to spend more time associated to other
molecules. This is leading to a lower pressure compared to the ideal gas, which is why the
sign of B(T ) is negative. For higher temperatures, scattering becomes a dominant factor.
Energetic collisions lead to a pressure, which is above the one of an ideal gas.

3.1.2. Polarizability and the Clausius-Mosotti equation

A relation to the particle density of a gas cannot only be established by the pressure but also
by dielectric properties. A key property in this case is the electric dipole polarizability, which
describes the reaction of an atom or molecule to an external electric field Eext [33]. Protons
and electrons of the molecule are interacting with the field, get torn into the corresponding
directions and create an internal electric field of opposite direction. The macroscopic behavior
of the gas can then be expressed by means of the polarizability P α:
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Eext + P α

ε0
= εrEext (3.8)

In this formula εr = ε/ε0 is the relative permittivity and ε is the dielectric constant of the
gas. For non polar gases and for a system of N particles, the polarizability P α is given by:

P α = ρNα0Eint (3.9)

ρN denotes the particle density, α0 is the static electric dipole polarizability of the molecules
and Eint is the average internal electric field influencing the individual particles. At this
point, the question is what the relation between the internal and the external electric field
is. Lorentz was able to derive an expression for non polar gases by considering a virtual sphere
filled with a homogeniously polarized matter. Placing the sphere in an homogenous electric
field Eext results in in the so called Lorentz field EL = Eext + ESphere inside the sphere.
ESphere results from the induced charges on the surface of the sphere and can be calculated
by ESphere = P α/(3ε0). In combination with equations 3.8 and 3.9 the Clausius-Mosotti
equation can be derived:

εr − 1
εr + 2 = ρN

α0
3ε0

= ρmAε (3.10)

In this formula, Aε denotes the molar polarizability used for the molar notation of the
equation. The Term εr−1

εr+2 in equation 3.10 will be referred to as the Mosotti Term in this
thesis. This equation is derived for static electric fields, which is a valid assumption for
the capacitance bridge operating at a frequency of 1000 Hz used in this thesis. For optical
experiments as for instance performed in the “Quantum Pascal” project described in 2.2,
a formula including the frequency needs to be used. In this case, the assessed refractive
index n can be related to the particle density by the so called Lorentz-Lorenz equation for
electrodynamics. Since the refractive index is related to the relative electric permittivity
by n2 = εrµr where µr is the relative magnetic permeability, the formula is very similar to
the Clausius-Mosotti equation. A brief summary of the formula, the refractivity and the
refractive index virial coefficients is given in appendix D.

The importance of precise knowledge of the dipole polarizability can be illustrated by
considering gases at low densities. Neglecting higher order terms and corrections, it becomes
clear that the polarizability relates pressures p and temperature T to the dielectric constant
by a linear relation:

(εr − 1)kT = 4πα0p (3.11)
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This formula essentially holds its linear character also for optical measurements of the
refractive index.
Due to the same reasons layed out in subsection 3.1.1, calculations of the polarizability for

helium were refined in preparation for the redefinition of the SI in 2017 [19]. It will be shown
in section 3.2 that this was particularly required for DCGT and RIGT experiments. Different
highly accurate calculations were carried out by the group from the University of Warsaw
[34, 35] with relative uncertainties of less than 0.2 ppm. In a current publication, these
calculations were further improved by performing relativistic Quantum Electro Dynamics
(QED) calculations including the finite nuclear mass [36]. The relative uncertainty was again
lowered to 0.1 ppm. Experimentally, these uncertainties cannot be achieved at this point.
The most accurate measurement was carried out by Gaiser et al. with the setup used for the
determination of the Boltzmann constant and resulted in a relative uncertainty in the order
of 2 ppm [37].
In the same publication, the currently most precise experimental value for argon with a

relative uncertainty in the order of 2 ppm was published. At this point calculations of the
polarizability for argon are scarce, and due to the complex electron structure, relative uncer-
tainties are about three orders of magnitude higher than the experiment [38, 39]. However,
one goal of the projects described in chapter 2 is to further improve these calculations for
argon.

3.1.3. Dielectric virial coefficients

Similar to the elucidations given in section 3.1.1, the interactions between multiple particles
have to be taken into account for the Clausius-Mosotti equation 3.10 as well. In terms of
the dielectric properties these contributions are multipoles. In analogy to equation 3.2, the
Clausius-Mosotti equation 3.10 is expanded in terms of the molar particle density with the
corresponding factors being the temperature dependent dielectric virial coefficients bε (T ),
cε (T ),... of second, third,... order:

εr − 1
εr + 2 = Aερm

(
1 + bε (T ) ρm + cε (T ) ρ2

m + ...
)

(3.12)

It shall be noted that in some works the dielectric virial coefficients are differently defined
by εr−1

εr+2 = Aερm + b∗ε (T )ρ2
m + c∗ε (T )ρ3 + .... However, in this thesis the definition by equa-

tion 3.12 is used exclusively, and formulas from other literature sources have been adapted
accordingly. Again, it is advantageous for the derivation of further working equations to
develop this equation in powers of the Mosotti-term f = εr−1

εr+2 rather than the molar particle
density:

f = Aερm
(
1 + bCM (T ) f + cCM (T ) f2 + ...

)
(3.13)
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In equation 3.13, bCM (T ), cCM (T ),...denote the Mosotti virial coefficients of respective
orders. The relation to the dielectric virial coefficients can be established in analogy to the
pressure virial coefficients and is shown in appendix B.

bε (T ) = bCM (T )Aε
cε (T ) = bε (T )2 + cCM(T )A2

ε

(3.14)

Since the electric field only causes minor perturbations to the system, the dielectric virial
coefficients are generally around two orders of magnitude smaller than the density virial
coefficients. Therefore, they are here only considered up to the third order.
The theoretical background of the expansion of the Clausius-Mosotti equation for non polar

gases was carried out by Buckingham in 1955 [40]. He investigated the possible perturbations
considering two different effects. On the one hand a neighbor molecule may influence the
polarizability of a molecule, on the other hand moments induced by the neighboring molecules
may induce additional moments in the neighbor molecule as well. The derived formula for
the second dielectric virial coefficient which may be used for calculations of this property is:

b′ε = 2π
3ε0

∫ ∞
0

∆α(r) exp
(
ϕ(r)
kT

)
(3.15)

In this equation, ∆α(r) denotes the trace of the interaction induced polarizability tensor.
The prime indicates that it is the microscopic second dielectric virial coefficient valid for the
expansion in particle density rather than in molar particle density. Conversion is carried
out by bε(T ) = b′ε(T ) ·NA. Due to the distortions, the polarizability is not a scalar quantity
anymore but a tensor. For the further discussions, the polarizability is split into contributions
parallel α‖and perpendicular α⊥ to the interatomic axis resulting in [6].

∆α(r) =
α‖(r) + 2α⊥(r)

3 − 2α0 (3.16)

Furthermore, the polarizabilities α0 of two unperturbed atoms is subtracted, which illus-
trates that the dipole induced polarizability tensor ∆α(r) only includes additional contribu-
tions resulting from the interaction between both particles. Finally, an expression for ∆α(r)
can be retrieved under the assumption of point dipoles [6] in the so called dipole induced
dipole model [40]:

∆α(r) = 4α0
r6 (3.17)

The rapid decay due to the power of ten to the minus six with the interatomic distance
is another verification for the smallness of the dielectric virial coefficients. Unfortunately,
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3.2. Theory of dielectric constant gas thermometry

calculations carried out with this simple expression do not agree with experimental results
since long- and short range interactions are neglected in the dipole induced dipole model. The
expression of the trace of the polarizability tensor given in equation 3.17 will always produce
positive values for bε, while for instance helium has a negative value at ambient temperatures
and below [3]. Therefore, quantum mechanical contributions have to be taken into account
especially for light atoms and low temperatures. The first quantum mechanical expression
for bε derived by Hill in 1958 [41] unfortunately did not converge to the semiclassical result
for high temperatures. Moszynski et al. have shown that this was caused by approximating
the internal electric field Eint with the external electric field Eext [42]. They corrected the
derivation by using the Lorentz equation relating external Eext and internal electric field Eint

and achieved this quantum mechanical expression:

b′(T ) = kT

3ε0

(
∂2B′(T,Eext)

∂2Eext

)
(3.18)

However, in the most recent publications, two different approaches based on the semiclas-
sical formula 3.15 but with quantum mechanical corrections are followed [43, 44]. These new
computations are based on previously determined highly precise and quantum mechanical
calculations of the interaction induced polarizabilities ∆α(r) and pair potentials referenced
in these publications. Results were obtained for helium as well as for argon. Further publica-
tions containing results on both gases are [45] and [46], whereas the first has to be highlighted
due to the fact that they used a Full Configuration Interaction (FCI) approach. Theoretical
computations for helium were also carried out by [34] and [47]. For argon, the group from
Rostock presented a publication in 2010 [48].
The last time experimental work on the dielectric virial coefficients of helium and argon

was performed is already three decades ago. Achtermann et al. and Huot et al. performed
experiments on both gases in the early nineties [6, 49, 50]. Lallemand and Vidal also pub-
lished results for both gases in 1977. Their work is of particular interest because they were
going to very high pressures of 1000 MPa [51].

3.2. Theory of dielectric constant gas thermometry

DCGT is a method of primary thermometry that was first realized by Gugan and Michel in
1980 in England [52]. At PTB it is established since the beginning of the 1990s. A com-
prehensive review on the method can be found in reference [53]. Like in any other method
of primary thermometry, a direct link between measurable quantities and temperature is
required. For gas thermometers, the basis of all working equations is the ideal gas equation
3.1, whereas the different types differ in the way the hard to assess molar particle density
ρm is determined. A short overview of alternative methods is given in subsection 3.2.1. In
case of the DCGT, ρm is determined by measuring the dielectric constant εr with a capac-
itor and utilizing the virial expansion of the Clausius-Mosotti equation 3.10. A schematic
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Figure 3.2.: Schematic view of a DCGT setup. The measuring cells are inside a massive
copper block of temperature T that is submerged in a thermostat. Including a
separate reference capacitor Cref is optional but required for capacitance mea-
surements of highest accuracy (see also section 4.3).

experimental setup is shown in figure 3.2.

For an ideal capacitor, the relative change in capacitance C(p) at a pressure p with respect
to the capacitance at vacuum C (0) is connected to the dielectric constant εr by:

C (p)− C (0)
C (0) = εr − 1 (3.19)

For an ideal gas and an ideal capacitor without deformation, the dielectric constant from
equation 3.19 can be used to assess the particle density with the Clausius-Mosotti equation
3.10. A working equation can then be derived by combination with the ideal gas law 3.1:

εr − 1
εr + 2 = Aε

p

RT
(3.20)

With this ideal formula, two measurements, one at vacuum and and one at pressure p, are
sufficient for the determination of the thermodynamic temperature T. However, for a real
experimental setup, the deformation of the capacitor under pressure needs to be taken into
account, which is ensured by an effective compressibility κeff
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3.2. Theory of dielectric constant gas thermometry

C (p)− C (0)
C (0) = εr − 1 + εrκeffp = γ (3.21)

γ is the measured relative change of capacitance. Details on the determination of the
effective compressibility, its influence on the capacitance measurement and the dependence
on the capacitor type are given in section 5.1.1. Furthermore, the previously introduced
deviations from the real gas in form of density and dielectric virial coefficients (equations 3.2
and 3.12) need to be taken into account. Initially, the working equation was derived for the
determination of thermodynamic temperatures in the range between 4.2 K and 27.1 K [2, 52].
Effects of the deformation of the capacitor under pressure could therefore be neglected in the
higher orders but have to be included for temperatures above 50 K and for the determination
of virial coefficients [1, 53]. The derivation of the DCGT working equation used in this thesis
is layed out in reference [1]. The extensive derivation of both working equations is carried
out in appendix E. Basically, equations 3.2 and 3.12 need to be combined. To obtain a linear
expression of p over powers of the dielectric measurement, the Clausius-Mosotti equation
being in the denominator needs to be expanded into a Taylor series where powers higher
than the order of two are truncated. The resulting equation can be simplified by defining a
DCGT-working variable µ = γ

γ+3 and is:

p = A1µ
(
1 +A1A2µ+A2

1A3µ
2 +A3

1A4µ
3 + ...

)
A1 = 1

Aε
RT + κeff

3

A2 = 1
RT

(B(T )− bε(T ))− κeff
3

(
1 + B(T )

Aε

)
A3 = 1

(RT )2 [C(T )− cε(T )− 2bε(T )(B(T )− bε(T ))]

+ κeff
3

1
RT

[
2Aε − 3(B(T )− bε(T ))− 1

Aε
(2(B(T )− bε(T ))2 + C(T ))

]
A4 = 1

(RT )3 [D(T )− dε(T )− 3bε(T )C(T )− 2B(T )cε(T )+

5bε(T )cε(T ) + 5(bε(T ))2B(T )− 2(bε(T ))3
]

+
κeff

(RT )2

[
4Aε(B(T )− bε(T ))− 2(B(T )− bε(T ))2−

6bε(T )(B(T )− bε(T )) + 3(C(T )− cε(T ))] +
κeff

(RT )2
1
Aε

[
6bε(T )(B(T )− bε(T ))2 + (B(T )− bε(T ))(3cε(T )− 5C(T ))

]

(3.22)

This form of the working equation allows to retrieve the temperature T from a series of
isothermal pressure and capacitance measurements by evaluation of the constant fit coeffi-
cient A1 without the need to know the virial coefficients. But it is also possible to retrieve
other information from A1. The same procedure has been used to determine the Boltzmann
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constant for the redefinition of the SI by measurements at the triple point of water. From
the molar gas constant R = kNA, the Boltzmann-constant k was determined by using the
Avogadro constant NA [19]. Another option is to determine the effective compressibility
κeff of a capacitor with a well known reference gas. Most important for the measurements
presented in this thesis is the possibility to determine the molar polarizability Aε, which
is required to evaluate the dielectric virial coefficients from the expansion experiments (see
section 3.4).
Evaluation of the higher fit coefficients of equation 3.22 allows to retrieve information on

the virial coefficients as well. Since both, pressure and capacitance information is used, only
sums and products of density and dielectric virial coefficients can be examined without the
possibility to differ between them. Instead, the so called DCGT virial coefficients are defined.

BDCGT(T ) =B(T )− bε(T )

CDCGT(T ) =C(T )− cε(T )− 2bε(T ) (B(T )− bε(T ))

DDCGT(T ) =D(T )− dε(T )− 3bε(T )C(T )− 2B(T )cε(T )+

5bε(T )cε(T ) + 5(bε(T ))2B(T )− 2(bε(T ))3

...

(3.23)

If either the dielectric or density virial coefficient is known, the other one can in principle be
calculated from the DCGT virial coefficient. However, since the dielectric virials are typically
two orders of magnitude smaller than the density virial coefficients, their determination is
only possible with large uncertainties by this method. This is further discussed in section
3.4. There has been a number of publications where DCGT and density virial coefficients of
noble gases were retrieved from DCGT data, such as references [1–3, 54].

3.2.1. Alternative methods of gas thermometry

This subsection gives a short comparison of other gas thermometric methods that are cur-
rently part of the ITS-90 and its Mise en Pratique as well as their potential for the determi-
nation of virial coefficients. A detailed overview can be found in reference [55]. As mentioned
before, all gas thermometers are based on the ideal gas equation 3.1 but differ in the form
that the molar particle density ρm is determined.
InConstant-VolumeGas Thermometry (CVGT), the particle density is assessed by deter-

mination of the (constant) volume of the measuring chamber and the number of gas particles
introduced in this chamber. The volume is typically determined by dimensional measure-
ments or pycnometrically. The number of gas particles is typically assessed by measuring
the weight of the cylinder containing the gas before and after filling the thermometer. Very
accurate temperature measurements were for instance carried out by Berry to establish the
low temperature scale NPL-75 for the temperature range from 2.6 K to 27.1 K [56]. The
method is still used as an interpolation instrument in the low temperature range of the
ITS-90 while it is typically not used as a primary thermometer at this point. The main
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3.2. Theory of dielectric constant gas thermometry

reason is the challenging determination of the absolute volume, which results in comparably
high uncertainties. A viable option to reduce the uncertainty of the volume could be the
assessment with microwave resonances, which is typically carried out in AGT measurements.
That is why a certain potential for the direct determination of the density virial coefficients,
especially in the low temperature range, can be assigned.

An AGT utilizes the relation between the speed of sound u0 and the thermodynamic
temperature of a gas, which is given by:

u0 =
(
cp
cV

RT

M

) 1
2

(3.24)

where cp
cV

is the ratio between the specific heat capacity at constant pressure p and at
constant volume V while M is the molar mass of the measuring gas. A comprehensive
overview of the method is given in [31]. In analogy to the density and dielectric virial
coefficients, the speed of sound of a real gas u is given by a virial expansion:

u2 = u2
0(1 +Bu(T )p+ Cu(T )p2 + ...) (3.25)

with Bu(T ), Cu(T ),... being the acoustic virial coefficients. Since pressure does only play a
role as a second order effect, the uncertainties achievable with AGT are currently the lowest
compared to other primary thermometry methods. This thermometer has been widely used
by the NMIs of France, Great Britain and Italy for the determination of the Boltzmann-
constant for the redefinition of the unit kelvin and the new SI. Though AGT features the
lowest uncertainties with less than 1 ppm for the determination of the Boltzmann constant,
the relation between the acoustic virial coefficients and the density virial coefficients is more
complicated limiting the potential to be used for the determination of the latter [57]:

Bu(T ) = 2B(T ) + 2
(
cp
cV
− 1

)
T

(
dB

dT

)
+

(
cp
cV
− 1

)2

cp
cV

T 2d
2B

dT 2 (3.26)

The principle of a RIGT is very similar to the DCGT, but instead of the dielectric constant
the refractive index n of a gas is measured [58]. The working equation is very similar in
structure but based on the Lorentz-Lorenz equation D.1 (see appendix D), which turns into
the Clausius-Mosotti equation for vanishing frequencies. Due to the similarity, these two
thermometers form the group of polarizing gas thermometry. RIGT is typically performed
in two different manners. Originally, interferometers were used to assess the refractive index
of the measuring gas at optical wavelengths. This is accompanied by a variety of experimental
challenges. First, the demands to understand the deformation of the measuring equipment
under pressure are enormous and difficult. This problem is increased by the fact that the
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used optical materials are often highly anisotropic. The same accounts for the influence of
thermal gradients that change the dimensions of the refractometers. Therefore, typically
calibration measurements are performed, for instance with helium. As mentioned in section
2.2, the drawback of helium is its permeation into certain optical materials, which again
complicates these calibrations. There are further experimental challenges in the mechanical
construction when higher gas pressures are targeted. That is why May et al. proposed to
use quasi-spherical cavity resonators to measure the refractive index in the microwave range
in 2004 [59]. Measurements up to 7 MPa have already been demonstrated [60]. The intended
unideal shape of the resonator as a triaxial ellipsoid splits up the otherwise triply-degenerate
eigen-frequencies of an ideal cavity, which allows to assess the frequencies with high precision.
Relative uncertainties for the determination of the Boltzmann constant were in the order of
10 ppm, whereas one of the main uncertainty contributions is again the deformation of the
cavity under pressure. Still, this method is in principle also promising for the determination
of coupled density and refractive index virial coefficients. The latter are nearly equal to the
dielectric virial coefficients for the low frequencies of microwaves. Still, it should be mentioned
that in contrast to electrostatic experiments the very small magnetic polarizability Aµ needs
to be taken into account for these experiments. May et al. actually used this aspect to
determine the magnetic susceptibility of oxygen by coupled measurements analyzing the gas
simultaneously in a quasi-spherical cavity resonator and a capacitor [61].

3.3. The Burnett method

To determine the density virial coefficients, it is in principle possible to measure ratios of
pressure and particle density, which can then be fitted by a polynomial equation to obtain
the coefficients the way they are defined in equation 3.2. As mentioned before, the particle
density is typically difficult to measure. Burnett had the idea to assess particle density ratios
rather than to determine the absolute particle density in 1936 [4]. The working principle,
data evaluation as well as progress made since then are presented in the next section. The
disadvantage of this original approach is that a highly precise pressure measurement typically
has to be realized with a differential pressure membrane separating the isothermal measuring
vessels from bulky pressure standards like mercury u-tube manometers or pressure balances
at ambient conditions. This requires time consuming manual operation and only offers
limited potential for automation. Therefore, an approach was made by Sakoda et al. in 2012
to use an absolute pressure transducer, which is kept at a constant temperature different
from the measuring temperature [62, 63]. In subsection 3.3.3, their work as well as the
derivation of the final working equation used in this thesis will be presented.
Generally, the popularity of the Burnett method dropped after improvements in magnetic

suspension couplings allowed the development of very accurate sinker densimeters in the
middle eighties [64]. A comprehensive overview of of these instruments is, for instance,
given in [65] and [66]. They can directly measure the density of a fluid by applying the
buoyancy principle to one or more appropriate sinkers located inside the fluid at a certain
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3.3. The Burnett method

pressure and temperature. The selected sinker is linked to an accurate balance outside the
thermalized experimental volume by the magnetic coupling. If two sinkers of same mass
and surface area (and ideally same surface material) but different volumes are used, many
distorting effects, for instance buoyant forces on the suspension and wires of the sinkers or
adsorption, vanish [67]. The density of the fluid can then be determined from the measured
mass difference divided by the volume difference of the sinkers. Relative uncertainties for the
density measurement in the order 0.01 % (k = 2) can typically be achieved. Recently, the
potential of the method has been further developed to investigate sorption effects at the dew
point, which is particularly interesting for gas mixtures since the composition of the fluid
phase changes [68, 69]. Therefore, specially designed sinkers with equal mass and volume
but different surface area were used. The drawback of these sinkers is that the uncertainty
of the determined densities rises, which is why a four-sinker densimeter for the investigation
of sorption effects combined with a precise measurement of density was developed [70].

3.3.1. Ideal Burnett expansion

In its simplest form, a Burnett apparatus consist of two volumes kept at constant temperature
Tiso that are separated by an expansion valve Vexp as depicted in figure 3.3. Volume VA is
filled by opening valve Vin and the initial pressure is measured while Vexp is closed and volume
VB is evacuated. Then, the gas is expanded into VB by opening valve Vexp. The pressure is
measured again before Vexp is closed and cell B is evacuated by opening Vout. This process
is repeated until a sufficient number of measuring points has been taken. In the original
publication by Burnett an error prone iterative approach including two extrapolations was
used to evaluate the data [4]. It is shortly summarized here, since it will be required in section
3.3.3 for the evaluation of strategies reported in the literature to include dead volumes at
temperatures different from the measuring temperature [4, 62].

VA VB

cell A cell B

Dp transducer

p

Vin

Vexp

Vout

T

Figure 3.3.: A simple Burnett apparatus with two volumes VA and VB separated by an expan-
sion valve Vexp. Components inside the thermostat (dashed line) are thermally
stabilized to temperature T . The pressure measurement at ambient conditions
is enabled by a differential pressure transducer.
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From equation 3.2, the ratio of pressures pr
pr+1

before and after expansion r + 1 relate by:

pr
pr+1

= VA + VB
VA

Zr
Zr+1

= Q
Zr
Zr+1

(3.27)

where Q is the apparatus constant, which is defined only by the volumes of the vessels.
After an infinite number of expansions, the gas will be highly diluted reaching ideal gas
behavior resulting in compressibility factors of Zr = Zr+1 = 1, as defined in equation 3.3.
Thus, extrapolating the values of pr

pr+1
over pr to pr = 0 results directly in Q as the intercept

with the Y-axis. Generalizing equation 3.27 results in:

j∏
r=0

pr
pr+1

=
j∏
r=0

Qr
Zr

Zr + 1 (3.28)

Utilizing, again, the fact that Zr = 1 after an infinite number of expansions, the initial
compressibility factor Z0 can be determined for the known starting pressure p0 by an extrapo-
lation of the products prQ1Q2...Qr over pr towards pr = 0. The intermediate compressibility
factors Zr may then be calculated by equation 3.28. Fitting Zr either over pr or ρr = pr

ZrRT

with a polynomial of appropriate order, the pressure or density virial coefficients are the
respective fit coefficients. The benefit of this routine is that corrections to the apparatus
constant Qr, for instance due to pressure caused deformations, can be easily implemented
for each pressure pr. The role of the apparatus constant is extensively discussed in section
5.2. Anyway, this iterative approach is mostly not used anymore. The data evaluation was
topic of numerous papers throughout the years, whereas the current standard procedure is
to directly fit a polynomial equation to the ratios pr

pr+j
over pr [71, 72]. For an ideal setup,

as depicted in 3.3, it is shown in appendix F.1 that the following equation can be retrieved
neglecting the deformation of the cells under pressure:

pr
pr+j

=Qj + (Qj − 1)B(T )
RT

· pr + (Qj −Q−j)
(RT )2 (C(T )− (B(T ))2) · p2

r+

1
(RT )3

[( 1
Qj
− 1
Q2j

)
(B(T )C(T )− (B(T ))3)+(

Qj − 1
Q2j

)
(D(T )− 3C(T )B(T )− 2(B(T ))3)

]
· p3
r + ...

(3.29)

Fitting equation 3.29 with a polynomial of the required order pr
pr+j

= K0 +K1 · pr +K2 ·
p2
r +K3 · p3

r ... leads to the following relations for the properties of interest:
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Q = K
1
j

0

B(T ) = K1RT

Qj − 1 = K1RT

K0 − 1

C(T ) = K2(RT )2

Qj −Q−j
+ (B(T ))2

D(T ) = K3(RT )3 − (Q−j −Q−2j)
(
B(T )C(T )− (B(T ))3)+ 3C(T )B(T ) + 2(B(T ))3

Qj −Q−2j

(3.30)

The order of the polynomial is of key importance for the data evaluation and basically
predefined by the magnitude of the virial coefficients. Since the influence of the higher orders
rises with pressure, one has to carefully estimate which is the highest order that contributes
significantly and select the order of the fit accordingly. This opens the conflict that on the
one hand lower fit orders have lower uncertainties, but may on the other hand deliver wrong
results if the order is too low. Furthermore, the number of data points has to be sufficient
to apply higher fit orders. A detailed discussion of the fit orders required and used in this
thesis is given in section 3.6. Typically, j is chosen to be 1, which means that consecutive
measurement values are used to calculate the ratios. Equation 3.30 illustrates one important
advantage of the Burnett method. Complicated volume measurements are not required,
since the apparatus constant Q is directly determined from the fit coefficients. Burnett and
several others used a smart experimental design with double walled vessels, where pressure is
applied from the inside as well as from the outside [4]. This way, the influence of deformation
is reduced to the volume change due to compression and was neglected allowing to utilize
this formula.

3.3.2. Isothermal Burnett expansion with deformation

For the work carried out in this thesis, it is beneficial to include the pressure deformation of
the measuring cells directly in the working equation, which is used to fit the data. Again, the
isothermal expansion from the filled cell A with volume VA(1 + λAp) into evacuated cell B
with volume VB(1 + λBp) is considered. λA and λB are the pressure deformation coefficients
of cell A and cell B respectively, whereas VA and VB now denote the corresponding volumes
without pressure deformation. The following derivation is carried out utilizing the pressure
virial coefficients defined in equation 3.4. With the number of particles being the same at
expansion r and after expansion r + 1, the starting point for the derivation is:

prVA(1 + λApr)
(1 +Bp(T )pr + Cp(T )p2

r +Dp(T )p3
r ...)

= pr+1(VA(1 + λApr+1) + VB(1 + λBpr+1))
(1 +Bp(T )pr+1 + Cp(T )p2

r+1 +Dp(T )p3
r+1...)
(3.31)

Solving this equation and similar ones in the sections ahead always follows the same pat-
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tern. The starting equation is defined utilizing the conservation of the number of particles
before and after the expansion. Then, the measured quantity after the expansion, in this case
pr+1, is replaced by introducing the ratio Pratio,r = pr

pr+1
. The resulting equation is solved

for the ratio Pratio,r and the result is rearranged as a power series of pr. This expression is
fitted with a polynomial and the target quantities are retrieved from the fit coefficients. The
equations generally become very complex with higher orders or by including more correc-
tions which is why all derivations were carried out utilizing the program Mathematica 12.0
(Wolfram Research). The further steps to solve equation 3.31 are shown in appendix F.2
with the final result being:

Pratio,r =Q+ (Q− 1)
(
B(T )
RT

+ 1
Q

(λB − λA(Q+ 1))
)
· pr+[

C(T )−B2(T )
(RT )2

(
Q− 1

Q

)
+QλA

(
λA −

B(T )
RT

)
+

1
Q

(
B(T )
RT

(
λA
Q

+ λB

(
1− 1

Q

))
−
(
λA
Q

+ λB

(
1− 1

Q

))2)]
· p2
r + ..

(3.32)

Fitting equation 3.32 with a polynomial of the required order pr
pr+1

= K0+K1·pr+K2·p2
r+...

leads to the following relations for the properties of interest:

Q = K0

B(T ) = K1RT

K0 − 1 −
RT

Q
(λB − λA(Q+ 1))

C(T ) = (RT )2

Q− 1
Q

[
K2 −Q

(
λ2
A −

λAB(T )
RT

)
−

1
Q

(
B

RT

(
λA
Q

+ λB

(
1− 1

Q

))
−
(
λA
Q

+ λB

(
1− 1

Q

))2)]
+ (B(T ))2

(3.33)

For vanishing deformations, these coefficients are equal to the ones given in equation
3.30. To compare the final working equation used in this work to the result shown here,
the derivation was repeated with the additional volumes and deformation coefficients of the
gas-handling system shown schematically in figure 3.5. The results are included in appendix
F.2 as well. Further discussion and details on how the deformation was determined in this
work is given in section 4.1.4.
The isothermal Burnett method was used widely until the nineteen eighties to determine

density virial coefficients of pure fluids but also mixtures [73–77]. High precision measure-
ments were for instance carried out by Waxman and Hastings at NIST with argon and
krypton [78]. A number of highly accurate measurements by Jaeschke and Co-workers is ref-
erenced in the GERG2004 monograph [79]. Further work on different natural gas mixtures
was published in 1997 by Hwang et al. [80]. As already explained in the introduction of this
chapter, the method became less popular with the rise of highly precise densimeters [65].
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3.3. The Burnett method

3.3.3. Burnett expansion with dead volumes at different temperature

The group around Sakoda still further developed the method by application of an absolute
pressure transducer placed outside of the thermostat, instead of using a differential pressure
transducer simplifying the experimental effort [62, 81, 82]. This way, automated experiments
at high pressures and temperatures are possible. The challenge is that the pressure trans-
ducer has to be kept at a constant temperature which is different from the measurement
temperature introducing a dead volume at different temperature. Their experimental setup
is shown in figure 3.4.

8 Int J Thermophys (2012) 33:6–21

dead space. The experimental approach is the same as the classical Burnett method.
However, new equations were developed to treat the raw data taking the effect of
the dead space into account. Nitrogen and hydrogen were measured up to 473 K and
100 MPa, and compared with available equations of state (EOSs).

2 Apparatuses and Basic Equations for the Burnett Method

2.1 Classical Burnett Apparatus and Present Apparatus

A schematic diagram of the classical Burnett method is shown in Fig. 1a. A differ-
ential pressure transducer is used for pressure measurements, and it is placed in a
constant temperature bath along with the two cells. The sample pressure in the cells
is measured by setting the differential pressure transducer at the null position (zero
pressure difference) using another fluid that can be easily handled such as nitrogen.
At the null position, the external pressure of the differential pressure transducer is
adjusted to equal the sample pressure. The adjustment is complicated because the

(a)

Sample cell Expansion cell

Differential pressure transducer

Constant temperature bath

Absolute pressure 
transducer

Compressor
for sample

V1 3V2V

V4

V5V6

Nitrogen

Sample
VA VB

T

Compressor
for sample

Sample 
cylinder

Sample cell Expansion cell

Absolute pressure
transducer

V1V2 V3

V4

Sample

Constant temperature bath

VA VB

VD, TD

T

Dead space

Fig. 1 Schematic diagrams of (a) classical Burnett apparatus and (b) present apparatus

123

Figure 3.4.: This picture of the experimental setup used by Sakoda et al. was taken from
the reference [62].

To evaluate the data, the authors adapted the iterative approach of the ideal expansion
presented in section 3.3.1. Since the additional Volume VD is included as dead space at a
temperature TD, first, an overall apparatus constant Qr was defined by:

Qr = (1 +QB)
1 + QD

1+QB
T
TD

Zr+10
ZD,r+1

1 +QD
T
TD

Zr
ZD,r+1

(3.34)

Where QD = VD
VA

and QB = VB
VA

are ratios defined by the volumes. To evaluate the data,
they first carried out calibration measurements with a well known reference gas, in their case
nitrogen, to determine QD and QB. From the measured pressure ratios, the compressibility
factor Zr is first determined neglecting the different temperature TD in VD by the iterative
approach described in subsection 3.3.1. Next, the apparatus constant Qr,initial is calculated
by formula 3.34 with initial values for QB and QD, while the compressibility factors for the
dead volume ZD,r and ZD,r+1 are calculated from an EOS. Qr,initial is used to determine
Z0 and Zr by the iterative approach for the standard Burnett method. These values are, in
turn, used to recalculate Qr,new by equation 3.34, which is then compared to the initial value
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Qr,initial. In case the deviation is larger than the tolerance, the recalculated value of Qr,new is
used as new Qr,initial value and the process is repeated. These iterations are carried out until
the deviation between Qr,initial and Qr,new are smaller than the specified tolerance. This way,
Qr can be determined together with the corresponding compressibility factors and, thus,
average density. Though Qr is now known, the individual values of QD and QB still have to
be determined. This is realized by performing a non-linear least squares fit algorithm. The
sum of squares are calculated for the differences between the particle density ρN determined
from Qr and the one calculated by an EOS for the corresponding temperatures. The fitting
is carried out via the derivatives ∂ρN

∂QB
and ∂ρN

∂QD
by adapting the amount of particles NB and

ND in the different parts of the system. These values are then used to recalculate the particle
density. This process is repeated until the measured particle density and the one from the
EOS coincide. With the now fix numerical values for QB and QD, the pressure ratios from
an unknown gas may be evaluated. The first temperature to be measured is TD to assess
ZD.

To avoid the iterative approach, a new working equation has been derived in this work,
which allows to directly fit the data. Furthermore, dead volumes at different temperatures
are not only considered for the sample but also for the expansion part of the system. This is
due to the design of the apparatus, which is schematically shown in figure 3.5 and explained
in more detail in section 4.1.

VA VB

p

VDA VDB

Tiso

TGHS

cell A cell B

Figure 3.5.: Simplified scheme of the volumes and two different thermal regimes (separated
by the dashed line) of the current apparatus.

While the measuring cells A and B are stabilized at the temperature Tiso, the dead volumes
VDA and VDB of the gas-handling system and the pressure measurement are stabilized at the
temperature TGHS. For the derivation, it is assumed that the temperature change at the
border in between both temperature regimes can be described by a step function leading to
the starting equation:
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prVA
Tiso(1 +Bp,isopr + Cp,isop2

r + ...) + prVDA
TGHS(1 +Bp,GHSpr + Cp,GHSp2

r + ...) =

pr+1(VA + VB)
Tiso(1 +Bp,isopr+1 + Cp,isop2

r+1 + ...) + pr+1(VDA + VDB)
TGHS(1 +Bp,GHSpr+1 + Cp,GHSp2

r+1 + ...)
(3.35)

The further steps of the derivation are carried out in appendix F.3. A closed solution can
only be obtained if virial coefficients of order three and higher are neglected. In this case, a
solution is given by:

pr
pr+1

=K0 +K1pr +K2p
2
r + ...

K0 =1 + TisoVDB + TGHSVB
TisoVDA + TGHSVA

= Q∆T

K1
K0 − 1 = Biso

RTiso

 1
1 + Tiso

TGHS
VDA
VA

− 1
1 + Tiso

TGHS
VDB
VB

+ 1
1 + Tiso

TGHS

(VDA+VDB)
(VA+VB)

+

BGHS
RTGHS

1− 1
1 + Tiso

TGHS
VDA
VA

+ 1
1 + Tiso

TGHS
VDB
VB

− 1
1 + Tiso

TGHS

(VDA+VDB)
(VA+VB)


(3.36)

The solution given here is valid to calculate the second density virial cofficient since in-
cluding higher orders in the starting equation would as well only contribute to higher orders.
The coefficient K0 results in the ideal apparatus constant Q, which was defined in equation
3.30, if TGHS approaches Tiso. That is why K0 is treated as an artificial, temperature depen-
dent apparatus constant Q∆T similar to the one used by Sakoda et al. (see equation 3.34).
This analogy is also used to derive a descriptive expression for the calculation of the second
density virial coefficient by calculating K1

K0−1 , again in analogy to the ideal case described
in equation 3.30. Instead of using absolute volumes and temperatures, it is beneficial to
express equation 3.36 utilizing the following volume and temperature ratios, which are used
throughout this thesis:
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Tratio = Tiso
TGHS

QA = VDA
VA

QB = VDB
VB

Q∗ = VA
VB

Q = VA + VB + VDA + VDB
VA + VDA

= 1 + 1
Q∗

(1 +QB)
(1 +QA)

Q∆T = 1 + 1
Q∗

1 + TratioQB
1 + TratioQA

= Q+ (Q− 1) (QA −QB)(1− Tratio)
(1 +QB)(1 + TratioQA)

(3.37)

With these ratios, the term for the second virial coefficient of equation 3.36 can be ex-
pressed as:

K1
K0 − 1 = Biso

RTiso

 1
1 + TratioQA

− 1
1 + TratioQB

+ 1
1 + Tratio

Q∗QA+QB
Q∗+1

+

BGHS
RTGHS

1− 1
1 + TratioQA

+ 1
1 + TratioQB

− 1
1 + Tratio

Q∗QA+QB
Q∗+1

 (3.38)

3.3.4. Final working equation of the Burnett expansion

To evaluate the measured data in this thesis, the pressure deformation as well as the dead
volumes at a different temperature have to be considered at the same time. In analogy to
previous sections and using the same declarations, the starting point for the derivation is:

prVA(1 + λApr)
Tiso(1 +Bp,isopr + Cp,isop2

r + ...) + prVDA(1 + λGHSpr)
TGHS(1 +Bp,GHSpr + Cp,GHSp2

r + ...) =

pr+1(VA(1 + λApr+1) + VB(1 + λBpr+1))
Tiso(1 +Bp,isopr+1 + Cp,isop2

r+1 + ...) + pr+1(VDA + VDB)(1 + λGHSpr+1)
TGHS(1 +Bp,GHSpr+1 + Cp,GHSp2

r+1 + ...)
(3.39)

In this equation λDA = λDB = λGHS is used, since the gas-handling system is made of the
same tubing. The further derivation is carried out in appendix F.4, whereas the final result
used for the evaluation of the pressure data in this thesis is:
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(3.40)

This equation exhibits a certain elegance. The terms including the density virial coeffi-
cients are identical to the ones retrieved in the previous section for the case of two different
temperature regimes neglecting the deformation (equation 3.38). The terms including the
deformations can be compared to the ones for the isothermal case depicted in appendix F.2
in equation F.14. The isothermal equation there gives the result shown here if the ideal
apparatus constant Q is replaced with the apparent apparatus constant Q∆T and if the
volume ratios QA and QB are multiplied with the temperature ratio Tratio. Equation 3.40
thus exactly represents both cases derived separately in the two previous sections. A further
evaluation of this final working equation and a comparison to the equations for the dielectric
expansion, which will be retrieved in the next section, is carried out in section 3.5.

3.4. Dielectric expansion experiments

After Buckingham et al. developed the theoretical basis for the relation between dielectric
properties and particle densities of fluids in the nineteen fifties [40, 83], interest in the de-
termination of the very small second dielectric virial coefficient rised. First experimental
attempts were made by measuring the dielectric constant and pressure together with a de-
termination of the particle density from an EOS. This is in principal the same as to evaluate
the measured values by means of the following formula, which can simply be derived by sub-
stituting the particle density in the Clausius-Mosotti equation 3.12 with the pressure virial
expansion 3.4:

εr − 1
εr + 2 = Aε

(
p

RT

)
+ (bε(T )−AεBp(T ))

(
p

RT

)2
+ ... (3.41)
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Measured dielectric constants and pressures can be fitted and bε(T ) can be determined
from the linear term when the second density virial coefficient is known. The key problem
is that uncertainties in the order of few percent in B(T ) already lead to uncertainties in the
order of 100 % in bε(T ) due to bε(T ) being roughly two orders of magnitude smaller [84].
A new approach was undertaken in 1960 by Johnston and co-workers [85]. They adapted
the Burnett method presented in the previous section 3.3 to dielectric measurements by
equipping a measuring vessel with a plate capacitor. Their ideal approach is presented in the
next section 3.4.1. Compared to the Burnett method, much more experimental modifications
were implemented through the time to reach acceptable uncertainties for the small dielectric
virial coefficients. An overview about these efforts is given in appendix G.2. Non of the
previously carried out works did include dead volumes at different temperatures as required
for the data evaluation in this thesis. These issues and the corresponding working equations
are discussed in the following sections.

3.4.1. Ideal dielectric expansion

Johnston, Orcutt and Cole carried out dielectric measurements with Burnett like expansions
and published results for the dielectric virial coefficients of several gases in 1962 and 1965
[5, 86]. The experimental setup is equal to the Burnett setup shown in figure 3.3 with the
difference that a capacitor is included in volume VA. The derivation of the working equation
for this ideal system, neglecting the deformation of the vessels under pressure, follows the
routine presented in 3.3.1 for the density virial coefficients and is shown in appendix G.1.
The starting equation is based on the Clausius-Mosotti equation 3.12 with the final result
being:

Fratio,r = fr
fr+j

= Qj + (Qj − 1)
Aε

bε(T )fj + (Qj −Q−j)
A2
ε

(
cε(T )− b2ε (T )

)
f2
j + ... (3.42)

In this equation, the ratios of the Mosotti-terms after r and r + j expansions Fratio,r are
plotted over the initial Mosotti term fr. The data is then fitted with a polynomial of the
required order Fratio,r = D0 +D1 · fr +D2 · f2

r + ... which gives the following relations:

Q = D
1
j

0

bε(T ) = D1Aε
Qj − 1

cε(T ) = D2A
2
ε

Qj −Q−j
+ b2ε (T )

(3.43)

There are two key challenges of this method. One is the determination of the apparatus
constant Q, which has to be carried out with a relative uncertainty of a few Parts Per
Million (ppm) to achieve relative uncertainties for bε(T ) in the order of percent. This topic
is discussed in more detail in section 5.2. Experimental adaptions intended to target this
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3.4. Dielectric expansion experiments

issue are summarized in appendix G.2. The other challenge is that the dielectric virials
always appear in combination with the molar polarizability Aε, which has to be determined
by additional experiments in case no reliable literature values are available. In previous
methods, rough determinations of Aε were carried out from a pressure measurement after the
expansion cycles had finished. In the setup presented in this thesis, Aε is directly determined
from the DCGT data evaluation with relative uncertainties in the order of 25 ppm (see
sections 3.2 and 5.1.3 for details).

3.4.2. Isothermal dielectric expansion with deformation

In analogy to section 3.3.2, another working equation, which includes the deformation of the
vessels, is derived. The starting equation is formulated using the Mosotti virial coefficients
defined in equation 3.13:

frVA(1 + λApr)
Aε (1 + bCM(T )fr + cCM(T )f2

r + ...) = fr+1 (VA(1 + λApr+1) + VB(1 + λBpr+1))
Aε
(
1 + bCM(T )fr+1 + cCM(T )f2

r+1 + ...
)
(3.44)

The further derivation is carried out in appendix G.3 with the final result being:

Fratio,r = Q+ (Q− 1)
(
bε(T )
Aε

+ RT

Aε

1
Q

(λB − λA(Q+ 1))
)
· fr+[

cε(T )− b2ε (T )
A2
ε

(
Q− 1

Q

)
+ QλART

A2
ε

(λART − bε(T ))+

(RT )2

QA2
ε

(
bε(T )
RT

(
λA
Q

+ λB

(
1− 1

Q

))
−
(
λA
Q

+ λB

(
1− 1

Q

))2)]
· f2
r + ..

(3.45)

In this final equation, the pressure pr was replaced by the ideal term pr = frRTiso
Aε

for two
reasons. First, the formulas derived in this thesis should also be applicable to experiments
that eventually do not feature an in situ pressure measurement. More important, the im-
pressive similarity in structure to the formulas derived for the Burnett expansion will be lost
if the pressure is not replaced. This aspect is emphasized in section 3.5. Fitting equation
3.45 with a polynomial of the required order Fratio,r = D0 + D1 · fr + D2 · f2

r + ... leads to
the following relations for the properties of interest:
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(3.46)

A comparison with the coefficients given in equation 3.43 shows that the results are the
same for vanishing pressure deformation. Further discussion and details on how the defor-
mation was determined in this work is given in section 4.1.4.

3.4.3. Dielectric expansion with dead volumes at different temperature

To evaluate the data, which is generated with the setup used in this thesis (see figure 3.5), a
working equation that includes dead volumes at a different temperature needs to be derived.
The starting equation is layed out utilizing the Mosotti virial coefficients defined by equation
3.13:

fr,isoVA
1 + bCM,isofr,iso + cCM,isof2

r,iso + ... + fr,GHSVDA
1 + bCM,GHSfr,GHS + cCM,GHSf2

r,GHS + ... =

fr+1,iso(VA + VB)
1 + bCM,isofr+1,iso + cCM,isof2

r+1,iso + ... + fr+1,GHS(VDA + VDB)
1 + bCM,GHSfr+1,GHS + cCM,GHSf2

r+1,GHS + ...
(3.47)

The challenge with equation 3.47 is that, on the one hand, the different temperatures are
not directly included at this point. On the other hand, unlike the pressure, the capacitance
is different for the two different temperature regimes. Thus, the Mossoti-term fr,iso for
TGHS is an additional unknown quantity. To solve this problem, the Mosotti-terms for the
temperatures TGHS are derived from the DCGT data evaluation. Taking into account the
second order virial coefficients, the following relations are valid:

p(Tiso) = 1
Aε
RTiso

+ κeff
3
µiso

(
1 + BDCGT,iso

Aε
µiso

)
p(TGHS) = 1

Aε
RTGHS

+ κeff
3
µGHS

(
1 + BDCGT,GHS

Aε
µGHS

) (3.48)

The pressure is approximately equal p(Tiso) ≈ p(TGHS) in both temperature regimes ne-
glecting the small head correction. Thus, a link between the capacitance ratios at Tiso and
TGHS can be established. The further steps are carried out in appendix G.4. The final result
is displayed here by means of the already defined ratios and the fit coefficients used for the

46



3.4. Dielectric expansion experiments

evaluation of the data:

Fratio,r = D0+D1 · fr +D2 · f2
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(3.49)

3.4.4. Final working equation of the dielectric expansion

The main corrections to the ideal case of the dielectric expansion experiments introduced
in section 3.4.1 were described in the previous two sections. For the final data evaluation,
they have to be considered together. Starting point is the modified starting equation 3.47
of the previous section for the case of dead volumes which is extended by incorporating the
pressure correction terms (e.g. (1 + λApr)) to the volumes. As argued in in section 3.4.2,
the pressure is replaced by the ideal approximation pr = fr,isoRTiso

Aε
for the starting pressure.

Since the pressure is equal in both thermal regimes, it is not necessary to include fr,GHS. On
the expansion side of this equation, the pressure has to be approximated by pr+1 = fr,isoRTiso

Q∆TAε

instead of pr+1 = fr,isoRTiso
Fratio,rAε

, to obtain a solvable equation. For the second order of the
dielectric virial coefficient this results in:
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The further derivation is carried out in appendix G.5 with the final result being:
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(3.51)

3.5. Evaluation of the final working equations

The derived working equations of the previous three sections offer the possibility to directly
fit the experimental data, without the need to correct it for either deformation of the cells,
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dead volumes at different temperatures or both effects. This novel approach for expansion
experiments may be of importance not only for this work but for other groups that perform
similar work or intend to do so as well. The derivations for these expansion experiments were
carried out strictly separating Burnett and dielectric expansions. However, summarizing
equations 3.38, 3.40, 3.49 and 3.51 as done in the following reveals aesthetic similarities.
The working equations for the case of dead volumes neglecting the deformation may be
written as:

(
K1

K0 − 1

)
·RTiso =Biso · V1 +BGHSTratio · (1− V1)(

D1
D0 − 1

)
·Aε =bε,iso · V1 + bε,GHSTratio · (1− V1)+

(BDCGT,iso − TratioBDCGT,GHS) · V5

(3.52)

The final working equations, which additionally include the deformation of the cells under
pressure, can be expressed by:

(
K1

K0 − 1

)
·RTiso =Biso · V1 +BGHSTratio · (1− V1)+

RTiso (λB · V2 + λA · V3 + λGHS · V4)(
D1

D0 − 1

)
·Aε =bε,iso · V1 + bε,GHSTratio · (1− V1)+

RTiso (λB · V2 + λA · V3 + λGHS · V4) +

(BDCGT,iso − TratioBDCGT,GHS) · V5

(3.53)

whereas the coefficients of equations 3.52 and 3.53 are given by:
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(3.54)

The multiplication of the processed fit coefficients with RTiso or Aε on the left side of
equations 3.52 and 3.53 accounts for the derivation of the working equations utilizing the
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pressure and Mosotti virial coefficients rather than the targeted density and dielectric virial
coefficients. This step was already used in the description of the ideal systems in equations
3.30 and 3.43. The two equations 3.52 taking into account dead volumes but neglecting
the pressure deformation of the cells only differ in structure by a term that includes the
second DCGT virial coefficients. This additional term is required for the evaluation of the
capacitance data since the dielectric constant at the gas-handling system temperature is
not measured directly, in contrast to the pressure, which is approximately equal in both
thermal regimes. Taking the effect of deformation into account in equations 3.53 results in
an additional term which is actually the same for the Burnett and the dielectric expansion.
This surprises to some extend, since the pressure in the terms describing the deformation
was replaced in the derivation utilizing the ideal assumption p = fRTiso

Aε
. This step reappears

if the right hand side of equations 3.53 is divided again by the factors of the left hand side
RTiso or Aε respectively. In this case, the factor RTiso before the deformation term of the
density viral coefficients simply cancels out while the factor of the dielectric expansion turns
into RTiso

Aε
= p

f .

3.6. Fit routine and fit orders

The evaluation of the measured data requires to fit polynomials to the measured points for
all three methods. The data treatment was carried out in Microsoft Excel, but instead of
using the Excel fit function “RGP” a least squares fit routine that was implemented as a
macro in VBA (Virtual Basic for Applications) was used. This routine was programmed in
the working group based on the routine proposed by Björck [87], which is described as well
in Hall et al. [71, 72]. The fitting is carried out by means of orthogonal polynomials utilizing
modified Gram-Schmidt orthogonalization and a conversion back to a standard polynomial
when finished. The motivation for this was to reliably understand how the uncertainty of the
fit coefficients is determined. It should be mentioned, that in case of the polynomials used
in this thesis no deviations to coefficients obtained by the “RGP” function can be reported.
This also accounts for the derived uncertainties of the fit coefficients.
A second very important aspect is the question which order of the polynomial is the

best to fit the data. On the one hand lower fit orders are more stable under statistical
scattering of the data points and will result in lower uncertainties, but on the other hand
the fit will result in systematically wrong results in case the fit order is too low. If the
number of fit parameters is too big, the results will be distorted from the correct values as
well since statistically scattered data will be described by physically meaningless higher fit
coefficients [29]. In principal, the question that needs to be answered is which is the highest
virial coefficient (or fit order) that significantly contributes to the result for the selected
density and thus pressure or dielectric constant range. Since argon is a well investigated
gas, it can be concluded from the literature that for the DCGT evaluation and the Burnett
expansions the fifth density virial coefficient E(T ) probably needs to be taken into account
for the highest pressures of 7 MPa, while for the dielectric expansion it is sufficient to include
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3.6. Fit routine and fit orders

the third dielectric virial coefficient cε(T ) [1]. Additional information for the required fit
order can be obtained by investigation of the fit residuals for systematic deviations. This is
exemplified in figure 3.6 for the averaged Burnett and dielectric expansion data of argon at
the triple point of water. These results will be presented in sections 5.3 and 5.4. In (a), the
absolute difference between the measured pressure ratios and the ones calculated from the fit
coefficients is plotted. Different fit orders were probed, whereas the highest included virial
coefficient is indicated in the legend of the diagram. A truncation of the fit function after
the third density virial coefficient C(T ) is obviously not sufficient to described the data. On
the other hand, inclusion of the fifth density virial coefficient E(T ) does not further improve
the replication of the data in comparison to truncation after D(T ). It is concluded that
the scattering of the data in this work is too high to resolve the influence of E(T ) which is
reported in the literature [1]. That is why D(T ) is selected as the highest order, which is
included in the evaluation of the data. The same arguments can be applied to the dielectric
expansion in (b). Here, it is approved that a function which is truncated after the third
dielectric virial coefficient cε(T ) describes the data sufficiently .
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Figure 3.6.: Absolute values of the fit residuals of the pressure ratios (a) and the ratios of
Mosotti-terms (b) for argon at the triple point of water. The legend indicates
the highest virial coefficient that was included in the fit of the measured data.

In the literature, different approaches to the problem of the fit order are discussed by
the evaluation of p-ρ-T data of argon, which was measured with densimetry by Gilgen et
al. [67]. In the original publication, all data sets were fitted with a polynomial including
orders up to the fifth virial coefficient, whereas only values for the second and third virial
coefficient were published. The data was reevaluated by Tegeler et al. in a more sophisticated
approach based on a procedure described by Nowak et al. [88–90]. The parameters of the
fit function were reduced by truncation after the third density virial coefficient. Then, the
included data sets were reduced starting from higher densities until the retrieved second and
third density virial coefficients would describe the densities within the uncertainty of the
measurement. A second approach was carried out by Jäger et al. [29]. They used computed
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higher virial coefficients to constraint the data, which allowed them to also use fit functions
with fewer parameters but at the same time to include data sets with higher densities. For
the temperature range that is interesting for the work carried out in this thesis (250 K to
310 K), the relative differences in the second denstiy virial coefficient are typically less than
0.5 %. The relative change in the third density virial coefficient is in the order of 1 % for
the evaluation by Tegeler et al. and exceeds several percent for the approach by Jäger et
al.. These deviations are within the uncertainty specified by Gilgen et al.. Still, they show
that especially for the higher virial coefficients significantly different results can be obtained
depending on the fit order.
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pressure sensor

bath thermostat

CF200-flange

automated gas-
handling system

measuring chamber

Figure 4.1.: The newly designed apparatus and its main components which will be explained
in the following sections.

This chapter comprehensively covers the design of the apparatus developed, built and val-
idated in this thesis taking the considerations of the previous chapter 3 into account. Key
requirements that influenced the construction were the possibility for automation, use of
commercial measurement equipment, a very compact design and the potential to be used for
experiments with hydrogen and carbon dioxide. The temperature operating range was an-
ticipated to be from 230 K to 360 K for pressures up to 7 MPa. The concept of the apparatus
was published in [91]. Improvements made since then as well as a detailed description are
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given in the following. The potential of this method to be used as a compact and more com-
mercial system is discussed in the summary 6. Details on the used measurement equipment
for pressure, capacitance and temperature are given in sections 4.2, 4.3 and 4.4. Commer-
cial hard- and software identified throughout this thesis does not imply recommendation
or endorsement by Physikalisch-Technische Bundesanstalt (PTB), nor does it imply that
identified equipment is the best for this purpose.

4.1. Design of the apparatus

An overview of the different components building up the new device can be seen in figure
4.1 The measuring system is constructed around a CF-200 flange, which can be better seen
in figure 4.2. The lower part containing the measurement cells can be closed with a CF-200
stainless steel vacuum chamber. On top of the flange, a gas-handling system and the pressure
sensors (a second sensor was installed right next to the one shown in the picture) are located.
This upper part of the system is shielded by an acrylic glass hood with a Peltier cooler and
fan (not shown in figure 4.1). These parts form the central measurement system and are
mounted to a sled moving vertically on a frame operated by a hand winch. This way, the
system can be lowered down into a liquid bath thermostat, which is mounted on wheels so
it can be moved to the side for repairs. Details on the concept for the thermostatization
of the system are given in subsection 4.1.1. The footprint of the entire system is less than
1 m2. Due to the space requirements, controllers, data acquisition and a pressure balance for
calibration were fitted inside shelves behind the system.
The central elements of the measuring system can be seen in the cross section in figure 4.2.

To the CF-200 flange, a massive plate (thickness 50 mm) made from highly conductive oxygen
free copper is attached via four copper poles with a diameter of 15 mm. The copper plate
serves as thermal anchor for the system. Four measurement chambers made from stainless
steel (X5CrNi18-10) and equipped with the capacitors are bolted to it from below. Further
details on the used capacitors is given in section 4.1.3. The cells are custom produced
with a wall thickness of 6 mm but have a standard CF-40 copper seal to incorporate the
bases of the capacitors. Instead of two cells, which would be sufficient to perform standard
expansion experiments, four cells were installed for several reasons. First, as shown in the
DCGT principle in figure 3.2, capacitance measurements of highest precision require to use
a highly stable reference capacitor (see section 4.3). This leaves three cells, which still
allows to perform expansion experiments in the cyclic manner described in appendix G.2.
Experiments of this kind have not been performed yet but are considered to be explored in
the future. Lastly, having four cells (or three if one is used as the capacitance reference)
allows to adapt the actual volume ratios of the expansions. Since for argon at least the fourth
density virial coefficient D(T ) needs to be considered for pressures of 7 MPa, a minimum of
12 data points with sufficient uncertainties is required to fit the data. Considering that
the uncertainties of the pressure sensors drastically rises below 1 MPa (see section 4.2), the
volumes of the measuring cells were selected as follows. Three of them (C1, C2 and C3) have
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4.1. Design of the apparatus

the same effective volume of 145.46 cm3 while the cell containing capacitor C4 has a volume
of 67.09 cm3. Expanding the gas from the tree larger cells C1 to C3 into cell C4 allows to
record 16 data points at an excellent spacing for the fit routines. The different volumes of
the system retrieved from dimensional measurements are summarized in table 4.1.

Figure 4.2.: Cross section of the central measuring chamber and its main components.

From the volumes given in table 4.1, the ratios defined in equation 3.37 used for the final
evaluation of the expansion experiments as described in section 4.6 can be calculated and
are Q∗ = 6.504 QA = 0.021, QB = 0.047 and Q = 1, 152. These ratios are obviously not
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component volume [cm3] Tiso TGHS assigned to
cells C1 to C3 145.46 x VA
cells C1 to C3 3.16 x VDA

cell C4 67.09 x VB
cell C4 3.16 x VDB
GHS 16.69 x VDA

Table 4.1.: Volumes of the different parts of the system and their temperature. Volumes given
for cells C1 to C3 are the volume per individual cell. The border between the two
thermal regimes is chosen at the edge of the thermostating fluid. Components of
the cells assigned to TGHS are between the edge of the thermostating fluid and
the opened halve of the “Gas” valves (see figure 4.4). GHS abbreviates the dead
volume of the gas-handling system including the pressure sensors starting at the
closed halve of the “Gas” valves.

accurate enough to be used in the final data evaluation. Details on the determination of the
precise ratios from the fit of the data is given in section 5.2.

4.1.1. Thermal stabilization

There are strict requirements for thermal stabilization in this setup. All measurements have
to be taken at isothermal conditions since deviations cause changes in the particle density
and, thus, in the output quantities. Essentially, the experience gathered within the scope of
the Boltzmann project of PTB has been transferred to this much smaller setup [92]. The fluid
bath shown in figure 4.1 has a volume of 60 l and incorporates a pipe coil made of copper,
which is connected to a Lauda proline RP1840 refrigeration bath circulator. In addition, an
electrical heater coupled to a Fluke 2100 temperature controller is installed at the bottom
of the bath. Circulation and temperature homogeneity of the fluid (water for temperatures
above the triple point of water, water and ethanol for temperatures of the triple point of
water and less) is ensured by small air bubbles that are induced under the electrical heater.
The temperature distribution and stability within the fluid bath was measured with five
PT100 temperature sensors located in different positions. For the experiments at the triple
point of water and at higher temperatures, the standard deviations of the temperatures in
the bath were less than 5 mK. Temperature differences in vertical direction were typically
less than 30 mK while no lateral temperature gradients were observed. The experiments at
253 K had to be carried out without the use of the Fluke 2100 temperature controller. The
operating range was limited to temperatures above 263 K because the linearized Hart 2611
thermistor probe was used. That is why the standard uncertainty of the measured bath
temperatures rised to the level of 20 mK.

Further improvement of the temperature stability inside the measuring chamber is achieved
by mounting the measuring cells with the incorporated capacitors to a massive copper plate
with a thickness of 5 cm. It is mechanically and thermally connected to the CF-200 flange
with 4 symmetrically located copper rods with a diameter of 15 mm. Additionally, four
electric heaters are installed in the copper plate at the contact points with the copper rods.
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4.1. Design of the apparatus

They are linked to another temperature controller (model: PTC 10, Stanford Research
Systems), which utilizes a PT100 thermometer located close to the center of the copper
plate for temperature regulation. In figure 4.3, the temperature stability of the system is
demonstrated by plotting the temperature measured with the 25Ω Capsule type Standard
Platinum Resistance Thermometer (CSPRT) for each data point of the expansion starting
with a pressure of 7 MPa at point 1. One random isotherm for each temperature was selected.
This impressively shows that the temperature is extremely stable during the course of an
isotherm lasting around ten days. The standard deviation of the temperature is less than
0.2 mK for all isotherms at each temperature.
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Figure 4.3.: Examples of the temperature stability of the central copper plate during an
isotherm measurement for each temperature. The isotherm numbers are defined
in table 5.1. Data point 1 corresponds to the starting pressure of 7 MPa. At each
data point, the temperature was measured for 2 hours with the error bars indi-
cating the corresponding standard uncertainty of these averaged temperatures.
The solid lines indicate the average value of the temperature over the whole
isotherm measurement, while the dashed line shows the corresponding standard
deviation.

Though the temperature of the copper plate is regulated to a more than satisfying degree,
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there are temperature gradients over the measuring chambers resulting from the thermal
conduction and the lower temperature of the CF-200 flange. To diminish the gradients,
additional thermal bridges made from copper (see figure 4.2) were installed. They link the
connection tubes of the measuring cells directly to the copper plate. The temperature dis-
tribution in the system was then measured with calibrated, highly stable PT100 resistance
thermometers whose measuring positions are indicated in figure 4.2. The gradients over the
measuring chambers were decreased to a level of less than 10 mK (measured temperature
difference between the upper end of the measuring cell and the copper plate) for measure-
ments at the triple point of water and above. Due to the higher standard deviation of the
fluid bath temperature at 253 K, the average bath temperature had to be lowered leading
to higher gradients in the order of 30 mK in this case. These effects are taken into account
in the uncertainty budget for the temperature measurement in section 4.4. They primarily
influence the DCGT data evaluation of temperatures and molar polarizabilities rather than
the determination of the virial coefficients.

For the data evaluation of the expansion experiments, a system with two different temper-
atures is considered making the temperature stabilization of the gas-handling system rather
important as well. Therefore, the tubing of the gas-handling system shown in figures 4.1
and 4.2 was wrapped in electrical heating tape controlled by the second channel of the tem-
perature controller (model: PTC 10, Stanford Research Systems, USA) and a small PT100
sensing element mounted inside a little copper block mechanically strapped to the middle
of the gas-handling system. Additionally, the tubes are wrapped in thermal insulation. The
temperature of the gas-handling system TGHS was then checked with another PT100 ther-
mometer. Since the temperature is measured rather punctually this way, a conservative
uncertainty of 100 mK is assigned to the absolute value of TGHS. It will be shown in chapter
5 that due to the comparably small volume of the gas-handling system in comparison to the
measuring volume the influence on the final results is not dominant. Changes in temperature
can also be measured with the internal thermometers of the two pressure sensors (model:
Digiquartz 9000 2K, paro scientific, USA) while they are not suitable for the determination
of absolute temperature. To minimize the influence of changing room temperature, a box
shielding the tubing and pressure sensors was constructed from acrylic glass. On top of the
box, a Peltier cooler ventilator was installed. This is beneficial for the temperature stabiliza-
tion and is required to perform measurements above ambient temperature since the pressure
sensors have to be kept at a constant temperature. While the standard uncertainties of
the temperatures at the individual data points is typically less than 10 mK, the differences
between these data points are larger. The standard uncertainty of the gas-handling system
temperature over the whole isothermal measurement is in the order of 30 mK. This is as-
signed to the influence of the changing room temperature ((21± 1) ◦C). A plot prepared
in analogy to figure 4.3 but showing the temperature instability of the gas-handling system
is shown in appendix H. These temperature differences need to be corrected for the data
evaluation of the expansion experiments, which is described in more detail in section 4.7.
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4.1.2. The gas-handling system

The gas-handling system is of special importance in two regards. First, it shall enable the
expansion experiments but furthermore, these experiments have to be automated, which is
described in detail in section 4.6. A schematic drawing of the gas-handling system is shown
in figure 4.4. Utilizing the valves “Gas1” to “Gas4” as well as “Vac1” to “Vac4’, gas can
be expanded from any cell into any other cell while each one can be evacuated individually.
Used are pneumatically driven membrane valves (manufacturer swagelok). Connections of
the high pressure side (thin lines in figure 4.4) are established with electropolished stainless
steel tubing (outer diameter 6 mm; inner diameter 4 mm) and mainly 1

4 inch VCR connectors
(manufacturer: swagelok). On the vacuum side (thick lines in figure 4.4), stainless steel
corrugated tubes with different diameters and KF connectors are used. After one of the
sapphire insulation washers of the capacitors (see section 4.1.3 for details) broke due to the
mechanical stress upon the expansion of the gas, special VCR snubber gaskets containing a
stainless steel filter body (pore size 5 µm) were incorporated next to the “Gas” valves. This
ensures that the cells still can be evacuated properly through the “Vac” valves while the gas
slowly expands when the “Gas” valves are opened. The gas-handling system is layed out
to meet the requirements of german safety regulations regarding working with hydrogen by
using metal seals. Further details on the gas-handling system is given in section 4.6 with
regard to the automation of the experiments.
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Figure 4.4.: Schematic drawing of the gas-handling system and the relevant components.
Thin lines indicate high pressure tubing, while thick lines indicate vacuum tub-
ing. Both thermal regimes are indicated by the grey dashed lines.
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4.1.3. Design and characterization of the capacitors

To achieve sufficient uncertainties in the dielectric measurements, relative changes in capac-
itance in the order of 50 ppb need to be detected. This requires extreme mechanical stability
of the capacitors under pressure and over time.
A well studied calculable capacitor type proposed by Thompson and Lampard is the

cross capacitor [93]. Though the geometry of the electrodes may be rather arbitrary, a
practical setup could be constructed of 4 symmetrically and axially aligned rods (see figure
4.5(a)). In case the capacities per unit length C1 and C2 defined between opposite rods
are approximately equal, the mean capacitance Cx ≡ (C1 + C2)/2 is referred to as cross
capacitance per unit length [94]:

Cx = ε0
π

ln 2
(

1 + ln 2
8

(
C1 − C2
Cx

)2
+ ...

)
≈ 1.9535pFm (4.1)

From equation 4.1, it can be seen that minor differences in the two capacities only cause
second order effects, which is why the cross capacitance Cx is very insensitive to thin films on
the surface of the electrodes. Therefore, this capacitor type has been used as an impedance
standard for the realization of the electric units ohm and farad prior to the realization with
the quantum hall effect and would in principle be beneficiary for the precise measurement
of dielectric constants [95, 96]. To achieve absolute capacities in the order of 10 pF, which
are favorable for the available capacitance measuring equipment, the rods would require an
impracticable length in the order of 5 m. A much more compact and, thus, more applicable
version are toroidal cross capacitors described and used in [94, 97]. As depicted in figure
4.5(b), the cross capacitance is, in this case, defined between inner and outer ring electrodes
and top and bottom electrodes.
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Figure 4.5.: Two practical realizations of a cross capacitor: a) A rod capacitor with four
axially aligned rods. b) Cross section of a toroidal cross capacitor as used by
Buckley et al. [94].
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The toroidal cross capacitor used by Schmidt and Moldover had a diameter of roughly
10 cm, while its vacuum capacitance was still less than 1 pF [97]. Reaching higher absolute
capacitances can be achieved by stacking several toroidal cross capacitors and connecting
them in parallel. The drawback is a very complicated construction accompanied by a rel-
atively large volume. Prototypes of these stacked capacitors made from tungsten carbide
were tested in the frame of the Boltzmann-project at PTB but unfortunately did not per-
form satisfactorily under high pressure cycling. Another problem mentioned by Schmidt
and Moldover is the long time required to reach thermal equilibrium in vacuum [97]. They
reported an exponential decay constant of 7 hours in vacuum.
That is why, finally, in the Boltzmann-project as well as in this apparatus, cylindrical

capacitors were used. They have been used at PTB successfully for more than 25 years and
proven to be extremely reliable even under high pressures while being compact and simple
structured [2, 19]. The capacitance in vacuum is calculated by the formula:

C = 2πε0
l

ln R2
R1

(4.2)

Where l denotes the length of the capacitor and R2 and R1 are the radii of the inner
and outer electrode respectively. For this thesis, a new type of cylindrical capacitor based
on experiences gained in the working group has been designed and is shown in figure 4.6.
Compared to previous designs, the outer electrode is longer and encloses the inner electrode
functioning as electromagnetic shield additionally. The inner electrode is shorter and hollow
on the inside to reduce imperfectness due to stray fields ranging to the shielding outer
electrode. A visualization of the electric field is depicted in figure 4.9 in section 4.1.4.
The base of the capacitor has been designed as simple as possible to ease Finite Element
Method (FEM) simulations of the deformation under pressure. Furthermore, it shields
the electrical connection of inner and outer electrode. Therefore, it was possible to lay
out the electrical connection of the electrodes to the mounting base as a plug connection
while in previous designs soldering was required. Electrodes and mounting base are made
of non-magnetic stainless steel (1.4122/X39CrMo17-1) while c-axis oriented, highly parallel
sapphire spacers (thickness 1 mm) and PolyEther Ether Ketone (PEEK) bushings insulate
them electrically [91]. The capacitor base is haltered by a custom made CF-40 flange, which
is a further development of the design published in [19]. Two SMA feed throughs are included
in the flange to electrically contact the electrodes.
Another advantage of the cylindrical design is that the deformation of the capacitor under

pressure can be derived from simple formulas. The deformation in radial direction cancels
out leaving only the compression of the inner electrode in axial direction. Therefore, the
effective compressibility κeff, which was introduced in formula 3.21, is given by:

κeff = 1
3κvol (4.3)
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(a) (b)

Figure 4.6.: The cylindrical capacitors developed in this thesis: a) Picture of the capacitor
without and with the outer electrode. b) Cross section of a capacitor.

for an isotropic material. In this formula, κvol is the isothermal bulk compressibility of
the electrode material. To assess the compressibility, the elastic constants as well as their
temperature dependance were measured by Resonant Ultrasound Spectroscopy (RUS). In
this well established method, precisely manufactured parallelepipeds of the material under
investigation are haltered on two corners by piezoelectric transducers. The sample is then
excited with a frequency sweep with one transducer while the other one detects the trans-
mitted signal. The eigen-frequencies can be extracted from the transmitted spectrum and
the elastic constants can be determined under the assumption of a crystal structure of the
material and from the exact dimensions of the sample. Finally, the bulk module Bbulk is
determined and used to calculate the effective adiabatic compressibility κeff,ad = 1

3Bbulk
. This

value has to be converted to the isothermal conditions of the experiments carried out here
by [98]:

κeff = κeff,ad (1 + 3αthTisoγG) (4.4)

where αth is the linear coefficient of thermal expansion and γG is the Grüneisenparameter:

γG = 3αthBbulk
cpρ

(4.5)

In this formula, ρ is the mass density and cp denotes the specific heat capacity at constant
pressure. Fortunately, the steel of the electrodes has been investigated very thoroughly in
preparation of the Boltzmann project at PTB [99]. The linear coefficient of thermal expansion
αth was measured in an accredited calibration laboratory to be αth =9.92× 10−6 K−1 with a
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Figure 4.7.: Temperature dependance of the effective compressibility of the capacitors cal-
culated from comprehensive RUS measurements utilizing the value published
by Fellmuth et al. as base value [99]. The dashed lines indicate the combined
relative standard uncertainties of 0.3 %.

relative standard uncertainty of 1.51 % at a temperature of 20 ◦C. The specific heat capacity
at constant pressure was determined by the working group to be cp =478.0 J kg−1 K−1 with a
relative standard uncertainty of 1.5 %. A very accurate value of κeff,ad=−1.9809× 10−12 Pa−1

with a relative standard uncertainty of 0.14 % at a temperature of 273.15 K was published
by PTB in 2011 [99] and is used here as base value. To determine the compressibility at
different temperatures, RUS measurements were performed between −40 ◦C and 50 ◦C to
assess the temperature dependence of the elastic constants and thus κeff,ad. The results are
best described by a linear function in temperature with the relative residuals at each point
being less than 20 ppm. The final values of κeff of the capacitors plotted in figure 4.7 were
calculated utilizing the highly accurate value of Fellmuth et al. at 273.15 K while the slope
was determined from the additional RUS measurements. These final values include a small
correction due to the c-axis oriented sapphire spacers. The effective compressibility κeff at a
certain temperature is then calculated by:

κeff = −1.9923 · 10−12 1
Pa − 3.198 · 10−16(Tiso − 273.15 K) 1

KPa (4.6)

In principle, the corrections to the very accurate value at 273.17 K are small and also
the properties required for the conversion from adiabatic to isothermal conditions are known
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with small uncertainties. The uncertainties calculated in accordance with the established for-
malisms of error propagation stated in the GUM and the formulas given above, thus, result
in only slightly higher values compared to the low uncertainty of κeff at 273.15 K. However,
the capacitors are complex geometrical objects that may not always behave ideally. To assess
an uncertainty that can be assigned to the values calculated by formula 4.6, additional FEM
simulations of the capacitor were carried out on the one hand. The previously described
mechanical constants were used as input parameters to simulate the deformation and result-
ing changes of capacitance under pressure. The disagreement between the formula and the
FEM simulations is on a solid level of less than 1 %. It is assumed that the two different
geometries, which are used, are causing the remaining differences.
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Figure 4.8.: Test of the stability of the vacuum reference value of the indicated capacitors.
The black circles indicate the relative difference of the vacuum value of the
capacitance before and after the corresponding expansion isotherm. The error
bars represent the combined standard uncertainty for each data point calculated
from the type A contribution (average of 30 measuring points) and the standard
uncertainty of the assessed capacitance ratio (see section 4.3 for details). The
solid line marks the average value while the dotted lines are the upper and lower
boundary of the standard uncertainty of averaging the data points.

64



4.1. Design of the apparatus

C1 C2 C3 C4
∆C(0) −0.3× 10−8 1.6× 10−8 1.5× 10−8 0.1× 10−8

u(∆C(0)) 7.2× 10−8 8.7× 10−8 8.5× 10−8 15.7× 10−8

Table 4.2.: Average values and standard uncertainties of the relative differences of the vacuum
capacitance before and after the expansion.

On the other hand information on the stability and deformation of the capacitors can also
be retrieved from the experimental results. First, the capacitance values before and after the
expansion in vacuum are required for the evaluation of the data and should be equal. The
measured relative differences ∆C are plotted for the four used capacitors in figure 4.8. If the
capacitors are stable under pressure changes, the average value of these deviations should
ideally be zero while their scattering would represent the uncertainty of the capacitance ratio
measurement. The average values and corresponding standard uncertainties are summarized
in table 4.2. While zero lies well within the standard uncertainty of the average values, only
the standard uncertainties of capacitors C1 to C3 agree with the stated uncertainty of the
capacitance ratio measurement in section 4.3. C4 features a standard uncertainty that is a
factor of two larger than the expected value. Therefore, further investigations presented in
section 5.1.1 were carried out. Essentially, it was proven that capacitor C4 is not fully stable
under pressure cycling. This is most likely due to the fact that all expansion were carried out
by expanding into cell 4. Also, the automated evacuation procedure induces stress on the
capacitor. Still, the capacitor was not changed for several reasons. First, there are still three
fully functional capacitors that can be used to average the data. Furthermore, changing the
capacitor without changing the evacuation routine would most likely lead to a damage of C4

again. Most important, it is shown in section 5.2 that the volume ratios of the cells needs
to be assessed with uncertainties in the order of few ppm. To evaluate the data retrieved in
this thesis, it is ,thus, of crucial importance to not change these ratios. Instead, the changing
zero capacitance is included as a linear drift for all capacitors. Further investigation of the
effective compressibility of the capacitors and especially C4 is carried out in section 5.1.1.
Based on these observations, the relative uncertainty of κeff is set to 1.0 % for C1 to C3. The
relative uncertainty of C4 needs to be further increased to 2.5 %.

4.1.4. Deformation of the measurement cells

As worked out in the previous chapter, the deformation of the measurement cells is impor-
tant for the correction of the expansion experiments. To precisely determine the pressure
deformation coefficients λA and λB of the measuring and expansion volume, two different
approaches were used. On the one hand FEM simulations were performed using the soft-
ware “COMSOL MultiphysicsTM”. On the other hand analytical considerations for ideal
cylinders were taken into account. In both cases, the elastic constants of the used steel
(1.4301/X5CrNi18-10) are required as input parameters. To assess them, the results of RUS
measurements, which were performed with this type of steel in the working group, were
utilized. The results display the average of twelve different samples, which were measured
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(a) electric field (b) deformation

Figure 4.9.: FEM simulation of the measuring cell and the capacitor. a) Rotational symmet-
ric electric field of the capacitor in the two dimensional cross cut. b) Schematic
visualization of the deformation of the measuring cell and the capacitor under
pressure.

at ambient temperature. The module of elasticity was determined to be E =199.99 GPa,
whereas the relative standard deviation of the 12 samples was 0.5 %. The Poisson ratio µP
is 0.2845 with the corresponding relative standard deviation being 1 %.

The deformation of the regular measuring cell with an incorporated capacitor is schemat-
ically shown in figure 4.9 b). The corresponding FEM models were created for the regular
and the smaller cell using the rotational symmetry neglecting the holes of the PEEK bush-
ings that insulate the bolts holding the outer electrode. The sapphire washers used for the
insulation were modeled as layers with the corresponding thickness of 1 mm. The results of
these simulations are shown in table 4.3

In the literature, a variety of equations is used to estimate the deformation of cylindrical
cells (see for instance [62, 100] and references within these). Since the ratio between the inner
diameter and the thickness of the wall is 40 mm

6 mm = 6.7, Lamés theorem for thick cylinders
is applied. Based on stress and strain, the relative change of volume per pressure ∆V

V p can
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be calculated for a cylindrical measuring cell with closed ends that is exposed to internal
pressure only by [62]:

∆V
V p

= 1
E

1(
ro
ri

)2
− 1

(
2
(
ro
ri

)2
(1 + µP + 3(1− 2µP))

)
(4.7)

where ro =26 mm and ri =20 mm are the outer and inner radii of the cell, respectively.
The result is at this point equal for both cells. To calculate the final pressure deformation
coefficients, the volume and the compression of the capacitor under pressure need to be taken
into account. These two corrections are separated in table 4.3 to demonstrate their influence.
Neglecting the compression of the capacitor will already result in a relative deviation of λA
of 4.3 % and even 7.0 % for λB. The agreement between the coefficients obtained by both
methods is very good considering the complex base of the measuring cell. The relative devi-
ations are in the order of only 0.3 %. Since the upper and lower end of the cell deform quite
differently under pressure (see figure 4.9 b)), the results obtained by the FEM simulations
are selected in this thesis. In addition to the values shown in table 4.3, the pressure deforma-
tion of the gas-handling system λGHS was estimated to be 2.81× 10−11 Pa−1 from the used
tubing. In principle, the low uncertainties of the elastic constants would allow to assign a
comparably low uncertainty. Since the temperature dependence of the elastic constants is
not known and since the FEM model is still a simplification of the complex construction, a
more conservative relative standard uncertainty of 5 % is estimated here.

λA [Pa−1] λB [Pa−1]
empty cell (equation 4.7) 4.08× 10−11 4.08× 10−11

cell with capacitor (only volume) 5.76× 10−11 7.84× 10−11

cell with capacitor and its compression 6.01× 10−11 8.39× 10−11

FEM 5.99× 10−11 8.36× 10−11

Table 4.3.: Assessment of the pressure deformation coefficients by analytical means and in
comparison to the value obtained from FEM modeling.

4.2. Pressure measurement

The assessment of pressure is one of the most prominent tasks in experiments with gases.
For the typical pressure range of several MPa covered in this experiment, the most precise
measuring devices besides toxic and bulky mercury manometers are pressure balances. It has
been shown that they can achieve relative uncertainties of 1 ppm for pressures up to 7 MPa
[9]. Their working principle can be directly derived from the definition of the pressure as
force per area. A piston rotating in a cylinder and centered by the gas flowing around it may
be loaded with cylindrical mass discs and kept floating on the gas column. The automated
Ruska 2465 pressure balance and its main components used in this experiment are shown in
figure 4.10. First, the standard bell jar was replaced by an acrylic glas version. This allowed
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Figure 4.10.: The automated pressure balance and its main components used for the calibra-
tion of the digital pressure sensors.

to install a laser interferometer on top of the bell jar which measures the level of the floating
masses. This information is processed by a small two point control unit based on an Arduino
programmable PC connected to the PPC4 A7MU pressure controller from Europascal. The
lower level, upper level and sensitivity can be set with three potentiometers. If the slowly
sinking piston approaches the lower limit, the pressure controller is instructed to increase the
pressure for a certain time depending on the sensitivity and checks the new level until the
upper level is reached. This way the masses can be kept floating automatically. During the
pressure regulation, the “Gas all” valve (see figure 4.4) connecting the measuring system with
the pressure balance is closed. On the one hand this prevents potential impurities from the
pressure controller to contaminate the measuring system to some extend. On the other hand
the systems remains isolated in case the automation fails for some reason. Measurements were
exclusively carried out in absolute mode evacuating the bell jar. Firstly, this way the buoyant
effect of the otherwise present air can be excluded. Secondly, fluctuations of the ambient
pressure, which would serve as a reference in gauge mode do not influence the measurement.
The residual pressure pres in the bell jar is measured with a capacitance manometer from
MKS (type: Baratron 626C.1, maximum pressure: 13.3 Pa, relative uncertainty: 0.25 % of
reading). The pressure of the pressure balance ppb can be calculated by equation 4.8:

ppb = g (∑mi + Vpbρi)
A0 [1 + (α+ β)(tpb − 20 ◦C)] (1 + λpbp)

+ pres +
∑

ghiρi (4.8)

The denominator term denotes the effective area Aeff = A0 [1 + (α+ β)(tpb − 20 ◦C)] (1 +
λpbp) of the piston cylinder assembly. Key to achieving lowest uncertainties is the charac-
terization of the ideal effective are A0 by dimensional measurements or from cross floating
comparisons. Temperature and pressure corrections have to be applied by the material pa-
rameters (α + β) and the coefficient λpb taking pressure deformation into account. The
masses mi used in this thesis were calibrated at PTB with relative uncertainties of less than
1 ppm (k = 1). To calculate the weight force, the local gravitational constant g needs to be
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4.2. Pressure measurement

pressure balance “Ruska 4” “Ruska 5” “Ruska 6”
serial number V1408 C-619 G203

maximum pressure 7× 106 Pa 7× 105 Pa 3.5× 106 Pa
Vpb in 10−6 m3 0 −1.55± 0.02 0
A0 in 10−5 m2 0.838 757± 0.000 019 8.395 842± 0.000 097 1.679 560± 0.000 024

(α+ β) in 10−6 ◦C−1 9.1± 1.0 9.1± 1.0 9.1± 1.0
λpb in 10−6 MPa−1 0.9± 2.2 0 −1.25

Table 4.4.: Parameters of the three piston cylinder assemblies used for the investigation of
the Digiquartz sensors.

well known as well since it depends on altitude, mass distribution and several other aspects
of the surrounding area. The value used in this thesis g = (9.812 701 0± 0.000 000 1) m s−2

was measured in a calibration laboratory around 15 m away at the same altitude. In addition
to the masses, some pistons are constructed in a way that gas volume described by the pa-
rameter Vpb increases the total mass load. Values of the introduced parameters for the three
different tungsten carbide piston cylinder assemblies used are given in table 4.4. Finally,
the hydrostatic pressure of the measuring gas is leading to a correction typically referred
to as hydrostatic head correction. Since the pressure needs to be assessed at a different
altitude and at a different temperature than the pressure balance, the height differences
hi and corresponding densities of the gas ρi for the different gas temperatures need to be
determined.
A key requirement for expansion experiments is to maintain constant volumes. In previous

setups, this was typically ensured by using highly accurate differential pressure diaphragms
separating the measuring volumes from mercury manometers or pressure balances. These
are very sensitive instruments suitable to measure low pressure differences. Their opera-
tion requires to set pressure on both sides carefully and simultaneously. Together with the
manually operated pressure balances this complicates the automation in this work. That
is why two commercially available pressure sensors (model: 9000-2K Digiquartz, manufac-
turer: Paro Scientific) with a working range up to 13.8 MPa were used in this work for the
expansion isotherms. They will be referred to as “Digi1” and “Digi2” in the following.
Paro Scientific specifies a relative uncertainty of 100 ppm full scale for the pressure, which

is certainly not sufficient for the targeted uncertainties. To overcome this limit, both sensors
were calibrated at the pressure department of PTB in Braunschweig in a first step. Though
the sensors technically reached relative expanded uncertainties of 25 ppm of the reading, it
was not possible to work with them practically for two reasons. On the one hand the “zero”
value of the sensor under vacuum that has to be subtracted from the measured pressure
tends to drift. It can take more than a day until the indicated pressure appears to be stable.
On the other hand the sensors are very sensitive to temperature changes. Both effects are
well known [101] and, therefore, corrected by the manufacturer in the characteristic func-
tion to a level that allows to reach the claimed uncertainty level. Although the sensors are
temperature stabilized together with the other components of the gas-handling system, they
have slightly different temperatures depending on the measuring temperature. Furthermore,
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Figure 4.11.: Three dimensional plot of the absolute pressure difference between the pressure
sensors and the three piston cylinder assemblies “Ruska 4” (red dots), “Ruska
5” (green stars) “Ruska 6” (blue cubes) specified in table 4.4. The error bars
include uncertainties of the pressure balances and the standard uncertainty of
the Digiquartz sensors during each measurement.

the temperature slightly changes depending on whether the system is connected to the pres-
sure balance or isolated during the expansion cycles. Therefore, extensive comparisons with
three different pressure balances, whose characteristics are summarized in table 4.4 were
carried out to investigate the temperature dependence of the measured pressure value and
to investigate the reachable uncertainty.
The results of these measurements are shown in figure 4.11. Plotted is the absolute differ-

ence between the pressure of the pressure balance ppb and the value shown by the Digiquartz
sensors (without correction of the vacuum value) as a function of the sensor temperature
tDigi and the pressure value indicated by the Digiquartz.

Upon the closer investigation it became evident that the pressurized sensors typically reach
reproducible and stable values within hours instead of days. Thus, it is assumed that the
poor zero performance is a temperature effect due to low thermal conduction without the
measuring gas. Therefore, in a second attempt, the definition of an absolute characteristic
surface from the points plotted in figure 4.11 was intended. While Digi1 can be sufficiently
described by a characteristic plane, Digi2 features a curvature that can be described by
including a (temperature independent) quadratic term. Unfortunately, the deviations in the
lower pressure range still exceeded several ten ppm using this attempt.
That is why a calibration procedure of the Digiquartz sensors was included in each isother-

mal expansion. In the beginning the pressure balance equipped with the “Ruska 4” high
pressure piston cylinder assembly is used to calibrate the Digiquartz sensors when filling the
system at a pressure of 7 MPa. After the expansion cycles are finished, a second calibration
with the same pressure balance is performed at 1 MPa. A detailed description of the com-
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Figure 4.12.: (a) and (b) show the data points of figure 4.11 displayed in the ∆p-tDigi plane to
assess the temperature dependance of the absolute pressure deviation. The data
sets are categorized in the labeled pressures and were measured with “Ruska
4” (open circles), “Ruska 5” (open stars) and “Ruska 6” (open squares). The
dashed lines are linear fits applied to the constant pressure data. Their slopes
are plotted as a function of pressure in (c) and (d) together with the standard
uncertainties of the fit. In (c) and (d) solid lines mark the mean average value
of the slope while the dashed line is the standard deviation of the average value.

plete measuring routine will be given in section 4.6. To determine a suitable characteristic
surface from only these two calibration points, the temperature dependence of the pressure
correction needs to be extracted separately. Therefore, linear temperature coefficients as il-
lustrated in figure 4.12 were retrieved by analyzing the three dimensional plots of figure 4.11
again in the ∆p-tDigi plane. From these plots, a pressure dependance of the temperature sen-
sitivity is neither reportable for Digi1 nor Digi2. Thus, the individual slopes were determined
by linear fitting of the distinct pressures and plotted together with their standard error from
the fit in plots 4.12 (c) and (d). The pressure independent temperature sensitivities are
βDigi1 =(31.73± 7.83) Pa ◦C−1 for Digi1 and βDigi2 =(10.31± 10.35) Pa ◦C−1 for Digi2. The
second requirement is that the characteristic curve is linear. The plane character in figure
4.11 (a) indicates that this can be well assumed for Digi1. Further investigations approving
the linearity are presented in figure I.1 of appendix I. As already shown in figure 4.11, Digi2
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exhibits a quadratic rather than a linear characteristic curve, which cannot be fixed by only
two calibration points. A more detailed plot of the quadratic contribution is also shown in
appendix I in figure I.2. Fortunately, this quadratic coefficient is independent of temperature
and was determined to be cDigi2 = (−1.66± 0.12)× 10−11 Pa−1 from the comparisons to the
pressure balances. This reduces the free parameters of the quadratic characteristic curve
leaving two, which are defined by the two calibration points before and after the expansion
cycle.

0

1

1

(a) Digi1

0

1

1

2

(b) Digi2

Figure 4.13.: Schematic principle of the calibration of (a) Digi1 and (b) Digi2. The black
crosses denote the two pressure balance calibration points. They are corrected
to the average Digiquartz temperature tDigi,iso (indicated by the solid green
line) in step 1, which is illustrated by the blue arrows. For Digi1, a sufficient
characteristic linear function (solid red line) in the ∆pDigi-pDigi,meas plane is now
fixed by the two corrected values (red crosses). Digi2 has an overall quadratic
characteristic function (purple line) in the ∆pDigi-pDigi,meas plane. This requires
to perform a 2nd correction illustrated by the purple arrow to obtain the linear
part (solid red line) of the characteristic function, which is then also fixed by
the two red crosses. Further explanations and the corresponding equations are
given in the text.

The calibration routine of the pressure sensors is schematically illustrated in figure 4.13
in a three dimensional model, similar to the plots in figure 4.11. Essentially, the procedure
can be visualized for Digi1 by a plane whose slope in the tDigi1 direction is defined by βDigi1
(blue dotted line), which was, therefore, retrieved in figure 4.12. The slope and intercept of
the plane in the pDigi,meas direction (solid red line) needs to be assessed by the two pressure
balance calibration points (black crosses). The behavior of Digi2 is more complex due to the
quadratic contribution and will be discussed later. The goal is to fix the plane (or surface
for Digi2) by calibration so that ∆pDigi can be determined at each data point to calculate
the final and corrected Digiquartz pressures by:
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4.2. Pressure measurement

pDigi1 = pDigi1,meas −∆pDigi1

pDigi2 = pDigi2,meas −∆pDigi2
(4.9)

Therefore, the average value of the sensor temperature tDigi1,iso or tDigi2,iso during the
isothermal measurement is calculated from the individual data points (green circles) as indi-
cated by the solid green line. Starting point of the calibration are the two pressure balance
measurements at 7 MPa and 1 MPa marked by the two black crosses. The corresponding
pressures of the Digiquartz are defined as pDigi1,pb7 and pDigi1,pb1, whereas the sensor tem-
peratures are tDigi1,pb1 and tDigi1,pb7. The difference to the pressure of the pressure balance
ppb1 and ppb7 is the required correction ∆pDigi1 and ∆pDigi2 at these conditions:

∆pDigi1,pb1 =pDigi1,pb1 − ppb1
∆pDigi1,pb7 =pDigi1,pb7 − ppb7
∆pDigi2,pb1 =pDigi2,pb1 − ppb1
∆pDigi2,pb7 =pDigi2,pb7 − ppb7

(4.10)

The defined differences in equation 4.10 need to be corrected to the average sensor temper-
atures tDigi1,iso and tDigi2,iso indicated by the solid green line since the slope of the temperature
dependence is already fixed by βDigi1 and βDigi2 . This correction 1 is indicated by the blue
dotted arrows, whereas the magnitude of the correction is visualized by the solid blue lines.
For Digi1, these two corrected data points (red crosses) are sufficient to fix the linear char-
acteristic function (solid red line) in the ∆pDigi1-pDigi1,meas plane. Digi2 has a quadratic
characteristic function in this plane, which is illustrated by the solid purple line in figure
4.13 (b). This requires to perform a 2nd correction, which is indicated by the purple arrow.
The quadratic contribution is subtracted to obtain the linear part (solid red line), which is
now also fixed by the corrected calibration points (red crosses). The application of these
corrections yields:

∆pDigi1,pb1,iso =∆pDigi1,pb1 + βDigi1 (tDigi1,iso − tDigi1,pb1)

∆pDigi1,pb7,iso =∆pDigi1,pb7 + βDigi1 (tDigi1,iso − tDigi1,pb7)

∆pDigi2,pb2,iso =∆pDigi2,pb1 + βDigi2 (tDigi2,iso − tDigi2,pb1)− cDigi2p
2
Digi2,pb1

∆pDigi2,pb7,iso =∆pDigi2,pb7 + βDigi2 (tDigi2,iso − tDigi2,pb7)− cDigi2p
2
Digi2,pb7

(4.11)

The solid red lines, which are now fixed by the two corrected calibration points (red
crosses) for both sensors, may be described by the intercept aDigi1 (aDigi2) and the slope
bDigi1 (bDigi2):
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aDigi1 =∆pDigi1,pb1,iso − bDigi1pDigi1,pb1

bDigi1 =∆pDigi1,pb7,iso −∆pDigi1,pb1,iso
pDigi1,pb7 − pDigi1,pb1

aDigi2 =∆pDigi2,pb1,iso − bDigi2pDigi2,pb1

bDigi2 =∆pDigi2,pb7,iso −∆pDigi2,pb1,iso
pDigi2,pb7 − pDigi2,pb1

(4.12)

This way the characteristic plane of Digi1 and surface of Digi2 is well defined. The correc-
tions ∆pDigi1 and ∆pDigi2 can be retrieved for any measured pressure pDigi,meas and sensor
temperature tDigi as demanded in the beginning of this explanation in equation 4.9. The
final pressures pDigi1 and pDigi2 of the sensors during the isothermal measurement are then
calculated by:

pDigi1 =pDigi1,meas − (aDigi1 + bDigi1pDigi1,meas) + βDigi1
(
tDigi1,iso − tDigi1

)
pDigi2 =pDigi2,meas − (aDigi2 + bDigi2pDigi2,meas + cDigi2p

2
Digi2,meas)+

βDigi2
(
tDigi2,iso − tDigi2

) (4.13)

To test the validity and assign an uncertainty to this procedure, the following efforts were
made. Essentially, the comparisons to the pressure balances described previously were per-
formed either by starting at zero pressure adding mass discs till the highest pressure was
reached or starting at the highest pressure with reducing the mass. The pressure sensors are
in most cases not evacuated in between the assessment of the data points, which is compa-
rable to the expansion cycles described in section 4.6. To test the procedure, characteristic
curves were assigned to the Digiquartz sensors with the highest and lowest pressure mea-
sured with the pressure balance in each individual measurement. The Digiquartz values at
the intermediate pressures were then calculated by equation 4.13 and compared to the values
of the pressure balance. The corresponding relative deviations plotted in figure 4.14 are on a
level which is mostly below 10 ppm at 1 MPa and 5 ppm at 7 MPa. This estimation of uncer-
tainty is shown as dashed line. A second aspect that needs to be taken into account for the
final uncertainty budget is to distinguish between strictly statistical contributions and these
of systematic origin. To estimate the statistical contribution, the differences between con-
secutive points was analyzed for the individual measurements. Based on this investigation,
a constant statistical uncertainty of 5 ppm for the entire pressure range is assigned. Another
systematic component of 8.6 ppm is added at 1 MPa, so that combining both components
results in the dashed line plotted in figures 4.14 (a) and (b).

An additional cross check can be performed by direct comparison of the pressure difference
between Digi1 and Digi2. Differences should be of statistical origin exclusively. In figure 4.15,
two different cases are shown. The first plot shows the relative deviations of the calculated
pressures for the measurements with the pressure balances. The second case summarizes
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Figure 4.14.: Relative differences between the pressures of the pressure balance and the ones
derived from the Digiquartz sensors in ppm utilizing equation 4.13. Solid sym-
bols denote experiments with the “Ruska 4” and open symbols with the “Ruska
6” piston cylinder assembly. Equal symbols denote one measurement run. The
dashed lines denote the assigned uncertainty of the Digiquartz sensors for the
interpolation of pressures between the two pressure balance calibration points.

the relative differences of the two pressure sensors for different isothermal measurements
with argon at four temperatures (see table 5.1 in chapter 5). The deviations are below
10 ppm in both cases and certainly within the combined uncertainty that is assigned to the
Digiquartz sensors. While the deviations in (a) appear to be of statistical origin only, a
systematic characteristic occurs in (b). This is assigned to the influence of the quadratic
term cDigi2 of Digi2. Eventually, also a characteristic curve including more parameters may
be required to describe the behavior of Digi2 better but this is not an option here. However,
since cDigi2 was obtained from the measurements with the pressure balances it is not further
adapted. Furthermore, the deviations are very well within the assigned combined standard
uncertainties, which is taken as additional indication that the procedure of the calibration
of the Digiquartz sensors is valid.
Assignment of an uncertainty to the pressure measurement is complex, on the one hand,

due to the procedure shown above. On the other hand three different categories of uncer-
tainty need to be distinguished to correctly calculate the error propagation in chapter 5. The
different contributions are organized in table 4.5 following the calibration procedure. Un-
certainties of category I are those causing identical relative deviations at the two calibration
points as, for instance, the uncertainty of the effective Area A0 of the pressure balance. Cate-
gory II are contributions that also influence the calibration points but not equally. Category
III are contributions that cause statistical scattering of the interpolation of the pressures.
This subdivision is important since these categories are differently processed in the final error
propagation of the results. Contributions of category I cancel completely for the determina-
tion of pressure ratios. These of category II influence the slope of the characteristic function
and have a minor influence influence on the ratios. Contributions of category III need to be
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Figure 4.15.: Relative differences between the pressures of the Digiquartz sensors for a)
the measurements with the pressure balance and b) for selected expansion
isotherms. In (a), solid symbols denote experiments with the “Ruska 4” and
open symbols with the “Ruska 6” piston cylinder assembly. Equal symbols de-
note the same measurements as in figure 4.14. The numbers of the isotherms in
plot (b) are defined in table 5.1. Dashed lines in both plots mark the combined
uncertainty for the difference of the pressure sensors.

evaluated by Monte-Carlo simulations. Further details on this topic is given in the sections
covering the uncertainty budgets in chapter 5.
The largest contribution for the calibration is the uncertainty of the effective area A0 of

the piston cylinder assembly at 20 ◦C and zero pressure. The second contribution of category
I is based on the uncertainty of the temperature coefficient (α+ β), which will be the same
for both calibration points. All the following contributions are of category II and, thus,
different at both points. These are the uncertainty of the temperature measurement for the
correction of Aeff, the resolution of the pressure balance and the uncertainties of the used
mass discs. The contribution of the head correction is dominated by the height differences of
the floating piston due to the automation of the pressure balance described in the beginning
of this section. The uncertainty contribution due to the correction to the average Digiquartz
temperature by equation 4.11 is different for both sensors since the utilized coefficients βDigi

are different for both sensors. Contributions that are neglected since they are less than
0.01 ppm are the uncertainty of the pressure distortion λpb, the gravitational constant g and
the residual pressure pres.
The second source of uncertainty is the interpolation of the pressures between the two

pressure balance calibration points. As already explained above, the overall contribution
is divided into a pressure independent purely statistical contribution of 5 ppm (component
interpolation 1) and another systematic contribution (component interpolation 2), which is
described by the linear function u[ppm] = 8.60 − 8.60/6(pDigi10−6 Pa−1 − 1). The resolu-
tion of the pressure sensors is already included in the statistical component. For Digi2, an
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4.2. Pressure measurement

pressure balance calibration
component category at 7 MPa [ppm] at 1 MPa [ppm]
A0 I 10.05 10.05
(α+ β) I 2.00 2.00
t correction of Aeff II 0.45 0.45
p balance resolution II 0.33 2.30
mass discs mi II 1.25 0.70
head correction 1 II 1.94 1.94
correction to tDigi1,iso II 0.34 2.37
correction to tDigi2,iso II 0.44 3.11
interpolation of pressures
component category at 7 MPa [ppm] at 1 MPa [ppm]
interpolation 1 III 5.00 5.00
interpolation 2 II 0.00 8.60
cDigi2 II 1.00 3.50
head correction 2 II 0.20 0.20
head correction 3 II 0.23 0.23
correction to tDigi1,iso II 0.12 0.84
correction to tDigi2,iso II 0.15 1.04
Digi1 combined 11.66 14.84
Digi2 combined 11.70 15.39

Table 4.5.: Overview of the uncertainty contributions to the pressure measurement at 7 MPa
and at 1 MPa. Head correction 1 is carried out between the Digiquartz sensors
and the pressure balance. Head corrections 2 and 3 are between the Digiquartz
sensors and the measuring cells. Interpolation 1 is a constant statistical contribu-
tion, while interpolation 2 is a systematic contribution of the pressure sensor at
1 MPa. The combined standard uncertainties are valid for the assessment of the
indicated absolute pressures with the Digiquartz sensors during the expansions.
In case rectangular distributions were given, these were converted to standard
uncertainties [7]. Further information on the contributions and an explanation of
the categories is given in the text.

additional component arising from the uncertainty of the quadratic contribution described
by cDigi2 needs to be taken into account. A Monte-Carlo simulation was performed in which
cDigi2 was scattered by Gaussian distributed random numbers that were multiplied with the
corresponding standard deviation. For each scattering, the characteristic function of a fix
pressure balance data set was calculated and the resulting interpolated pressures were saved.
After 500 simulations the standard deviations of the pressures were retrieved. The resulting
contribution in ppm is best described by the function 3.5 − 2.5/6(pDigi10−6Pa−1 − 1). The
influence at 7 MPa is 1 ppm which increases linearly to 3.5 ppm at 1 MPa. Further contribu-
tions to the isothermal measurements arise from the head correction between the pressure
sensors and the measuring cells for the two different temperature regimes. This component
is dominated by the uncertainty of the length measurement and, thus, taken into category
II. Finally,the correction of each individual reported pressure value at a certain Digiquartz
temperature needs to be corrected to tDigi,iso (see equation 4.13).
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4.3. Capacitance measurement

As explained in section 3.2, the dielectric constant is determined from the relative change
γ of capacitance when filling a capacitor with gas. An assessment of absolute capacitance
is not required. The most precise capacitance bridges used at PTB work by comparing the
measuring capacitor CX to a presumably constant reference capacitance CN as depicted in
the simplified circuit diagram in figure 4.16 [102].

Detector
AC

Generator

Ratio
Transformer

Cx

CN

Low

High

Figure 4.16.: Simplified circuit diagram of a capacitance bridge with a ratio transformer
neglecting ohmic resistances of the leads and parasitic capacities of the cables.
CN is the reference capacitor, while CX denotes the unknown capacitance. Low
and High indicate the connectors of the AH 2500 bridge.

The bridge is balanced if no voltage drop is measured by the detector (typically a lock-in
amplifier is used) along the middle path. A more detailed analysis of the working principle
is given in [102, 103] and reveals the complexity of these measurements. Ohmic and non
ohmic contributions have to be balanced by additional resistance decades, capacitors and
the so called Wagner balance. By utilizing a custom built 9-decade inductive voltage divider
as ratio transformer and a sinusoidal measuring voltage of 70.71 VRMS at a frequency of
1000 Hz, it is possible to measure relative changes of capacitance with a relative uncertainty
in the order of 2× 10−9, which was required to determine the Boltzmann constant k with a
relative uncertainty of 1.9 ppm [19, 102]. Another requirement to achieve these specifications
is a symmetrical circuit, which means that reference and measuring capacitance should be
more or less equal. In current DCGT setups (see figure 3.2), this is achieved by placing
two capacitors of identical construction in separated but closely located pressure vessels
isothermally stabilized. While one acts as reference capacitor remaining evacuated, the
other is filled with gas, thus, being the measuring capacitor. The required manual operation
of this bridge is time consuming and offers very limited potential for automation or digital
data acquisition, which is a key requirement for the apparatus designed in this work. That is
why the most precise commercially available capacitance measurement bridge (manufacturer:
Andeen Hagerling, model: AH2500 Option E) is used. It is an actual bridge in the sense
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component as specified standard uncertainty
resolution 0.119 ppm 0.034 ppm
temperature sensitivity ±0.021 ppm/K 0.012 ppm
instability of CN ±0.516 ppm/year 0.011 ppm
combined CX

CN
0.038 ppm

combined C(p)
C(0) 0.054 ppm

Table 4.6.: Contributions to the uncertainty for the measurement of capacitance ratios with
the AH2500 Option E capacitance bridge. The second column lists the con-
tributions as specified by the manual, while column three shows the converted
contributions required for the current measurements. Details on their calculation
is given in the text. The first listed combined uncertainty is the square root of the
quadrature sum of the listed contributions. It is valid for the ratio of an unknown
capacitance to the internal reference capacitor, while the second represents the
combined uncertainty of a ratio of two unknown capacities as required in this
work.

that it utilizes a ratio transformer for a comparative measurement, as layed out in figure 4.16
as well. In contrast to the custom built bridge, it incorporates highly stable temperature
controlled fused-silica reference capacitors and uses a measuring voltage of up to 15 VRMS

with a frequency of 1000 Hz. Balancing of the bridge is automatically ensured with sets of
relays and is carried out in less than one second. Schmidt and Moldover already reported
in reference [97] that this bridge is capable of measuring capacitance ratios much better
than with the specified accuracy of 3 ppm. To assess an uncertainty for the measurement
of capacitance ratios, the following considerations have to be taken into account. First, it
is important to visualize that though the bridge provides absolute capacitance values as an
output quantity, it measures capacitance ratios RC with respect to the internal reference
capacitor CN:

C(p)
C(0) = RC(p)CN

RC(0)CN
(4.14)

Equation 4.14 illustrates not only that the absolute value of CN is not of significant impor-
tance since it cancels out. Uncertainty contributions to CN that are of systematic nature and,
thus, constant cancel out as well. Fortunately, the manual of the used bridge comprehen-
sively describes the specifications, which allows to select the ones required for the assessment
of capacitance ratios. They are summarized in table 4.6. The contribution arising from the
difference in non-linearity was calculated but is negligible since all measured capacities are
in the small capacitance range between 10 pF and 11 pF.

The listed specified contributions all have a rectangular distribution. In accordance with
the GUM, the corresponding relative standard deviation is calculated by dividing the half
width of the interval by

√
3. The contribution resulting from the temperature sensitivity

was calculated with the instability of the temperature in the laboratory, which is less than
±1 K. Drifting of the reference capacitance CN is only important for the time one isothermal
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Figure 4.17.: Circuit diagram of the capacitance measurement. Capacitor C1 is measured,
while the outer electrodes of C2, C3 and C4 are grounded. All cables have
coaxial shields.

measurement takes. This is typically less than two weeks resulting in the contribution shown
in column three. From these contributions, the relative standard uncertainty of the assessed
capacitance ratio is determined to be ur

(
C(p)
C(0)

)
= 5.4× 10−8.

In total, four capacitors have to be measured with the capacitance bridge. As depicted in
the circuit diagram in figure 4.17, four 12 Vdc SMA relays (manufacturer: Teledyne) with
coaxial shields are used to switch between the outer electrodes connected to the the high
port (relay position 1) of the capacitance bridge. The remaining three outer electrodes,
which are not measured, are connected to ground (position 2). The inner electrodes of all
four capacitors are interconnected and directly attached to the low port of the bridge. All
cabling is established with coaxial shielding leading to a three terminal configuration for the
capacitance measurement. The insulation resistance was verified to be beyond 30 GΩ for
all connections. Between the electrodes and the close by located relays, low noise coaxial
cable being less sensitive to mechanical stress and SMA connectors are used. The connection
between the bridge and the relays is established with BNC connectors and a special coaxial
cable with a low ground capacitance of only 43.3 pF/m compared to typically 100 pF/m for
regular 50Ω cable. The shielding ensures that noise cannot couple to the very sensitive ca-
pacitance measurement. However, ground loop currents in these shields can cause measuring
errors, stray magnetic fields and sensitivity to background noise as well. That is why typi-
cally highly permeable toroidal cores, so called chokes, are used to suppress these currents
in specific places by winding the cable around the choke [104]. In case of the used Andeen
Hagerling bridge, the lead going to the “Low” connector is part of the middle arm (see circuit
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Figure 4.18.: Capacitance of capacitor C1 (evacuated, T = 296.147 K) measured with and
without a choke in the cable connected to the low port of the capacitance
bridge.

diagram in figure 4.16) and, thus, explicitly vulnerable to noise which is why a choke has
been included in the corresponding cable suppressing currents in the shield. The importance
of this step is illustrated in the graph in figure 4.18 showing the measured capacitance for the
evacuated capacitor C1 at a temperature of 296.147 K. The average value of the capacitance
is lowered from 10.417 080 2 pF to 10.417 076 2 pF, which corresponds to a relative change
of 3.87× 10−7 and is well within the bridges specified accuracy of 3 ppm. Furthermore, the
scattering is significantly reduced by one order of magnitude from a relative standard devi-
ation of 1.64× 10−7 to 1.84× 10−8, which is the level that can be reported for almost all
data points. Both effects are a consequence of currents induced by the ground capacitances
and inductances of the lead and are well described in reference [104].

4.4. Temperature measurement

Temperature is obviously the key property of thermometry. Since primary thermometers
for the determination of thermodynamic temperature are difficult, expensive and complex,
temperature scales approximating the thermodynamic temperatures based on more manage-
able measurement principles were introduced. The currently valid temperature scale is the
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4. Experimental background

ITS-90 [105]. All temperature values given in this thesis are ITS-90 temperatures unless
stated otherwise (for instance for the thermodynamic temperatures determined by DCGT).
The ITS-90 is based on a series of highly reproducible fix points linked to specific material
properties with defined (ideally thermodynamic) temperatures in combination with methods
to interpolate between them. In the temperature range between the triple point of hydrogen
(T90 = 13.8033 K) and the freezing point of silver (T90 = 1234.93 K), standard Platinum
Resistance Thermometer (PRT)s are used for interpolation. This transfers the problem of
temperature measurement to a measurement of resistance. Therefore, two main components
have to be considered for the determination of the temperature and the uncertainty that may
be assigned to it. On the one hand the sensing thermometer is calibrated with a specific
uncertainty. On the other hand the uncertainty of the resistance measurement by the used
resistance bridge needs to be taken into account.

The most precise resistance measurement bridges work with ac voltages based an a Wheat-
stone bridge measurement principle with an inductive voltage divider similar to the system
described for the capacitance measurement in section 4.3. These best commercially avail-
able transformer bridges used at PTB and other NMIs to calibrate resistance thermometers
achieve relative uncertainties in the order of 2× 10−8 for the measurement of resistance
ratios and are traceable to the national standards at PTB. Though these bridges work in
an automated fashion and enable a digital data acquisition, they typically need quite some
time to balance. That is why in this work a “microK70” (manufacturer: Isotech) with the
corresponding sample switch “microsKanner” employing dc voltages in combination with
an extremely accurate Analog-to-Digital Converter (ADC) converter was used. It enables
faster measuring while featuring a low uncertainty as well. In contrast to the previously
described true bridge principle, this instrument can be visualized by a high accuracy volt-
meter with a switch to measure the voltage drop over the reference resistor and the unknown
resistance alternatingly with the same measuring current. The key innovative element of this
bridge described in [106] is the ADC converting the measured voltages to a processable dig-
ital signal. It is based on a Σ-∆ ADC, which works with a feed back loop that compares the
approximately generated digital signal from a simple ADC to the analog input signal with
a high accuracy digital-to-analog converter. The difference of both signals is processed by a
series of integrators and filters. To quantize the analog input signal, oversampling is used,
which in combination with the integrators leads to spreading of the noise over a broad fre-
quency range while the required signal only has a relatively small bandwidth that is digitally
filtered leading to highly precise values. Reducing this noise can be achieved by increasing
the sampling rate which has the drawback that the performance of the used elements drops.
Instead, the “mircoK70” works with four integrators and a higher resolution using a 5 bit
ADC. The corresponding highly accurate 5 bit digital-to-analog converter of the feedback
loop uses pulse width modulation. The output signal has, thus, a fixed amplitude but a vari-
able pulse width, which transfers the problem of generating accurate voltages to a problem
of accurate timing. A 120 kHz clock is the timer of the system. With these modifications, a
full accuracy measurement can be carried out in 100 ms. The relative uncertainty specified
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4.4. Temperature measurement

by the manufacturer for the assessed ratio of resistances is 0.07 ppm for the whole range
and 0.017 ppm for ratios between 0.95 and 1.05. Traceability of this circuit to the national
standard is, however, not possible. Verification of the specified uncertainties is, thus, only
possible by comparison to resistance networks probing certain resistance ratios.
Since the bridge itself is only capable of assessing the ratio of two resistances, the abso-

lute resistance of the thermometer is determined by comparison to a highly stable reference
resistor. Though the “microK70” inhibits several internal reference resistors, typically cali-
brated, external reference resistors which are temperature stabilized inside an enclosure are
used. In this work, a 25Ω reference resistor (manufacturer: Tinsley Instrumentation Ltd,
type: 5685A, R=(25.000 188 0± 0.000 002 1)Ω) was used to measure the 25.5Ω CSPRT, and
another 100Ω reference resistor (manufacturer: Tinsley Instrumentation Ltd, type: 5685A,
R=(99.999 660± 0.000 021)Ω) was used to measure the PRTs used for the assessment of
the temperature differences inside the measuring chamber. Their calibration is traceable
to the national standard at PTB. The assigned uncertainty includes a contribution of the
stability for the entire time of the measuring period, whose results are shown here. This
component was estimated from the documented development of resistance over time of the
normal reference resistors.
To practically achieve lowest uncertainties, a four terminal configuration is required to

connect the PRTs to the bridge. This ensures that the resistance of the interconnecting
wires cancel out. Furthermore, the wiring of the thermometers was carried out following
experiences from low temperature experiments where extreme care has to be taken to prevent
heat flow to the system and PRT sensing elements. Therefore, 12 thin copper wires (diameter
0.2 mm) were glued together to form a strap, which was then winded and glued around a
copper bobbin (diameter 10 mm, length 40 mm) that is bolted to the central copper plate.
From there, the wires are soldered to a compact plate with 4-pin connectors to connect the
thermometers. In total, four bobbins are installed allowing to connect up to 12 thermometers.
The CSPRT (manufacturer: Hart Scientific, type: 5695, serial number: 9507), which was

used to determine the ITS-90 temperatures in this work, was calibrated by measurements
at the triple point of water (273.16 K), the triple point of mercury (234.3156 K) and the
melting point of gallium (302.9146 K). Temperatures, which are measured with the CSPRT
in this range, have an uncertainty of 0.35 mK (k = 1) including minor contributions from
the used resistance bridge and the reference resistor. However, the temperature differences,
which were measured inside the system (see section 4.1.1), have to be taken into account
as well. Since the measuring capacitors are located in the lower quarter of the measuring
cells, the temperature difference over the cell is divided by a factor of 4 and added to the
uncertainty of the temperature measurement. For measurements at the triple point of water
and above, the uncertainty is, therefore, increased to 3 mK. For the measurements at 253 K,
the gradients over the cells were larger due to the reasons described in section 4.1.1. In this
case, the uncertainty of the temperature measurement is increased to 7.5 mK.
The second type of thermometers used for the temperature controller and for the assess-

ment of the temperature differences inside the system are highly stable, hand selected PRTs
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with a resistance of 100Ω. They were calibrated inside the apparatus developed in this
thesis as well. Therefore, eight holes surrounding the centered 25.5Ω CSPRT were drilled
in the copper plate shown in figure 4.2 with a maximum lateral distance to the CSPRT of
15 mm as calibration positions. Due to the high thermal conductivity of copper, tempera-
ture gradients across the plate can be neglected for these small distances. The thermometers
were then distributed to the positions described in section 4.1.1. Their primary use is the
assessment of temperature differences rather than the measurement of absolute temperature.
The uncertainty that can be assessed for this purpose is based on repeatability, stability and
hysteresis. Taking these effects into account, an uncertainty of 3 mK for the assessment of
temperature differences can be assigned.

4.5. Sample purity

The used gases (argon and helium) were ordered from Linde AG with a specified purity of 6.0
(99.9999 %) corresponding to an impurity level of less than 1 ppm. An additional helium gas
purifier (type VICI HP2) from Valco Instruments Co. Inc. equipped with a non-evaporable
getter alloy (zirconium, vanadium and iron) designed for the purification of noble gases was
installed in line. According to the specifications, total inlet traces of 10 ppm H20, H2, O2,
N2, NO, NH3, CO and CO2 are reduced to a level of less than 10 ppb.
To minimize adsorption to the walls, the used tubes are electro polished and high purity

VCR components from the manufacturer Swagelok were used. The inside of the measuring
chambers as well as the metal parts of the capacitors were gold plated to smoothen the
surfaces and reduce adsorbtion. The gold plating of the custom made CF-40 flanges, which
are the base the capacitors are mounted to, introduced an impurity problem. Though the
incorporated SMA feed throughs were thoroughly sealed before the gold plating, the ceramic
insulation was polluted leading to a reduced insulation resistance but also to slow out gassing
and virtual leaks. To solve this issue, the flanges were mounted to left over measuring cham-
bers and evacuated directly with a turbo pump stand while being heated to a temperature
of 120 ◦C for several days until the monitored pressure was less than 1× 10−6 mbar and the
insulation resistance was beyond 30 GΩ. After this procedure, the flanges were installed
with the capacitors and thoroughly flushed with gas at high pressures.
A Quadrupole Mass Spectrometer (QMS) (GAM400, InProcess Instruments) developed

and calibrated to verify the purity of noble gases for the Boltzmann project at PTB was
used to control samples of the measuring gas [19]. This particularly includes traces of other
noble gases, which are not extracted by the gas purifier. In the performed measurements,
the concentrations of other noble gases were very well below the specified level of 1 ppm.

4.6. Measurement procedure and automation

As emphasized in the previous chapters, automation of experiments is one of the key require-
ments for modern measuring devices. That is why the data acquisition from the measure-
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ment equipment is carried out with two personal computers and a program developed by
the working group in “LabVIEW” (National Instruments). It captures the averaged values
of capacitance, different pressures and different temperatures synchronized one times per
minute and stores them in a text file for each measuring instrument. This program runs
independently from the second LabVIEW program controlling the expansions. The latter
controls three relay cards with 8 relays each, which, in turn, are used to select the capacitor
and to control pneumatic valves that, thereupon, switch the membrane valves of the gas
handling and vacuum system (see schematic drawing of the gas-handling system in figure
4.4). Further details will be given later in the text.

Every isotherm measurement was carried out by the same routine, whereas each data point
in the following description corresponds to an averaging time of two hours with 30 minutes
per capacitor. First, the vacuum values C(0) of the four capacitors are measured, before the
chambers are filled with the measuring gas to a pressure slightly above 7 MPa. After thermal
equilibrium is reached, the connecting valves “PBin”, “PBout” and “GasAll” to the pressure
balance (see schematic drawing of the gas-handling system in figure 4.4) are opened. The
starting pressure of 7 MPa, which is ideally the same for all measurements, is established with
the automated pressure balance. Furthermore, the measurement with the pressure balance
marks the first calibration point for the characteristic function of the pressure sensors, as
described in section 4.2. Then, the “GasAll” valve is closed defining the starting number
of atoms in the system, and the LabVIEW program controlling the expansions is started.
This program, whose flow diagram is shown in figure 4.19, is repeated for each expansion,
whereas the number of the expansions is defined at the start of the routine. Capacitor C1
is measured until the thermal equilibrium is reached. The required waiting time is adapted
to each expansion step independently and, typically, varies from 10 hours in the beginning
to 5 hours for the smaller pressure steps by the end of the isothermal measurement. During
this waiting time, the measured capacitor C1 offers an excellent instrument to control the
thermal equilibrium. As long as the temperature changes, the length of the inner electrode
changes resulting in a characteristic drift of the capacitance signal that can, actually, be
resolved with the capacitance bridge. Before the other capacitors are measured, a check is
performed to ensure that the data acquisition with the first LabVIEW program is working by
comparison of the last date the text storage files were changed to the current time. The data
acquisition can be restarted optionally. Then, the expansion starts by closing valve “Gas4”
and evacuation of cell 4. This process is divided into three different steps. First, the high
pressure is carefully lowered to less than 1× 105 Pa by utilizing a bypass to the pump branch,
which includes a restriction valve (open valves “FCIn” and “FCout”) to reduce the pressure at
the inlet of the membrane pump. If the pressure is less than 1× 105 Pa, the membrane pump
is used to evacuate the system directly via the valves “Pump” and “Byp3” until the pressure
is low enough to utilize the turbo molecular pump (open valves “Byp1” and “Byp2”). Cell4
is evacuated to a pressure of less than 0.01 Pa before the corresponding vacuum valve “Vac4”
is closed. Then, the gas is expanded into cell4 by opening the “Gas4” valve and measuring
capacitor C1 starts again. This cycle is repeated until the defined number of expansions is
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Figure 4.19.: Flowchart of the program used to automate the expansions.

performed. The number is selected in a way, that the last measured pressure is close to 1 MPa,
which corresponds to 16 expansions for measurements with argon and 15 for measurements
with helium. When the expansions have finished, a second measurement with the pressure
balance at a pressure of 1 MPa is performed to obtain the second calibration point for the
Digiquartz sensors. Finally, the entire system is evacuated and the zero capacitance of
the four capacitors is measured after thermal equilibrium is reached. The time required to
perform one isothermal measurement by the routine described above is typically in the order
of two weeks.

4.7. Correction to isothermal conditions

The working equations derived in chapter 3 rely on the assumption of isothermal regimes.
For the DCGT evaluation, this requires to correct either the pressure or the capacitance data
to the average temperature Tiso of the isotherm. In this case, the measured pressures pmeas
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were corrected by:

pcorr = pmeas
Tiso
Tmeas

(4.15)

Due to the impressive thermal stability of the central measuring system reported in section
4.1.1, the resulting corrections are minor and do typically not exceed the level of a few pascal.
Instabilities of the gas-handling system temperature only play a negligible role by means of
small differences in the head correction.

The situation is different for the expansion experiments. In this case, the working equations
are based on the assumption of particle conservation before and after the measurement.
Furthermore, the distribution of these particles in the system is treated by the assumption of
two stable thermal regimes. As already emphasized, the thermal stability of the measuring
cells is sufficient to comply with this assumption. In contrast, it was shown in section
4.1.1 that the temperature of the gas-handling system tends to change during the course
of the isothermal measurement. This causes changes in the distribution of the particles
between both thermal regimes, which are not anymore correctly described by the previously
introduced assumptions. To correct these deviations, it is crucial to rely on the temperature
of the gas-handling system (and the measuring cells) at the moment the interconnecting
valve between measuring and expansion volume is closed. In this moment, the particle ratio
of the expansion step is defined for the corresponding temperature ratio Tratio between both
thermal regimes. The strategy followed in this thesis is to generate pairs of data sets which
are corrected to the temperature of this defining moment. The interconnecting valve is
closed directly after measuring capacitor C4. Therefore, the reference temperatures are the
average temperatures during the 30 minute measuring period of capacitor C4. The correction
applied to the capacities C1 to C3 (and the corresponding pressure) prior to the expansion is
rather small since the corresponding time differences are less than two hours. The correction
of the values after the expansion is more prominent since the time required to reach the
thermal equilibrium of the measuring chambers is in the order of several hours. From these
values, the ratios of the Mosotti-terms Fratio and pressures Pratio required for the evaluation
of the expansion experiments are calculated. A consequence of this procedure is that the
same measured pressure and capacitance values of one data point are corrected twice, and
eventually differently, depending on whether they are in the numerator or denominator of
the ratio. The influence of this temperature correction is visualized in figure 4.20 (a) for the
ratio of Mosotti terms at 296 K. The scattering of the ratios is clearly reduced, although
the relative corrections, which are plotted in 4.20 (b), are only in the order of a few ppm.
Furthermore, it will be shown in sections 5.3 and 5.4 that statistical scattering is the main
source of uncertainty for the determination of the virial cofficients by means of free fits.
For the example shown in figure 4.20, the relative difference between the second dielectric
virial coefficient determined by the corrected and uncorrected data points is in the order
of 7 %, though the relative corrections shown in (b) rarely exceed 5 ppm. It is assumed
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that the correction has an uncertainty of 20 % which corresponds to a relative uncertainty
of Pratio and Fratio of 1 ppm due to the instability of TGHS. This component is included in
the uncertainty budgets in the corresponding sections 5.3 and 5.4 for the evaluation of the
expansion experiments.
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Figure 4.20.: Influence of the correction to the gas-handling system temperature described in
the text by the example of isotherm number 9 measured at 296 K (see table 5.1
for further details). Shown in (a) are the averaged ratios of the Mosotti-terms
Fratio, which are fitted over the initial Mosotti-term for the evaluation of the
dielectric expansion experiments before and after the correction. In (b), the
relative changes in Fratio caused by the corrections are shown in ppm.
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This thesis presents the results of a total of 24 isothermal measurements carried out at four
different temperatures with argon and helium. They are numbered and summarized in table
5.1 to ease discussions.

argon
number Tiso [K] TGHS [K] number Tiso [K] TGHS [K]
1 253.8977 294.150 10 296.1474 296.369
2 253.8973 294.056 11 296.1472 296.320
3 273.1617 295.757 12 296.1472 296.164
4 273.1618 295.715 13 296.0967 295.612
5 273.1621 296.072 14 296.0967 295.366
6 273.1622 295.821 15 296.0968 295.939
7 273.1612 295.504 16 302.9125 296.169
8 273.1588 294.704 17 302.9125 296.244
9 296.1475 296.484 18 302.9129 296.268
helium
number Tiso [K] TGHS [K] number Tiso [K] TGHS [K]
19 273.1616 295.146 22 296.1475 296.287
20 296.1474 296.680 23 296.1469 296.162
21 296.1476 295.078 24 296.1462 296.054

Table 5.1.: Summary of the performed measurements used for the data evaluation in this
thesis.

Each of the isotherms was measured by the automated procedure described in section
4.6. For each data point, the pressure was determined as average value of the two pressure
sensors. It was shown in section 4.2 that both sensors have different working characteristics
and, thus, different contributions to their uncertainty. Since it can be seen from table 4.5 that
these differences in uncertainty are only minor, no weighing was applied. The same accounts
for the capacities, where unweighed average values of the working variables µ retrieved
from the four individual capacitors are used. It was worked out in section 4.3 that the
effective compressibility of capacitor number 4 is higher than the others, but it will be shown
in the uncertainty considerations of this chapter that this component is not a dominating
contribution to the uncertainty of the final results. For the expansion experiments, the
pressure ratios Pratio and ratios of Mosotti-terms Fratio have to be averaged independently
and can not be recalculated from the averaged pressure and capacitance values due to the
complex correction to the appropriate gas-handling system temperature described in section
4.7.
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In this chapter, the summarized results are presented rather than all individual mea-
surements. Individual isotherms will be referenced when appropriate. Furthermore, the
evaluation of the data is focused on argon, while the measurements with helium serve for
cross checks and calibration purposes. All uncertainties are given as standard uncertainties
(k = 1) unless stated otherwise, whereas the individual contributions are considered to be
not correlated.
In the next three sections, results based on the evaluation by means of DCGT (5.1), the

Burnett (5.3) and the dielectric expansion (5.4) are shown. Since all determined properties
and their uncertainty are based on different fit coefficients, each of these sections start with
an overview of the fit coefficients and their uncertainty analysis, which is partially based
on Monte-Carlo simulations. After that, the final results and their combined uncertainty is
evaluated. A comparison to the established literature values is carried out in section 5.6 for
the different virial coefficients, while the comparison of secondary results from the DCGT
measurements is carried out directly in the corresponding sections of the DCGT results.

5.1. DCGT results
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Figure 5.1.: Averaged pressure and capacitance data at the indicated temperatures. The
solid lines are guides to the eye and do not represent a fit function.

The DCGT results of this section are important in different ways. The effective compress-
ibilities of the different capacitors, which will be reported in section 5.1.1, can be compared
to the values retrieved from the RUS measurements (see section 4.1.3). Thermodynamic
temperatures, which will be presented in section 5.1.2, are part of the project “Real-K” (see
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section 2.1). There, the capabilities of DCGT as a practical, primary thermometer are ex-
plored for temperatures above the triple point of water. The molar polarizability (section
5.1.3) and the DCGT virial coefficients (section 5.1.4) are required to evaluate the dielectric
expansion experiments in section 5.4. Furthermore, it should be emphasized again that in
contrast to the expansion evaluation, the DCGT results are not influenced by the pressure
deformation of the measuring cells or their thermal expansion. Also, the DCGT results only
depend on the different temperature of the gas-handling system by means of the small head
correction.

For the evaluation, the capacitance and pressure data is fitted by the following polynomial
pr = A∗1µr + A∗2µ

2
r + A∗3µ

3
r + A∗4µ

4
r , whose coefficients are compared to the DCGT working

equation 3.22. Details on the required fit order were given in section 3.6. Generally, the
fitting may be carried out in different ways. First, each isothermal measurement can be
fitted individually, and the average value of the desired property is calculated. This is
particularly helpful to assess the repeatability of the experiments. The second approach is
to perform a fit on the averaged data, whereas the pressures of the individual isotherms are
corrected to the average isothermal temperature Tiso. The p and µ values of the individual
isotherms are then averaged, and a single fit to this average data is performed. The averaged
values of p and µ for the four temperatures are summarized in table J.1 in the appendix J
and are visualized in figure 5.1. The fit coefficients A∗1 to A∗4 are summarized in table J.2
in appendix J as well together with their standard uncertainty from the fit routine. The
coefficients A1 to A4 as defined in the DCGT working equation 3.22 can be calculated from
the coefficients A∗1 to A∗4 by the simple relations:

A1 = A∗1; A2 = A∗2
A2

1
; A3 = A∗3

A3
1
; A4 = A∗4

A4
1

(5.1)

These DCGT coefficients, which are required for the final data evaluation, are summarized
in table 5.2. Their uncertainty needs to be investigated as well to assess the uncertainty of
the properties, which are going to be determined from these coefficients in the next sections.
The regulations for the assignment of uncertainty to measurements as well as the propagation
of uncertainty are defined in the GUM [7]. However, the standard GUM does not include
the propagation of uncertainty from measured data to fit coefficients. That is why Monte-
Carlo simulations, which are described in the supplement 1 to the GUM, were performed
[107]. The methodology is in detail shown in the following and will be used in the next
two sections on the results of the expansion experiments as well. In case of the DCGT
evaluation, contributions that influence the pressure and the capacitance data have to be
taken into account. The first step is the generation of an ideal data set, which is carried out
by fitting the averaged data summarized in table J.1. In turn, ideal pressures p are then
calculated from the fit coefficients and the actually measured values of µ. The basic idea is
to statistically vary either p or µ within a suitable interval that is defined by the standard
uncertainty of the input property. The used random numbers are normally distributed in case
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Tiso [K] 253.898 273.161 296.126 302.913
A1 [108Pa] 5.099 375 5.486 820 5.948 512 6.085 060

A2 [109Pa−1] −12.7203 −9.5140 −6.6549 −5.9734
A3 [1016Pa−2] 2.807 2.276 1.817 1.725
A4 [1025Pa−3] 6.63 5.61 4.65 3.27

statistical scattering of pressures - pMC
u(A1) [108Pa] 0.000 073 0.000 080 0.000 086 0.000 086

u(A2) [109Pa−1] 0.0132 0.0138 0.0140 0.0138
u(A3) [1016Pa−2] 0.035 0.033 0.034 0.038
u(A4) [1025Pa−3] 2.52 2.78 2.94 2.95

statistical scattering of capacitance - µMC
u(A1) [108Pa] 0.000 040 0.000 052 0.000 066 0.000 062

u(A2) [109Pa−1] 0.0058 0.0073 0.0086 0.0081
u(A3) [1016Pa−2] 0.013 0.018 0.021 0.020
u(A4) [1025Pa−3] 0.89 1.18 1.47 1.42

systematic pressure uncertainty - psyst
u(A1) [108Pa] 0.000 075 0.000 080 0.000 087 0.000 089

u(A2) [109Pa−1] 0.0009 0.0008 0.0007 0.0007
u(A3) [1016Pa−2] <0.001 <0.001 <0.001 <0.001
u(A4) [1025Pa−3] <0.01 <0.01 <0.01 <0.01

Table 5.2.: DCGT fit coefficients of the polynomial fit of fourth order to the averaged data
for corresponding average values of the four measured temperatures and the con-
tributions of propagated uncertainty.

the uncertainty contribution underlies a Gaussian distribution which is the case here. For
rectangular distributions, equally distributed random numbers would be used. The scattered
data is fitted and the fit coefficients are stored in a table. This process is repeated typically
several hundred times. While the average value of these fit coefficients is identical to the one
of the ideal data, the standard uncertainty of all these fit coefficients is a measure for the
propagation of uncertainty from the scattered input property.
In this thesis, the Monte-Carlo simulations are embedded in a Microsoft Excel template

using VBA macros. The random numbers used to scatter the data are supplied by an
algorithm generating a series of pseudo random numbers. Not only does the next number
in the series rely on the previous number, the series of numbers is repeated, which happens
after more than one million iterations. That is why the starting value of the random number
generator is initialized by a value taken from the system operating clock.
To assess the number of iterations required for the Monte-Carlo simulation to provide

a reliable result on the standard uncertainty of the fit coefficient, the development of the
standard uncertainty of this fit coefficient can be plotted over the corresponding number of
samples. According to the law of big numbers, this value is going to be stable after a certain
number of iterations. In figure 5.2, this is exemplified by the example of the A∗1 coefficient at
253 K, when each of the pressures pr used for the fitting of the data is varied with a normal
distribution function and a standard uncertainty of 5 ppm. While the standard uncertainty
significantly changes in the beginning, it converges to a stable value after around 300 samples.
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Figure 5.2.: Development of the standard uncertainty of the A∗1 fit coefficient at 253 K for a

variation in pr with a relative standard uncertainty of 5 ppm in dependance of
the number of Monte-Carlo samples.

For the simulations performed in this work, typically 700 calculations were carried out.
As layed out in section 4.2, the uncertainties of the pressure measurement have three

different categories. Category III inhibits the statistical scattering of the pressures and
amounts to 5 ppm over the entire pressure range (see table 4.5). Uncertainties of the fit
coefficients arising from this contribution are labeled by pMC. The second purely statistical
component that needs to be processed by the Monte-Carlo simulation is the uncertainty of
the capacitance bridge. The relative uncertainty for the determination of capacitance ratios
was assessed in section 4.3 to be ur

(
C(p)
C(0)

)
= 5.4× 10−8. The propagation of this uncertainty

via the relative change of capacitance γ = C(p)−C(0)
C(0) to the absolute uncertainty of the actual

DCGT working variable µ = γ
γ+3 is:

u(µ) = (1− µ)2

3

( 3
1− µ − 2

)
· ur

(
C(p)
C(0)

)
(5.2)

This defines the scattering interval for µ, which is typically in between 1.2 ppm at 7 MPa
and 10 ppm at 1 MPa. Contributions arising from this component are marked with µMC.
The remaining contributions of uncertainty to the pressure, which are of category I and

category II (see table 4.5 in section 4.2), cause systematic deviations of all interpolated
pressures during the isotherm measurement. Scattering the isotherm pressures randomly is,
thus, not a viable option. Instead, the following approach is taken. The relative uncertainty
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of category I is identical for both calibration points with the pressure balance causing an
identical relative shift. On top, the category II contributions cause additional shifts that are
different for both calibration points. To assess the uncertainty, the ideal pressures are first
shifted by the category I contribution which is 10.25 ppm for Digi1. On top, the maximum
split between category II contributions is taken into account as a worst case estimate assum-
ing none at 7 MPa and 9.49 ppm at 1 MPa. This can be described by multiplication of each
pressure with the following function:

p = pideal ·
(

1 +
(

13.97− 3.72
6

(
pideal
106 − 1

))
10−6

)
(5.3)

These pressures are fitted together with the µ values, whereas the difference between the
retrieved fit coefficients and the ideal initial fit coefficients defines the propagated uncertainty.
Contributions arising from this procedure are labeled by psyst.

The results of these previously described efforts are summarized in table 5.2 for the four
measured temperatures. The simulation is based on the fit coefficients of the polynomial A∗1
to A∗4. The propagation of their uncertainty to the DCGT coefficients A1 to A4 given in
table 5.2 is based on equation 5.1:

ur(A1) = ur(A∗1)

ur(A2) = ur(A∗2) + 2ur(A1)

ur(A3) = ur(A∗3) + 3ur(A1)

ur(A4) = ur(A∗4) + 4ur(A1)

(5.4)

Consideration of the contribution of A∗1 does not actually change the significant numbers
of the uncertainties of the higher fit coefficients since the one of A∗1 is very low compared to
the others.

5.1.1. Effective compressibility of the capacitors

As already explained, precise values of the effective compressibility κeff are essential to eval-
uate the capacitance data. To validate the values retrieved from the RUS measurements
shown in section 4.1.3, a DCGT evaluation is carried out to determine κeff for the individual
capacitors. In principal, κeff may be calculated from the fit coefficient A1 of the DCGT
working equation 3.22 by:

κeff = 3
( 1
A1
− Aε
RTiso

)
(5.5)

Values retrieved directly from this fit typically suffer larger uncertainties due to the re-
quired higher fit orders that increase the uncertainties of the A1 term. Furthermore, this
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Figure 5.3.: Effective compressibilities of the four capacitors retrieved from the helium
isotherm number 18 at the triple point of water. Precise DCGT virial coeffi-
cients for He were taken from reference [1] to correct the data to ideal pressures.
The error bars are combined standard uncertainties of κeff from the DCGT data.
The solid line marks the value determined from the RUS measurements. The
dashed lines mark the final assigned uncertainty of κeff (1 % for C1 to C3; 2.5 %
for C4).

equation shows why it is beneficial to evaluate the helium data rather than the argon data.
Since the molar polarizability Aε of helium is a factor of eight smaller than argons, the
measurements are much more sensitive to the influence of κeff. The consequence is that the
reachable relative standard uncertainties for κeff are in the order of 1 % for helium, while
they are in the order of 6.5 % for argon. Another reason to evaluate helium is that for helium
the very precise DCGT virial coefficients published by Gaiser et al. can be used to calculate
the contributions of the higher terms [1]. These contributions are then subtracted from the
measured pressures resulting in a corrected ideal pressure pcorr. In this way, a precise value
of κeff can be retrieved for each data point by:
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κeff = 3
(

µ

pcorr
− Aε
RTiso

)
(5.6)

The corresponding results are plotted in figure 5.3. Capacitors C1 to C3 behave similar
and show a step in κeff at different pressures. The origin of this behavior is not fully clear.
Eventually, the changes in pressure cause a small temporary tilt or eccentricity of the capaci-
tor that influences the measured capacitance. Such an effect would have to be reversed upon
evacuation since the capacitance in vacuum before and after the expansion was checked and
agrees on the level of the uncertainty of the capacitance ratio measurement as described in
section 4.1.3. The value determined from the RUS measurements still mostly lies within the
expanded standard uncertainty (plotted is the standard uncertainty). However, capacitor
C4 is different. Instead of a step like behavior, the compressibility appears to be constant
for higher pressures until around 3.5 MPa. The deviations to the RUS value in this range
are in the order of 2.5 % and are beyond the expanded standard uncertainty. With lower
values κeff decreases steadily, in contrast to the previously observed step like behavior. It
crosses the RUS value but continues to depart from it. Again, the origin of this behavior
is not fully understood, whereas it is plausible for C4 to behave different from the other
capacitors since the gas is always expanded into this one. Additionally, the evacuation may
induce mechanical stress as well. The qualitative trend shown here can be reproduced with
the data for helium at room temperature whereas the pressure at which the steps emerge are
similar but not entirely identical. For this thesis, the effects are included in the uncertainty
budget of κeff in section 4.1.3.
The error bars in the plots were calculated including the error propagation by:

u(κeff) = 3

√√√√(u(µ)
pcorr

)2
+
(
µ
u(pcorr)
p2
corr

)2
+
(
u(Aε)
RTiso

)2
+
(
Aεu(T )
RT 2

iso

)2
(5.7)

u(µ) and u(pcorr) include the type A uncertainty of the capacitance and pressure mea-
surement in form of the standard uncertainty of the corresponding measuring signal for
the averaging time of 30 minutes for each capacitor at each data point. The uncertainty of
pcorr also contains the propagated uncertainties of the correction utilizing the DCGT virial
coefficients.

5.1.2. Thermodynamic temperatures

The thermodynamic temperatures TDCGT of the DCGT data can be retrieved from the fit
coefficient A1 by the formula:

TDCGT = Aε

R
(

1
A1
− κeff

3

) (5.8)
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Figure 5.4.: Differences ∆T between the thermodynamic temperatures from the DCGT and
the ones measured with the CSPRT (red circles). The dotted line represents the
uncertainty of the CSPRT whereas the solid blue line indicates the difference
between thermodynamic and ITS-90 temperature.

For the molar polarizability of argon, the value of Gaiser et al. Aε =4.140 686 cm mol−3

with a relative standard uncertainty of 2.4 ppm was inserted [37]. To compare these temper-
atures to the temperatures Tiso measured with the 25.5Ω platinum standard thermometer,
the differences between thermodynamic temperature and the ITS-90 temperature have to be
taken into account. The deviations of “T -T90” are topic of ongoing investigations and may
for now be best corrected by the functions given in reference [108]. The resulting temper-
atures are summarized in table 5.3, where ∆T is the difference between TDCGT and Tiso,90
including the correction “T -T90”.

Tiso,90 [K] TDCGT [K] u(TDCGT,90) [mK] T − T90 [mK] ∆T [mK]
253.897 253.869 5.7 −1.5 −27.4
273.162 273.150 6.4 0 −11.9
296.126 296.125 7.1 3.3 −4.2
302.913 302.919 7.1 4.3 2.5

Table 5.3.: Comparison of the temperatures Tiso,90 measured with the CSPRT and the ones
retrieved from the DCGT data. The temperature differences ∆T include the
correction “T − T90”.

These deviations are plotted in figure 5.4 together with the corresponding uncertainties.
At the two highest temperatures the values agree well within the standard uncertainty. At
the triple point of water the values overlap by their expanded standard uncertainties. For
253 K, the deviations are slightly outside of the range of expanded uncertainties, whereas the
uncertainty of the temperature measurement at 253 K is 7.5 mK (see section 4.4 for details).
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The trend of rising temperature deviations for departing from ambient temperature especially
at 253 K is a consequence of the temperature gradients over the measuring cells described in
section 4.1.1. Since the capacitors essentially average the measuring signal over the length
of the inner electrode, these gradients lead to the reported deviations. As explained in 4.1.1
the effect is increased for the measurement at 253 K because the Fluke 2100 temperature
controller that stabilizes the bath thermostat could not be used here. Essentially, the problem
of temperature gradients is attributed to a compromise that had to be found during the
construction of the apparatus. Since the primary goal of the apparatus is the determination
of virial coefficients, the size of the measuring cells was increased during the planning phase
to minimize the influence of the volume of the gas-handling system. At this point, parts of
the system were already manufactured so that the dimension of the vacuum cell could not
be changed. The only option was to make the cells longer, which decreased the distance
between measuring cells and the colder CF-200 flange. Though these effects play obviously
a role for properties that are retrieved from the first DCGT fit coefficient A1, it will be
shown that they only have a minor influence on the virial coefficients. Overall, the effect of
gradients is included in the uncertainty of the CSPRT and seems to be on an appropriate
level. The combined uncertainties uc(TDCGT) of the temperatures in table 5.3 and figure 5.4
were calculated in accordance with the GUM by:

uc(TDCGT) =

√(
∂TDCGT
∂Aε

u(Aε)
)2

+
(
∂TDCGT
∂A1

u(A1)
)2

+
(
∂TDCGT
∂κeff

u(κeff)
)2

(5.9)

The derivatives in formula 5.8 are the sensitivity coefficients and given by:

∂TDCGT
∂Aε

= TDCGT
Aε

∂TDCGT
∂A1

= T 2
DCGTR

AεA2
1

∂TDCGT
∂κeff

= TDCGT

3
(

1
A1
− κeff

3

)
(5.10)

TDCGT [K] 253.869 273.150 296.125 302.919
Aε [mK] 0.61 0.66 0.71 0.73
κeff [mK] 0.86 1.00 1.17 1.23

A1 − psyst [mK] 3.71 4.10 4.44 4.54
A1 − pMC [mK] 3.64 3.98 4.29 4.26
A1 − µMC [mK] 2.01 2.57 3.26 3.08
u(TDCGT) [mK] 5.7 6.4 7.1 7.1

Table 5.4.: Uncertainty contributions to the thermodynamic temperatures retrieved from the
DCGT data evaluation.

From these coefficients, the different contributions can be calculated and are summarized
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in table 5.4. At this point the uncertainty is dominated by the pressure measurement. For
conventional DCGT measurements this component can potentially be decreased by utilizing
a precise pressure balance at the cost of manual operation.

5.1.3. Molar polarizability of argon

The assessment of the molar polarizability Aε is best carried out by evaluation of the mea-
surements performed at 296 K since temperature gradients that could distort the results are
minimized here. The results presented in the previous section as well as in section 4.1.1
indicated that this problem occurs for temperatures departing from ambient temperature.
For noble gases, this procedure is valid since Aε is not temperature dependent. To assess the
molar polarizabilities from the fitted data, the fit coefficient A1 is used to give:

Aε =
( 1
A1
− κeff

3

)
RT (5.11)

Here, it is important to correct the measured ITS-90 temperature Tiso to the thermody-
namic temperature T as shown in the previous section. From the averaged pressure and
capacitance data Aε = 4.140 748× 10−6 m3 mol−1 is determined with a combined relative
standard uncertainty of 25 ppm. Gaiser et al. published a value for the molar polarizability
of 4.140 686× 10−6 m3 mol−1 with a relative uncertainty of 2.4 ppm in 2018 [37]. The relative
deviation to this benchmark value is 14 ppm demonstrating the capabilities of this apparatus
for this purpose as well.
The combined uncertainty uc(Aε) was calculated by:

uc(Aε) =

√(
∂Aε
∂T

u(T )
)2

+
(
∂Aε
∂keff

u(κeff)
)2

+
(
∂Aε
∂A1

u(A1)
)2

(5.12)

The calculation of the partial derivatives is straight forward and, thus, not explicitly
shown here again. All components contributing to the combined uncertainty are summarized
in table 5.5. To test the repeatability, Aε was also derived for each individual isothermal
measurement. The deviations of these values to the average value are visualized in figure

contribution absolute relative
κeff 1.6× 10−11 m3 mol−1 4.0 ppm
T 4.2× 10−11 m3 mol−1 10.1 ppm

A1 − psyst 6.1× 10−11 m3 mol−1 14.6 ppm
A1 − pMC 5.1× 10−11 m3 mol−1 12.3 ppm
A1 − µMC 4.6× 10−11 m3 mol−1 11.0 ppm
uc(Aε) 10.2 24.6

Table 5.5.: Uncertainty contributions to the molar polarizability of argon retrieved from the
DCGT data evaluation at 296 K in absolute and relative units.
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5.5. The corresponding standard uncertainty of the average value is 15 ppm confirming the
assessed uncertainty which was given under the assumption of a single measurement.
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Figure 5.5.: The black circles show the deviations of the the molar polarizabilities of argon

for the seven isotherms measured at 296 K from the average value in ppm. The
error bars are the combined uncertainties. The solid line marks the average value
with the dashed lines indicating the corresponding standard uncertainty of the
mean value.

5.1.4. DCGT virial coefficients

The calculation of the DCGT virial coefficients is carried out based on the working equation
3.22 by:

BDCGT = (RTiso)
(
A2 + κeff

3

(
1 + B(T )

Aε

))
CDCGT = (RTiso)2

(
A3 −

κeff
3RTiso

(
2Aε − 3BDCGT −

1
Aε

(
2B2

DCGT + C(T )
))) (5.13)

It is necessary to include values for the density virial coefficients B(T ) and C(T ) in the two
small correction terms. In this case, experimental values of Gilgen et al. that were reanalyzed
by Jäger et al. were chosen [29, 67]. However, the demands for their uncertainty is rather low.
A relative uncertainty of 5 % in B(T ) would lead to a contribution of 0.002 % for the relative
uncertainty of BDCGT, while 10 % in C(T ) contribute less than 0.004 % to the uncertainty
of CDCGT. In principal, also the values determined by the Burnett expansion in section 5.3
could be applied. The results for the four different temperatures are summarized in table
5.6 for BDCGT and CDCGT together with their relative combined standard uncertainties and
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the relevant contributions to the uncertainty. Furthermore, the repeatability in [%] which
was retrieved from the values of the individual isotherms (see figure 5.6 and 5.7) is given
and in excellent agreement with the assessed combined uncertainty. Components that are
not included for BDCGT since their contribution is less than 0.005 % are κeff, Aε, B(T ) and
Tiso. For CDCGT, components that contribute less than 0.01 % are not listed, which includes
κeff, Aε, C(T ) and BDCGT. In contrast to BDCGT, a small contribution of the temperature
uncertainty is included at 253 K for CDCGT. Based on equation 5.13, the propagation of
uncertainty can be calculated as shown in the previous sections. It can be seen from table
5.6 that the two main contributions to the DCGT virial coefficients arise from the statistical
scattering of pressure and capacitance, while the absolute pressure and temperature are of
minor importance.

Tiso [K] 253.898 273.161 296.126 302.913
BDCGT [106m3mol−1] −26.844 −21.602 −16.380 −15.040

ur(BDCGT) [%] 0.11 0.16 0.25 0.27
repeatability [%] *0.07 0.07 0.14 **0.10
component and contribution to uncertainty for BDCGT
A2 − pMC [%] 0.10 0.15 0.21 0.23
A2 − µMC [%] 0.05 0.08 0.13 0.14
A2 − psyst [%] 0.01 0.01 0.01 0.01

CDCGT [109m6mol−2] 1.2501 1.1733 1.1008 1.0939
ur(CDCGT) [%] 1.34 1.66 2.21 2.50

repeatability [%] *0.66 0.52 0.86 **0.98
component and contribution to uncertainty for CDCGT
A3 − pMC [%] 1.26 1.45 1.89 2.22
A3 − µMC [%] 0.46 0.81 1.14 1.15
A3 − psyst [%] 0.01 0.01 0.01 0.01

Tiso [%] 0.01 0.01 0.01 0.01

Table 5.6.: Second and third DCGT virial coefficients and their combined relative standard
uncertainties as well as the repeatability from the individual isotherms at the four
measured temperatures. The main contributions to the uncertainty are listed in
the lower part. * repeatability based on two measurements ** repeatability based
on three measurements
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Figure 5.6.: Relative deviations of the individual values of the second DCGT virial coefficient
from the average value at the indicated temperatures in %. The error bars
represent the combined standard uncertainties. The standard uncertainty of the
average values is indicated by the dashed lines.
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Figure 5.7.: Relative deviations of the individual values of the third DCGT virial coefficient
from the average value at the indicated temperatures in %. The error bars
represent the combined standard uncertainties. The standard deviation of the
average values is indicated by the dashed lines.
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5.2. The apparatus constant

The key assumption of the expansion experiments is that the volume ratio defining the
pressure and capacitance ratios is constant over temperature and pressure. Appropriate
working equations were retrieved in sections 3.3.2 and 3.4.2 to include the effect of pressure
deformation. The inclusion of the thermal expansion of the cells will be treated later in
this section. In principal, the pressure and capacitance data may simply be fitted with a
polynomial and evaluated directly by the working equations 3.53 given in section 3.5. In both
cases, the first coefficient of the polynomial fit delivers the apparent apparatus constant Q∆T

as defined in equation 3.37. A second approach is to determine Q∆T with the lowest possible
uncertainty and constraint the constant term of the fit function. It will be shown that the
uncertainties of density (section 5.3) and dielectric virial coefficients (section 5.4) determined
in this manner are roughly a factor of two smaller. To reach the stated uncertainties of the
virial coefficients, the volume ratio needs to be known with a relative uncertainty in the
order of 5 ppm. Obviously this is not possible by means of dimensional measurements for
the complex volumes. Instead, a different strategy is followed in this work.

First, the volume ratio at constant temperatures Q (see definition in equation 3.37) is
determined by measurements at Tiso ≈ TGHS. One option would be to utilize an average
value of the individual isotherms that were measured with argon at 296 K. This has several
drawbacks. Argon is the gas under investigation and should not be used to calibrate the
apparatus, though this option is in principle viable. Another problem is that the uncertainty
of the first fit coefficient rises with higher fit orders, but it was shown in section 3.6 that
these are required in particular for the evaluation of the pressure ratios since the fourth
density virial coefficient still has a significant influence. Furthermore, the lowest measured
pressure is 1 MPa, which means that the extrapolation to zero pressure is vulnerable to
statistical scattering. In principal, the capacitance data may be utilized instead since here
the required fit order is lower. However, in this work precise measurements with helium were
carried out instead. The advantage of helium is that the virial coefficients can be precisely
determined by ab initio calculations. Knowing them, the working equations 3.32 and 3.45,
which include pressure deformation at isothermal conditions, can be fully constrained for all
terms except Q and Pratio or Fratio, respectively. While the uncertainties of Q that can be
reached from the determination with a fit are in the order of 12 ppm due to the extrapolation,
the uncertainty of a single measurement is now dominated by the statistical scattering of
pressure and capacitance date and results in relative uncertainties in the order of 7 ppm.
From the five isothermal measurements with helium (isotherm numbers 20 to 24) at 296 K,
the apparatus constant Q at isothermal conditions was determined to be Q = 1.1513434.
Calculated values for the required virial coefficients were taken from references [43] for bε(T ),
[6] for cε(T ), [109] forB(T ), [26] for C(T ) and [110] forD(T ). An average value of the pressure
and capacitance ratios was used and allowed to assign a relative standard uncertainty of
5 ppm.

The second step is to determine Q∆T for the measuring temperature with Q as base value,
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5.3. Density virial coefficients of argon

which is in principle possible by equation 3.37. Again, the determination of the partial volume
ratios QA and QB with sufficient uncertainty is not possible with dimensional measurements.
Still, the values given for QA and QB in table 4.1 can be used to simulate the principle
behavior of Q∆T . The development over the temperature ratio Tratio (assuming a constant
temperature of the gas-handling system) can be sufficiently described by a linear function
in the temperature with the residuals being less than 1 ppm for all temperatures measured
in this work. Until this point, the thermal expansion of the volume of the measuring cells
in the order of 48× 10−6 K−1 was not considered. This effect is not relevant for the data
evaluation with free fits since it only influences Q∆T but not the higher orders. For free
fits, it is ,thus, automatically included in the data evaluation by the working equation 3.53.
However, to constraint Q∆T it has to be included. The difference in the absolute value of
Q∆T can be in the order 5 ppm for 253 K. But more importantly, repeating the simulation
including this effect shows that the temperature dependence can still be described by a linear
function with the residuals being less than 1 ppm. Since the reference value of Q was already
determined at ambient temperature, only the slope βQ needs to be assessed. This was done
by additional measurements of helium at the triple point of water (isotherm number 19)
whereas a relative uncertainty of 1 % can be assigned. The general equation to calculate
the apparatus constant at a certain temperature (in the temperature range of this work) is
finally given by:

Q∆T = Q+ βQ · (Tratio − 1) = 1.1513434− 0.0031315 · (Tratio − 1) (5.14)

The corresponding uncertainty is calculated by:

u(Q∆T ) =
√

(u(Q))2 + (u(βQ)(Tratio − 1))2 + (u(TRatio)βQ)2 + (10−6 ·Q∆T )2 (5.15)

The last contribution to uncertainty takes the deviation from the linear behavior described
in the previous text into account. The final values used to constraint the data as well as the
corresponding uncertainties are summarized in table 5.7 for the measured temperatures.

Tiso [K] 253.898 273.161 296.126 302.913
Q∆T 1.151 771 5 1.151 581 1 1.151 342 5 1.151 272 7

u(Q∆T ) 0.000 007 3 0.000 006 4 0.000 005 8 0.000 006 0

Table 5.7.: Values and uncertainties of the apparent apparatus constant used to constraint
the fit of the expansion experiments and determined by measurements with he-
lium.
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5.3. Density virial coefficients of argon

The calculation of the density virial coefficients is based on fitting the pressure ratios Pr,ratio =
pr
pr+1

over the initial pressures pr, as described in section 3.3, where r is the number of the
expansion. A summary of the averaged pressures and corresponding ratios is given in table
K.1 in appendix K. The used polynomial is Pr,ratio = K0 + K1 · pr + K2 · p2

r + K3 · p3
r for a

free fit and Pr,ratio − Q∆T = K1 · pr + K2 · p2
r + K3 · p3

r for a constraint fit. For the latter,
case Q∆T is calculated by equation 5.14 that was described in the previous section 5.2.
The fit coefficients of the averaged data are summarized in table 5.8 together with dif-

ferent contributions of uncertainty that are explained in the following. The propagation of

Tiso [K] 253.898 273.161 296.126 302.913
free fit

K0 1.151 754 1.151 547 1.151 312 1.151 234
K1 [10−9Pa−1] −1.838 −1.366 −0.967 −0.853
K2 [10−17Pa−2] 2.61 3.208 3.515 3.010
K3 [10−24Pa−3] 3.89 2.527 1.462 1.625

statistical scattering of pressures - pMC
u(K0) 0.000 018 0.000 018 0.000 018 0.000 017
u(K1) [10−9Pa−1] 0.018 0.019 0.018 0.018
u(K2) [10−17Pa−2] 0.55 0.48 0.53 0.48
u(K3) [10−24Pa−3] 0.43 0.44 0.43 0.45

temperature instability of TGHS
u(K0) 0.000 003 0.000 003 0.000 003 0.000 003
u(K1) [10−9Pa−1] 0.003 0.003 0.003 0.003
u(K2) [10−17Pa−2] 0.08 0.07 0.07 0.08
u(K3) [10−24Pa−3] 0.06 0.06 0.06 0.06

constraint fit
Q∆T 1.151 772 1.151 581 1.151 342 1.151 273
K1 [10−9Pa−1] −1.855 −1.398 −0.995 −0.891
K2 [10−17Pa−2] 3.06 4.08 4.22 4.05
K3 [10−24Pa−3] 3.53 1.83 0.92 0.79

statistical scattering of pressures - pMC
u(K1) [10−9Pa−1] 0.0044 0.0041 0.0043 0.0042
u(K2) [10−17Pa−2] 0.20 0.19 0.19 0.19
u(K3) [10−24Pa−3] 0.21 0.20 0.21 0.19

uncertainty of the apparatus constant - Q∆T
u(K1) [10−9Pa−1] 0.0072 0.0063 0.0058 0.059
u(K2) [10−17Pa−2] 0.19 0.17 0.16 0.16
u(K3) [10−24Pa−3] 0.15 0.14 0.13 0.13

temperature instability of TGHS
u(K1) [10−9Pa−1] 0.0006 0.0006 0.0006 0.0006
u(K2) [10−17Pa−2] 0.03 0.03 0.03 0.03
u(K3) [10−24Pa−3] 0.02 0.03 0.03 0.03

Table 5.8.: Fit coefficients of the Burnett expansions and the propagated uncertainties result-
ing from the listed components obtained by means of the simulations described
in the text. Q∆T is calculated by equation 5.14.
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5.3. Density virial coefficients of argon

the statistical uncertainty from the pressure measurement to the fit coefficients requires to
perform Monte-Carlo simulations. This formalism was described in detail in section 5.1,
whereas here, the initial pressure pr and the corresponding pressure ratios Pratio,r = pr

pr+1

have to be investigated. An ideal data set is generated by fitting the averaged pressures
and corresponding pressure ratios. The fit coefficients are used to calculate ideal pressure
ratios. At this point an important step is to use the calculated ideal pressure ratios to, in
turn, calculate the ideal pressures after the expansion. This is required to treat the sta-
tistical scattering of the pressures (category III in table 4.5) properly since the pressure pr
before and the pressure after the expansion pr+1 need to be scattered independently within
their standard uncertainty of 5 ppm. After this, the pressure ratios are calculated again and
fitted, the values of the fit coefficients are tabulated and the process is repeated with 700
samples. This routine covers the determination with a free fit. For the constraint fit, the
simulation routine is identical except for the fit of the scattered data sets, which is carried
out for Pratio,r −Q∆T over pr without the coefficient K0. These contributions are labeled as
pMC in table 5.8.
The second contribution (psyst in table 5.8) that needs to be investigated for the free as

well as for the constraint fit are the contributions of category I and II in table 4.5. As
described in section 5.1, a worst case estimate is given by shifting both calibration points
by the systematic contribution of category I, while the statistical contribution of category
II is only applied to the calibration point at 1 MPa. The difference in the fit coefficients
compared to the ideal fit coefficients is the measure for the propagated uncertainty. Since
the relative change of K0 is only in the order of 5× 10−10 and the influence on the higher
fit coefficients is less than 100 ppm, this component is neglected here. For the constraint fit,
the uncertainty of the calculated apparent apparatus constant Q∆T needs to be taken into
account. Therefore, Q∆T is changed by 5 ppm and the difference in the fit coefficient K1

defines the propagated uncertainty.
Finally, the temperature instability of the gas-handling system causes statistical scattering

of the pressures. It was estimated in section 4.7 that the remaining relative uncertainty of
the pressure ratio after correction to isothermal conditions is 1 ppm. Pratio was scattered
within this interval in a Monte-Carlo simulation as well, whereas the resulting contribution
is listed in table 5.8.

Determination of the second density virial coefficient The second density virial coefficient
B(Tiso) can be retrieved from the fit coefficients listed in table 5.8 by utilizing the working
equation 3.53:

B(Tiso) = K1
K0 − 1 ·

RTiso
V1
− Tratio

1− V1
V 1 ·BGHS−

RTiso
V2
V1
· λB −RTiso

V3
V1
· λA −RTiso

V4
V1
· λGHS

(5.16)

where the coefficients V1 to V4 are defined in equation 3.54 in section 3.5. In case of the
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Tiso [K] 253.898 273.161 296.126 302.913
Terms of equation 5.16

a) K1
K0−1 [10−6m3mol−1] −27.24 −21.90 −16.94 −15.30

b) K1
Q∆T−1 [10−6m3mol−1] −27.48 −22.44 −17.41 −15.98
BGHS [10−6m3mol−1] −0.927 −1.042 −1.215 −1.266
λB [10−6m3mol−1] 0.158 0.170 0.185 0.190
λA [10−6m3mol−1] −0.237 −0.255 −0.276 −0.283

λGHS [10−6m3mol−1] −0.004 −0.004 −0.005 −0.005
Contributions to uncertainty

a)K0 − pMC [10−6m3mol−1] 0.003 0.003 0.002 0.002
a)K1 − pMC [10−6m3mol−1] 0.268 0.297 0.317 0.321

a)K1 − TGHS,MC [10−6m3mol−1] 0.039 0.040 0.046 0.047
b)K1 −Q∆T [10−6m3mol−1] 0.106 0.101 0.101 0.106
b)K1 − pMC [10−6m3mol−1] 0.065 0.066 0.075 0.076

b)K1 − TGHS,MC [10−6m3mol−1] 0.009 0.009 0.010 0.010
BGHS [10−6m3mol−1] 0.005 0.005 0.006 0.007
λA [10−6m3mol−1] 0.012 0.013 0.014 0.014
λB [10−6m3mol−1] 0.008 0.008 0.009 0.009
QB [10−6m3mol−1] 0.004 0.002 <0.001 0.001
QA [10−6m3mol−1] 0.011 0.006 0.001 0.003
Q∗ [10−6m3mol−1] 0.001 0.001 0.001 0.001

Results of the free fit a

B [10−6m3mol−1] −26.23 −20.77 −15.62 −13.93
u(B) [10−6m3mol−1] 0.272 0.300 0.321 0.325

ur(B) [%] 1.04 1.45 2.05 2.33
repeatability [%] 0.59* 1.28 0.97 0.31**

Results of the constraint fit b

B [10−6m3mol−1] −26.48 −21.28 −16.10 −14.62
u(B) [10−6m3mol−1] 0.126 0.123 0.127 0.133

ur(B) [%] 0.48 0.58 0.79 0.91
repeatability [%] *0.05 0.35 0.70 **0.85

Table 5.9.: Listed are the absolute values of the terms used to calculate B(Tiso) according to
equation 5.16. Contributions marked with a contribute to the free fit exclusively,
whereas these marked with b only contribute to the constraint fit. The main
contributions to uncertainty are given. Final values of the second density virial
coefficient for the free and constraint fit including their corresponding combined
uncertainties are listed in the lower part including the repeatability, which is
determined as the relative standard deviation of the individual isothermal mea-
surements. * repeatability based on two measurements ** repeatability based on
three measurements

constraint fit, the fit coefficient K0 of equation 5.16 is replaced by the constraint apparatus
constant Q∆T . It can be seen from equation 5.16 that the second density virial coefficient
BGHS at the temperature of the gas-handling system already needs to be known. In case
no literature values are available, the first measurement has, thus, to be performed for
Tiso = TGHS. The data can then be evaluated by the more simple working equation 3.32,
which only takes the deformation of the cells into account. As described in section 4.1.1 and
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5.3. Density virial coefficients of argon

visible from table 5.1, this isothermal restriction could not be met for all measurements at
296 K. That is why the working equation 5.16 given here is utilized together with values for
B(TGHS) that are taken from the reanalyzed data of Gilgen et al. by Jäeger et al. [29, 67].
The contributions from the terms of equation 5.16, the main contributions to uncertainty
and the final values including their combined uncertainty are listed in table 5.9 for the free
as well as for the constraint fits. The assignment of uncertainties to B(Tiso) follows the
same pattern defined by the GUM shown in the previous sections. The partial derivatives of
equation 5.16 are not shown explicitly here since they are very lengthy due to the complex
coefficients V1 to V4. The individual components adding relevant uncertainty contributions
may be taken from table 5.9. Contributions that were neglected since their influence is less
than 0.005 % are the uncertainty of the absolute temperature Tiso, the deformation of the
gas-handling system λGHS and the apparent apparatus constant Q∆T for the free fit. The
contribution due to the temperature ratio Tratio is included in the uncertainty of Q∆T for the
constraint fit, while the influence in the working equation 5.16 is as well less than 0.005 %.
The repeatability of the Burnett expansions is visualized in figure 5.8 by the results for the
free and the constraint fits of the individual isotherms. Values obtained by both approaches
deviate significantly but overlap within their expanded uncertainties. It is concluded that
the additional fit parameter of the free fit potentially causes these deviations. The deviation
to the value from the constraint fit can be reduced utilizing the approach by Nowak et al.
[89, 90], which was shown in section 3.6. The order of the fit is reduced, whereas the fitting
is exclusively carried out for lower density data.
It can be seen from table 5.9 that the main correction to the ideal fit coefficients arises

from the different temperature of the gas-handling system and is in the order of 4 % to 8 %,
while the relative corrections due to the deformation of the cells is typically less than 2 %.
Regarding the main sources of uncertainty, the statistical scattering of the pressures can
be identified for the free fits. The application of a constraint fit reduces this component
by a factor of approximately three, while the leading uncertainty contribution results from
the uncertainty of Q∆T . All other components only have minor contributions. As already
pointed out for the DCGT virial coefficients in section 5.1.4, the uncertainty of absolute
pressures and temperatures is only of secondary importance.
At this point a determination of the third density virial coefficient C from the fit coefficient

K2 of the Burnett expansion is only possible at the temperature TGHS of the gas-handling
system via the working equation 3.32. This equation includes the pressure deformation of
the measuring cells, while equations for other temperatures were not yet obtained due to
the complexity of their derivation. Also, it can be seen from table 5.8 that the achievable
uncertainties are comparably high due to the statistical scattering of the pressures. To give
an estimate, an average value was derived from the three isotherms (numbers 9,10 and 15)
with the lowest scattering in Pratio. For a free fit, a value of 0.97× 10−10 m6 mol−2 with a
relative standard uncertainty of 17 % can be obtained. The uncertainty can be lowered to 6 %
by applying a constraint fit with the corresponding value of C being 1.12× 10−10 m6 mol−2.
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Figure 5.8.: Values of the second density virial coefficient for the individual isotherms mea-
sured at the indicated temperatures. Grey triangles denote values retrieved by a
free fit, while solid red circles represent values obtained by a constraint fit. Error
bars mark the combined standard uncertainty. The solid red line is the average
value for a constraint fit, whereas the dashed line indicates the corresponding
standard uncertainty.

5.4. Dielectric virial coefficients of argon

The calculation of the dielectric virial coefficients is based on fitting the ratios of Mosotti-
terms Fr,ratio = fr

fr+1
over the initial Mosotti-term fr, as described in section 3.4, where r is

the number of the expansion. A summary of the averaged Mosotti-terms and corresponding
ratios is given in table K.2 in appendix K. As explained in section 3.6, the used polynomials
Fr,ratio = D0+D1 ·fr+D2 ·f2

r for a free fit and Fr,ratio−Q∆T = D1 ·fr+D2 ·f2
r for a constraint

fit are sufficient. In the latter case, the apparatus constant Q∆T
is calculated by equation

5.14. The fit coefficients of the averaged data are summarized in table 5.10 together with
propagated uncertainties based on the listed components. To treat the statistical scattering of
the capacitance data, Monte-Carlo simulations are performed again. Therefore, the relative

110



5.4. Dielectric virial coefficients of argon

Tiso [K] 253.898 273.161 296.126 302.913
free fit

D0 1.151 763 1.151 563 1.151 319 1.151 257
D1 0.0409 0.0336 0.0190 0.016
D2 −0.46 −0.71 −0.57 −0.63

statistical scattering of capacitance - fMC
u(D0) 0.000 013 0.000 013 0.000 015 0.000 015
u(D1) 0.0032 0.0035 0.0046 0.0047
u(D2) 0.16 0.80 0.63 0.39

temperature instability of TGHS
u(D0) 0.000 001 0.000 001 0.000 001 0.000 001
u(D1) 0.0003 0.0004 0.0004 0.0004
u(D2) 0.02 0.03 0.03 0.03

constraint fit
Q∆T 1.151 772 1.151 581 1.151 342 1.151 273
D1 0.0386 0.028 0.012 0.01
D2 −0.33 −0.38 −0.08 −0.25

statistical scattering of capacitance - fMC
u(D1) 0.0009 0.0011 0.0014 0.0014
u(D2) 0.08 0.10 0.14 0.15

uncertainty of the apparatus constant - Q∆T
u(D1) 0.0021 0.0020 0.0020 0.0021
u(D2) 0.12 0.12 0.14 0.15

temperature instability of TGHS
u(D1) 0.0001 0.0001 0.0002 0.0002
u(D2) 0.01 0.01 0.02 0.02

Table 5.10.: Fit coefficients of the dielectric expansions and the propagated uncertainties of
the listed components to these coefficients.

standard uncertainty ur
(
C(p)
C(0)

)
= 5.4× 10−8 for the measurement of capacitance ratios needs

to be converted to an absolute uncertainty of the Mosotti-term f = εr−1
εr+2 , which is rearranged

to give:

f = εr − 1
εr + 2 = 1− 1(1 + κeffp)

γ + 3 + 2κeff
(5.17)

In equation 5.17, γ is the relative change of capacitance defined in equation 3.21, whose
uncertainty is, thus, given by u(γ) = (γ + 1)ur

(
C(p)
C(0)

)
. It can be seen from equation 5.17

that two further contributions arise for the uncertainty of f . The uncertainty of κeff would
usually be treated as a systematic component since its value may be unknown but should
be constant during the course of an isotherm. However, in this work indication is given in
section 5.1.1 that κeff may eventually vary during the measurement. To give a worst case
estimate, κeff is, therefore, also varied for each data point in the range of its uncertainty,
which was assessed in section 4.1.3 to be 1 %. The contribution of the uncertainty of the
pressure measurement is approximately three orders of magnitude smaller than the other
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two and, thus, neglected here. With the remaining two components, the uncertainty of the
Mosotti-term is given by:

u(f) =
√(

∂f

∂γ
u(γ)

)2
+
(
∂f

∂κeff
u(κeff)

)2
(5.18)

The partial derivatives are given by:

∂f

∂γ
= 3(1 + κeffp)

(γ + 3 + 2κeffp)2

∂f

∂κeff
=3p(γ + 3 + 2κeffp)− 6p(1 + κeff)

(γ + 3 + 2κeffp)2

(5.19)

For each data point, fr as well as fr+1 are scattered in the uncertainty interval defined
by equation 5.18. This process is valid for the data evaluation with a free fit. In analogy to
the Monte-Carlo simulations for pressure data in the previous section, the constraint ratios
Fratio,r − Q∆T are fitted over fr. Also, the influence of the relative uncertainty of Q∆T of
5 ppm is investigated by changing Q∆T by this amount and repetition of the constraint fit.
The last component that has to be treated by Monte-Carlo simulations is the temperature
instability of the gas-handling system, which causes scattering of Fratio in the order of 1 ppm
(see section 4.7).

Determination of the second dielectric virial coefficient The second dielectric virial co-
efficient bε(Tiso) can be retrieved utilizing the working equation 3.53:

bε(Tiso) = D1
D0 − 1 ·

RTiso
V1
− Tratio

1− V1
V 1 · bε,GHS−

RTiso
V2
V1
· λB −RTiso

V3
V1
· λA −RTiso

V4
V1
· λGHS−

V5
V1
· (BDCGT,iso − TRatioBDCGT,GHS)

(5.20)

where the coefficients V1 to V5 are defined in equation 3.54 in section 3.5. In case of the
constraint fit, the fit coefficient D0 of equation 5.20 is replaced by the constraint apparatus
constant Q∆T . As already explained in the previous section for the density virial coefficients,
usually a precise measurement at Tratio = 1 has to be performed first to determine bεGHS. For
the reasons given in the previous section, the most recent calculated values by Garberoglio
and Harvey are used here [43]. The contributions from the terms of equation 5.20, the
main contributions to uncertainty and final results including their combined uncertainty are
listed in table 5.11 for the free as well as for the constraint fits. To determine the combined
uncertainty, the partial derivatives of equation 5.20 are required. Again, this simple yet
lengthy task is not shown here, whereas the resulting contributions are shown in table 5.11.
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Tiso [K] 253.898 273.161 296.126 302.913
Terms of equation 5.20

a) D1
D0−1 [10−6m3mol−1] 1.189 0.983 0.561 0.471

b) D1
Q∆T−1 [10−6m3mol−1] 1.122 0.830 0.341 0.310
bε,GHS [10−6m3mol−1] 0.023 0.027 0.031 0.033

λB [10−6m3mol−1] 0.157 0.170 0.185 0.189
λA [10−6m3mol−1] −0.237 −0.255 −0.276 −0.283

λGHS [10−6m3mol−1] −0.004 −0.004 −0.005 −0.005
BDCGT [10−6m3mol−1] 0.811 0.448 −0.002 −0.134

Contributions to uncertainty
a)D1 − CMC [10−6m3mol−1] 0.092 0.103 0.136 0.140

a)D1 − TGHS,MC [10−6m3mol−1] 0.010 0.016 0.013 0.013
b)D1 − CMC [10−6m3mol−1] 0.026 0.033 0.041 0.042
b)D1 −Q∆T [10−6m3mol−1] 0.060 0.058 0.059 0.062

b)D1 − TGHS,MC [10−6m3mol−1] 0.004 0.004 0.004 0.004
bε,GHS [10−6m3mol−1] 0.002 0.003 0.003 0.003

λA [10−6m3mol−1] 0.012 0.013 0.014 0.014
λB [10−6m3mol−1] 0.008 0.008 0.009 0.009

λGHS [10−6m3mol−1] <0.001 0.001 0.001 0.001
QB [10−6m3mol−1] 0.004 0.002 <0.001 0.001
QA [10−6m3mol−1] 0.012 0.007 <0.001 0.002
Q∗ [10−6m3mol−1] 0.010 0.005 0.001 0.002

BDCGT,iso [10−6m3mol−1] 0.009 0.008 <0.001 0.006
BDCGT,GHS [10−6m3mol−1] 0.005 0.005 <0.001 0.006

Results of the free fit a

bε [10−6m3mol−1] 0.437 0.598 0.628 0.671
u(bε) [10−6m3mol−1] 0.095 0.105 0.138 0.142

ur(bε) [%] 21.8 17.6 22.0 21.1
repeatability [%] 7.9* 12.6 16.7 8.0**

Results of the constraint fit b

bε [10−6m3mol−1] 0.370 0.445 0.409 0.510
u(bε) [10−6m3mol−1] 0.070 0.070 0.074 0.077

ur(bε) [%] 18.9 15.7 17.1 15.1
repeatability [%] 3.4* 8.6 10.5 11.4**

Table 5.11.: Absolute values of the terms used to calculate bε(Tiso) according to equation
5.20. Contributions marked with a contribute to the free fit exclusively, whereas
these marked with b only contribute to the constraint fit. The main contri-
butions to uncertainty are given in the middle part of the table. Final values
of the dielectric virial coefficient for the free and constraint fit including their
corresponding combined uncertainties are listed in the lower part including the
repeatability, which is determined as the relative standard deviation of the in-
dividual isothermal measurements. * repeatability based on two measurements
** repeatability based on three measurements

In contrast to the density virial coefficients, an additional component based on the second
DCGT virial coefficients is required to describe the influence of the dead volumes at different
temperature since, unlike the pressure, the dielectric constant is not equal in both thermal
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regimes. This was extensively discussed in section 3.4.3. The correction to the ideal fit
coefficient is of the same order of magnitude, but since the the DCGT virial coefficients
can be measured very precisely the resulting contribution to the combined uncertainty of
bε is rather small. The relative correction due to bε,GHS is a little bit lower compared to
the equivalent for the density virial coefficients which is a consequence of the less distinctive
temperature dependence. The absolute values of the terms describing the deformation of the
cells under pressure are equal for both expansion evaluations. For the second density virial
coefficient, the relative correction of the ideal fit coefficient is less than 2 %. In contrast,
this effect leads to a relative correction of the ideal fit coefficient in the order of several ten
percent for the dielectric expansion. This is a consequence of the very small absolute value
of bε.
The dominating uncertainty contributions are identical to the Burnett expansion. In case

a free fit is applied the statistical scattering of the capacitance defines the reachable uncer-
tainty. With a constraint fit, the uncertainty of Q∆T becomes the dominating component,
whereas the scattering is still of the same order of magnitude. The application of the con-
straint fit leads to a decrease in uncertainty by roughly a factor of two, which may as well
be seen in table 5.11 for the absolute uncertainties. It should be noted that the relative
uncertainty of bε is distorted since the values from the free fit are significantly larger leading
to the impression of lower relative uncertainties. Besides these components, the pressure
deformation coefficients gain importance. The influence of statistical scattering on the fit
coefficient D0 is not listed since its contribution is less than 0.001× 10−6 m3 mol−1 for all
temperatures. Again, the uncertainty of Tratio does not contribute significantly to the un-
certainty by means of the working equation 5.20, but it is included in the uncertainty of
Q∆T for the constraint fit. The values of bε(T ) for the individual isotherms and the two
fit approaches are plotted in figure 5.9. Again, a systematic deviation between the values
from the free fit and the ones from the constraint fit can be reported, whereas there are no
discrepancies beyond the level of expanded uncertainties.
An attempt for the derivation of the third dielectric virial coefficient from the correspond-

ing fit coefficient D2 could in principal be made for the data at 296 K. The required working
equation 3.45 includes the deformation of the cells under pressure. However, the resulting
uncertainties can be estimated from table 5.10 and are in the order of almost 100 %. That
is why at this stage no value is reported.
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Figure 5.9.: Values of the second dielectric virial coefficient of argon for the individual
isotherms measured at the indicated temperatures. Grey triangles denote values
retrieved by a constraint fit, while the ones obtained from a constraint fit are
marked by red circles. The error bars are the combined standard uncertainties.
The average value and the corresponding standard uncertainty of the values from
the constraint fit are visualized by the solid and dashed red lines.
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5.5. Cross check of the measured virial coefficients

A major benefit of the approach shown in this thesis is that the different determined virial co-
efficients can be cross checked. As described in section 3.2, the second DCGT virial coefficient
is defined by BDCGT(T ) = B(T )−bε(T ). These three properties were derived in the previous
sections and are compared in table 5.12. The absolute deviations BDCGT(T )−(B(T )−bε(T ))
are visualized in figure 5.10. All values agree within their standard uncertainties except for
the one calculated from the free fit at 302.913 K, which is slightly outside the 68.27 % level
of confidence but very well within the expanded uncertainty. A certain trend can be seen
for the calculated values from the constraint values that are all larger than the measured
ones. This effect is attributed to the density virial coefficients since these are two orders of
magnitude larger than the dielectric virials. The deviations shown here, thus, represent the
ones that were already reported in section 5.3.

Tiso [K] 253.898 273.161 296.126 302.913
DCGT

BDCGT(T ) [10−6m3mol−1] −26.844 −21.602 −16.380 −15.040
u(BDCGT(T )) [10−6m3mol−1] 0.036 0.035 0.041 0.040

ur(BDCGT) [%] 0.11 0.16 0.25 0.27
expansion - free fit

B(T )− bε(T ) [10−6m3mol−1] −26.667 −21.370 −16.650 −15.126
u(B(T )− bε(T )) [10−6m3mol−1] 0.288 0.318 0.350 0.354

ur(B(T )− bε(T )) [%] 1.07 1.47 2.13 2.36
∆BDCGT [10−6m3mol−1] −0.177 −0.232 −0.128 −0.436

∆BDCGT/BDCGT [%] 0.66 1.07 0.78 2.90
expansion - constraint fit

B(T )− bε(T ) [10−6m3mol−1] −26.845 −21.727 −16.507 −15.126
u(B(T )− bε(T )) [10−6m3mol−1] 0.123 0.132 0.146 0.150

ur(B(T )− bε(T )) [%] 0.46 0.61 0.89 1.00
∆BDCGT [10−6m3mol−1] 0.001 0.125 −0.127 −0.864

∆BDCGT/BDCGT [%] <0.01 −0.58 −0.77 −0.57

Table 5.12.: Values and uncertainties (absolute and relative) of the second DCGT virial
coefficient from the DCGT experiments as well as from the ones calculated by
the results of the expansion experiments for free and constraint fits. The absolute
and relative deviations between the values from the DCGT and the expansion
experiments are listed as ∆BDCGT = BDCGT − (B(T )− bε(T )).
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Figure 5.10.: Absolute differences between the directly determined values of BDCGT(T ) (sec-
tion 5.1.4) and the ones calculated from B(T ) (5.3) and bε(T ) (5.4). Grey tri-
angles denote virial coefficients retrieved from free fits, while red circles mark
values determined by constraint fits. The error bars are the combined standard
uncertainty of the calculated values, while the green dashed lines indicate the
standard uncertainty of BDCGT(T ).

5.6. Comparison to literature data

The comparison to the literature values starts with the density (subsection 5.6.1) and dielec-
tric virial coefficients (subsection 5.6.2) since these values are required to calculate literature
values of DCGT virial coefficients for subsection 5.6.3. It should be noted that not all avail-
able literature values are shown here, but only those who were considered to be relevant.

5.6.1. Comparison of the density virial coefficients to the literature

The second density virial coefficient of argon has a significant temperature dependance,
which was shown in figure 3.1. In the measured temperature range, B(T ) increases from
roughly −26.5× 10−6 m3 mol−1 at 253 K to −14.6× 10−6 m3 mol−1 at 303 K. The sign of
B(T ) switches at approximately 408 K. To resolve the small differences to the literature
data the comparison shown in figure 5.11 is carried out independently for the four measured
temperatures.
Theoretical calculations include semi-classical computations by Mehl (published in Moldover

et al. [31]), who gave an estimate of uncertainty. Furthermore, works by Jäger et al. and
Wiebke et al. based on coupled cluster calculations (see section 3.1.1) both from 2011 are
selected [29, 30]. Since both authors utilized a pair potential by Jäger et al. [111] in com-
bination with a short range corrected three-body potential by Schwerdtfeger et al. [112],
the good agreement between these two works is relativized. These authors did not assign
an uncertainty to their computations, but Gaiser et al. estimated uncertainties for their
values at the triple point of water, which are assumed here as well [1]. Uncertainties at other
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Figure 5.11.: Relative deviations to the value of Bmeas(T ) determined in section 5.3 by the
constraint fit ( ). The red dashed lines indicate the corresponding combined
standard uncertainty. Values from the free fits (s) and the ones calculated
from the second DCGT virial coefficients ( ) of section 5.1.4 and the dielectric
virial coefficients obtained from the constraint fit in section 5.4 are shown.
Literature values from theory: � - Jäger et al. [29]; ◦ - Wiebke et al. [30]; 4
- values computed by Mehl published in Moldover et al. [31]. Literature values
from experiment: u - Tegeler et al. [88]; l - Jäger et al. [29]; t - values by
McLinden published in Cencek et al. [32]; n - Gaiser et al. [1]. The error bars
are combined uncertainties that sometimes had to be estimated or increased in
case interpolation was required to obtain B(T ) at the measured temperature.
See text for details. Values marked with * utilized the same potentials while
these marked with ** rely on the same data by Gilgen et al. [67] and can, thus,
not be seen as independent determinations.

temperatures are approximated assuming that these have the same temperature dependence
as these stated by Mehl in [31]. A three-body potential for argon was published by Cencek
et al. in 2013 together with values for C(T ) determined by coupled cluster calculations and
an estimate of uncertainty [32].
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253.898 K 273.161 K 296.126 K 302.913 K reference
−26.23± 0.20 −20.77± 0.20 −15.62± 0.18 −13.93± 0.18 This work free fit
−26.48± 0.20 −21.28± 0.20 −16.10± 0.18 −14.62± 0.18 This work constraint fit

calculated values of B(T ) in 106m3mol−1

−26.45± 0.20 −21.19± 0.20 −15.97± 0.18 −14.60± 0.18 Jäger et al. [29]
−26.62± 0.21 −21.41± 0.21 −16.22± 0.19 −14.86± 0.19 Wiebke et al. [30]
−26.37± 0.14 −21.11± 0.13 −15.90± 0.12 −14.54± 0.12 Moldover et al. [31]

experimental values of B(T ) in 106m3mol−1

−26.55± 0.13 −21.25± 0.13 −16.02± 0.13 −14.64± 0.13 Tegeler et al. [67, 88]
−26.48± 0.13 −21.22± 0.13 −15.99± 0.13 −14.62± 0.13 Jäger et al. [29, 67]
−26.67± 0.15 −21.230± 0.065 −16.02± 0.09 −14.60± 0.10 Cencek et al. [32]

−21.217± 0.014 Gaiser et al. [1]

Table 5.13.: Relevant calculated and experimentally determined values of the second density
virial coefficient of argon from the literature for the indicated temperatures.
The values by McLinden published in Cencek et al. had to be interpolated
introducing additional uncertainty.

The most comprehensive experimental determination of the p-ρ-T behavior of argon was
carried out by Gilgen et al. in 1994 utilizing a two-sinker densimeter (see 3.3). The data
was reevaluated in 1999 by Tegeler et al. and in 2011 by Jäeger et al. with focus on the
determination of density virial coefficients, which was exemplified in section 3.6. Further-
more, values determined from densimetry measurements of argon by McLinden are included
in Cencek et al. [32] for different temperatures. Except for the triple point of water, these
temperatures do not coincide with the ones measured in this thesis. That is why values of
B(T ) were interpolated, whereas an additional uncertainty component for this procedure
had to be introduced.
It was already explained in section 5.3 that the application of the free fit is error prone due

to the higher fit order. The results can be optimized by reducing high pressure data points
together with the fit order. Still, it is advisable to apply a constraint on the apparatus con-
stant if possible. That is why the further discussion will be based on the value obtained from
the constraint fit. Overall, all values plotted in figure 5.11 agree very well. In most cases, the
literature values lie within the standard uncertainty of the values determined in this thesis.
For the few exceptions, overlap by means of the standard uncertainties can still be reported.
Especially in comparison to densimetry, this method may offer a complementary approach
without the need to determine the absolute density while keeping competitive uncertainties.
Regarding the uncertainties, a even more sophisticated approach is to calculate the density
virial coefficients from the DCGT virial coefficients (section 5.1.4) and the dielectric virial
coefficients (section 5.4). In this case, relative uncertainties for B(T ) between 0.3 % and
0.55 % can be obtained, although the relative uncertainties of bε(T ) are in the order of 15 %.

This approach gains further importance for the higher virial coefficients. As pointed out
in section 5.3, at this point a determination of C(T ) is only possible at ambient temperature.
The comparison of this value to the established literature is shown in table 5.14. While the
agreement to the established literature of C(T ) is on an acceptable level and well within
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the standard uncertainty, the uncertainty of CDCGT is significantly lower. Since the deter-
mination at temperatures different from ambient will introduce further contributions to the
uncertainty, the calculation by C(T ) = CDCGT(T ) + cε(T ) + 2bε(T )BDCGT is advisable.

253.898 K 273.161 K 296.126 K 302.913 K reference
calculated values of C(T ) in 1012m6mol−2

1128± 28 1147± 23 1071± 19 1052± 18 Jäger et al. [29]
1208± 28 1130± 23 1056± 19 1038± 18 Wiebke et al. [30]
1234± 15 1152± 13 1077± 11 1057± 10 Moldover et al. [31]

experimental values of C(T ) in 1012m6mol−2

1271± 50 1178± 50 1109± 50 1079± 50 Tegeler et al. [67, 88]
1234± 50 1153± 50 1074± 50 1054± 50 Jäger et al. [29, 67]
1235± 43 1153± 32 1080± 60 1061± 64 Cencek et al. [32]

970± 165 This work free fit
1119± 70 This work constraint fit

Table 5.14.: Relevant calculated and experimentally determined values of the third density
virial coefficient of argon from the literature for the indicated temperatures.
The values by McLinden published in Cencek et al. had to be interpolated
introducing additional uncertainty.

5.6.2. Comparison of the dielectric virial coefficients to the literature

T [K] bε(T ) [10−6 m3

mol ] u(bε(T )) [10−6 m3

mol ] reference
242.95 0.449 0.017 Huot et al. 1991 [6]
303.15 0.298 0.022 Huot et al. 1991 [6]
407.60 0.024 0.073 Huot et al. 1991 [6]
323.00 0.429∗ 0.012 Achtermann et al. 1991 [50]
303.00 0.417∗ 0.012 Achtermann et al. 1993 [49]
303.00 0.297∗ 0.024 Bose et al. 1988 [115]
322.85 0.174 0.029 Bose et al. 1970 [114]
322.15 0.094 0.048 Orcutt et al. 1967 [113]
323.15 0.532 0.024 Orcutt et al. 1965 [5]
373.15 0.701 0.097 Orcutt et al. 1965 [5]
373.15 0.605 0.024 Orcutt et al. 1965 [5]
423.15 0.556 0.024 Orcutt et al. 1965 [5]
423.15 0.749 0.024 Orcutt et al. 1965 [5]

Table 5.15.: Overview of experimentally determined values of bε of argon shown in figure 5.12.
Values marked with ∗ were obtained from optical experiments at a wavelength
of 632.99 nm.

Since the temperature dependence of the second dielectric virial coefficient is much less
distinctive and the relative uncertainties are much higher than these of the density virial
coefficients, a comparison to other values can be carried out by means of the absolute values
over a suitable temperature range. An overview of the relevant theoretical and experimental
literature values is shown in figure 5.12 together with the values determined by the constraint
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Figure 5.12.: Overview of theoretical calculations and experimental values of the second di-

electric virial coefficient of argon as a function of temperature. For the ex-
perimental results, same symbols indicate that the same method was used.
The black dashed line indicates the estimated expanded uncertainty. Theory:

Garberoglio and Harvey 2020 [43]; Rizzo et al. 2002 [45]; Results indis-
tinguishable to Garberoglio and Harvey on the scale of this plot were reported
by Vogel et al. and Song et al. [44, 48]. Experimental: l - this work (con-
straint fit); ◦ - Orcutt and Cole 1965 [5]; � - Huot and Bose 1991 [6]; 4 -
Orcutt 1967 [113]; 4 - Bose and Cole 1970 [114]; × - Bose et al. 1970 [114]; ×
- Achtermann et al. 1991, 1993 [49, 50]

fit from section 5.4 in this work.
Among the theoretical work, three provide almost coinciding results in the temperature

range of interest for this work. An older publication by Vogel et al. from 2010 and two very
recent publications by Garberoglio and Harvey as well as Song and Luo [43, 44, 48]. The
agreement is a consequence of utilizing the same interaction induced pair polarizability that
was developed by Vogel et al. in their work. Both of the latter works utilized a more recent
pair potential by Patkowski et al. [116] from 2017 compared to Vogel et al.. However, since
the second dielectric virial coefficient is dominated by the influence of the pair polarizability
on the one hand, and since the pair potential was already very well developed by 2010, these
three works can not be viewed as independent confirmations of the calculation. They are
still relevant since Vogel et al. and Song et al. used a semi-classical approach with different
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253.898 K 273.161 K 296.126 K 302.913 K reference
bε(T ) in 10−6m3mol−1

0.437± 0.095 0.598± 0.105 0.628± 0.138 0.671± 0.142 This work free fit
0.370± 0.059 0.445± 0.065 0.409± 0.073 0.510± 0.076 This work constraint fit

calculated values of bε(T ) in 10−6m3mol−1

0.433± 0.029 0.425± 0.027 0.415± 0.026 0.412± 0.027 Garberoglio et al. 2020 [43]
0.433± 0.024 0.424± 0.024 0.414± 0.023 0.411± 0.023 Song et al. 2020 [44]

0.433 0.424 0.414 0.411 Vogel et al. 2010 [48]
0.352 0.343 0.336 0.333 Rizzo et al. 2002 [45]

Table 5.16.: Overview of determined values of bε in 10−6 m3

mol at the four measured tempera-
tures as well as calculated values from the literature including the uncertainty
estimates provided for the two recent publications.

levels of quantum mechanical corrections, while Garberoglio and Harvey used a path integral
method including higher levels of quantum mechanics (see also section 3.1.3). The matching
results indicate that both approaches can be used to calculate the second dielectric virial
coefficients. Garberoglio and Harvey stated that quantum effects first start to play a role for
temperatures below 100 K [43]. This will be of particular interest when new pair polarizabili-
ties, which are part of the “Quantum Pascal” project (see section 2.2), are available. In figure
5.12 the values of Garberoglio et al. are shown since these technically include higher levels of
quantum mechanics. Furthermore, they gave an estimate of uncertainty, which is based on a
uncertainty estimate for the pair polarizability of Vogel et al. that was apparently part of a
private communication [43]. It should be noted that Song and Luo estimated an uncertainty
for their values as well, which is approximately equal to the one by Garberoglio and Harvey
since it is based on a similar estimate of the relative uncertainty of the pair polarizability
of Vogel et al. of 5.4 %. Another independent theoretical calculation by Rizzo et al. from
2002 is shown in the plot as well. It has a roughly constant absolute offset compared to
the other calculations, which corresponds to almost 20 % at the triple point of water and is
far beyond the uncertainties estimated by Garberoglio et al. as well as Song et al. [43, 44].
These authors concluded that the calculation by Rizzo et al. must have been doubtful in
parts for the applied quantum mechanical corrections. A summary of the calculated values
at the four temperatures measured in this thesis is given table 5.16

The experimental work shown in figure 5.12 and summarized in table 5.15 is scattered
widely. Though, often no rigorous uncertainties are given, the stated uncertainties are par-
tially clearly too optimistic and display the experimental difficulties. To knowledge of the
author, expansion experiments are at this point the only viable access to bε(T ) with rea-
sonable uncertainties. The last work in this field was carried out almost three decades ago.
Relevant experiments that should be highlighted were carried out by Huot et al., whereas
their value at 408 K is significantly below the established values [6]. They used an approach
developed by Buckingham [117], which is described in detail in appendix G.2 similar to the
cyclic expansion described in this appendix as well. Achtermann et al. published very precise
assessments of the refractive index virial coefficients at a wavelength of 632.99 nm for 303 K
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and 323 K. The difference between the dielectric and refractive index virial coefficients (see
appendix D for their relation) is typically in the order of a few percent. The difference was
for instance calculated for helium at this wavelength by Puchalski et al. to be 2.5 %. Thus,
the value is included here especially due to the attributed low uncertainty. Another optical
measurement at the same wavelength was performed by Bose et al. in 1977. This value
at 303 K coincides perfectly with the measurement of Huot and Bose at this temperature.
Orcutt and Cole utilized the dielectric expansion method described in section 3.4 in 1965.
Unfortunately, the values are higher than the calculations and more precise experiments that
were carried out later. The differences are far outside the stated uncertainties. There are
several possible sources that can lead to this deviations. First, the behavior of the utilized
plate capacitors under pressure may be an issue. This also accounts for the deformation of
the vessels under pressure. As shown in section 5.4, the influence of this correction can be
in the order of several ten percent. Both effects are systematic leading to shifted values.
Errors in their correction remain completely undetected for repetitions of the experiment.
An additional modification of the method, the cyclic expansion described in appendix G.2,
was used in 1967 by the same authors to decrease the uncertainties. This data point in
turn is significantly lower than the ones reported previously. Since a new experimental setup
was used, again, the systematic effects described previously could explain the deviation. A
second work utilizing the cyclic expansion and the same apparatus was published in 1970
by Bose and Cole. The value is in reasonable agreement with the first one, which again
indicates a systematic error source from the used apparatus.

Generally, the retrieved values in this work agree very well with the theory of Garberoglio
and Harvey [43] and, thus, also with the calculations of Vogel et al. [48] and Song and Luo
[44]. The values at 273 K (six isotherms) and 296 K (seven isotherms) lie within the estimated
expanded uncertainty of the theoretical calculations [43]. The values at 253 K (two isotherms)
and 303 K (three isotherms) still agree on the level of their standard uncertainty. It should
be noted at this point that the uncertainties assigned to the results of this work correspond
to the uncertainty of a single isotherm measurement and could potentially be decreased by
statistical means. Furthermore, the values obtained in this thesis confirm the highly precise
optical measurements by Achtermann et al. [49, 50]. Overall, it can be concluded that the
theory of Rizzo et al. is erroneous [45]. The results by Huot et al. seem to agree very
well at 243 K but deviate on the level of four standard uncertainties at 303 K and 408 K [6].
This indicates that eventually a systematic temperature effect has lead to these deviations.
This also accounts to the other works shown in figure 5.12 and table 5.15 which are prior to
1970. They are not taken into account for comparison since their large deviations indicate
undetected systematic errors. Still, there is one conclusion that can be drawn from these
measurements. These advanced experimental methods, which were developed to minimize
the relative uncertainty of the apparatus constant to the level of a few ppm [118], for instance
the cyclic expansion [113] or the method of Buckingham [117] (see appendix G.2), can still
result in systematically wrong results. It was shown in section 5.4 that the data evaluation is
heavily influenced by effects due to pressure deformation, which is why the author assumes
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that these are causing the deviations.

The experimental challenges are even more distinct for the third dielectric virial coefficient
cε(T ). At this point, no relevant theoretical calculations of cε(T ) were published for argon,
and only one experimental determination by Huot et al. [6] can be found in the literature.
Gaiser et al. retrieved another value from the high pressure data measured by Lallemand et
al. by the application of constraints for the molar polarizability and bε(T ) [1, 51]. Achter-
mann et al. published precisely measured third refractive index virial coefficients of argon
for a wavelength of 632.99 nm. Under the assumption that the influence of the frequency
will only cause deviations to cε(T ) in the order of a few percent, which is the case for bε(T ),
the values are listed together with the others in table 5.17. As explained in section 5.4, no
estimate for the third dielectic virial coefficient are given within this thesis. However, the
values are required to calculate the third DCGT virial coefficient in the next section.

T [K] cε(T ) [10−12 m6

mol2 ] u(cε(T )) [10−12 m6

mol2 ] reference
242.95 −21.95 0.52 Huot et al. 1991 [6]
303.15 −17.80 9.77 Huot et al. 1991 [6]
407.60 −12.68 5.72 Huot et al. 1991 [6]
298.15 −22.40** 3.60 Lallemand et al. 1977 [1, 51]
323.00 −20.64* 0.48 Achtermann et al. 1991 [50]
303.00 −21.36* 0.48 Achtermann et al. 1993 [49]

interpolated values of cε(T ) at the measured temperatures
253.898 −18.03 2.7 interpolation
273.161 −19.10 2.9 interpolation
296.126 −20.38 3.1 interpolation
302.913 −20.75 3.1 interpolation

Table 5.17.: Experimentally determined values of cε including the stated uncertainty esti-
mates. Values marked with * are refractive index virial coefficients at a wave-
length of 632.99 nm. The value marked with ** was reevaluated by Gaiser et
al.. In the lower part, interpolated values of cε(T ) derived by the procedure
described in the text are listed together with an estimated standard uncertainty
of 15 %.

To retrieve values of cε(T ) at the temperatures measured in this work, the following strat-
egy is followed. The values by Achtermann et al. lie in between these of Huot et al. and
Lallemand et al. confirming their magnitude to some extend. Still, since the frequency de-
pendence of cε(T ) is unclear, they are not used further. Instead, the three values by Huot et
al. show an approximately linear behavior in temperature. This is used to interpolate a value
at 298.15 K by Huot et al.. Since the uncertainties are comparable, the average value of this
value and the one by Gaiser et al. based on the data of Lallemand et al. is calculated and
selected as a base value, while the linear temperature dependence of Huot et al. is selected
to calculate cε at the other temperatures. These calculated values are shown in the second
part of table 5.17. A standard uncertainty of 15 % is estimated based on the scattering of
the experimental values.
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5.6.3. Comparison of the DCGT virial coefficients to the literature
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Figure 5.13.: Relative difference between the directly determined second DCGT virial coef-
ficient BDCGT,meas and values (B − bε)Lit that were calculated from literature
values for B(T ) and bε(T ) except for the directly determined very accurate
value of Gaiser et al. (n) at 273 K [1]. The uncertainty of this value is below
the size of the used symbol. value retrieved in this work. The green dashed
lines mark the corresponding combined standard uncertainty. Values based on
theory: � - Jäger et al. [29]; ◦ - Wiebke et al. [30]; 4 - values computed
by Mehl published in Moldover et al. [31]. Values based on experiment:
u - Tegeler et al. [88]; l - Jäger et al. [29]; t - values by McLinden pub-
lished in Cencek et al. [32] The error bars are combined uncertainties, whereas
sometimes uncertainties had to be estimated. Values for bε were taken from
Garberoglio and Harvey [43]. Values marked with * utilized the same poten-
tials while these marked with ** rely on the same data by Gilgen et al. [67]
and can, thus, not be seen as independent determinations. See the text further
details.

Highly precise experimental values of DCGT virial coefficients were published by Gaiser
et al. with BDCGT =−21.1609 cm3 mol−1 and CDCGT =1182.7 cm6 mol−2 at the triple point
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Figure 5.14.: Relative difference between the directly determined third DCGT virial coef-
ficient CDCGT,meas and values CDCGT,Lit that were calculated from literature
values for the density and dielectric virial coefficients except for the directly
measured very accurate value of Gaiser et al. (n) at 273 K [1]. value re-
trieved in this work. The dashed green lines mark the corresponding combined
standard uncertainty. Values based on theory: � - Jäger et al. [29]; ◦ -
Wiebke et al. [30]; 4 - combinations of the second density virial coefficient by
Mehl published in Moldover et al. [31] with the third density virial coefficient
by Cencek et al. [32]. Values based on experiment: u - Tegeler et al. [88];
l - Jäeger et al. [29]; t - values by McLinden that were published in Cencek
et al. [32]. The error bars are combined uncertainties, whereas sometimes un-
certainties had to be estimated. Values for bε were taken from Garberoglio and
Harvey [43] while cε had to be estimated from experimental data by Huot et
al. and Lallemand et al. [6, 51]. Values marked with * utilized the same po-
tentials, while these marked with ** rely on the same data by Gilgen et al. [67]
and can, thus, not be seen as independent determinations. Further details on
the assigned uncertainty, the evaluation of cε and interpolation of experimental
values is given in the text.

of water based on measurements that were carried out in the frame of the determination of
the Boltzmann constant [1]. That is why the corresponding relative standard uncertainties,
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5.6. Comparison to literature data

204 ppm for BDCGT and 3336 ppm for CDCGT, are extremely low. Other than that, there is
a lack of directly determined DCGT virial coefficients. That is why a comparison is carried
out by calculation of BDCGT and CDCGT by equations 3.23 from the most relevant density
and dielectric virial coefficients in the literature, which were presented in the previous two
sections 5.6.1 and 5.6.2. Details on their determination, valuation and uncertainty was given
in these sections.
The relative deviations of the measured values to these calculated literature values are

plotted in figure 5.13 for the second DCGT virial coefficient and in figure 5.14 for the third
DCGT virial coefficient. Overall, an excellent agreement, which is typically well within the
standard uncertainty, can be reported. For BDCGT, the values by Wiebke et al. are system-
atically deviating not only from the measured values but also from the values of Jäger et al..
Since both authors utilized the same potentials, this deviation surprises to some extend but
may as well display the difficulties in these calculations. The comparably low uncertainties
of the calculated density virial coefficients (especially of C(T )) by Mehl published in [31]
were confirmed on the level of uncertainty and for the indicated temperatures. This is an
important aspect since the assignment of uncertainties to theoretical calculations is rather
challenging. The experimentally achieved uncertainties of BDCGT can compete with the ones
of the values that were retrieved from accurate experimental determinations with densime-
ters. Since the uncertainty of the calculated DCGT virial coefficients is by far dominated by
the uncertainty of B(T ) and C(T ), this direct comparison can be carried out. For CDCGT,
the uncertainties are actually below these of the established methods. This aspect can be
exploited to precisely determine the third density virial coefficient.
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6. Summary, conclusions and outlook

Summary The previous chapters comprehensively covered the theoretical background, de-
sign, construction and first results of a compact and innovative apparatus capable of deter-
mining three different kinds of virial coefficients simultaneously in an automated manner.
The novel working equations include the main corrections of cell deformation under pressure
as well as dead volumes at different temperatures and, thus, provide important information
for future work. They are the basis for a comprehensive uncertainty analysis for each of the
three methods in accordance with the GUM and its first supplement. Validation of the per-
formance was achieved by determination of the DCGT, second density and second dielectric
virial coefficients of argon at temperatures of 254 K, 273.16 K, 296 K and 303 K. The re-
trieved values were cross checked amongst each other and showed excellent agreement on the
level of the standard uncertainty in comparison to other highly accurate experimental and
theoretical data in the literature. The evaluation of the expansion experiments was shown to
be rather complex, whereas reliable and precise results can be obtained utilizing a constraint
on the apparatus constant from accurate measurements with helium. The obtained relative
uncertainty on the level of 5 ppm for this volume ratio allowed to decrease the uncertainty
in density and dielectric virial coefficients by a factor of two in comparison to their determi-
nation from a free fit. Based on Monte-Carlo simulations, it was shown that the dominating
contribution of uncertainty is the statistical scattering of pressure and capacitance together
with the uncertainty of Q∆T . The reached relative standard uncertainties are in the order
of 0.15 % to 0.3 % for BDCGT and 1.5 % to 2.5 % for CDCGT. For B(T ), relative standard
uncertainties of 0.5 % to 0.9 % can be reported, while those of bε(T ) are in the order of 15 %.
This work marks the first attempt for the determination of the latter since three decades.
Compared to older publications, the detailed uncertainty budget appears to give an hon-
est indication of the measuring performance, while stated uncertainties in the literature are
mostly far too optimistic.
Generally, it was shown that the expansion experiments are vulnerable to systematic

and hard to assess error sources. These effects are especially prominent for the dielectric
expansion, while in case of the Burnett expansion additional care has to be taken with
regard to the required fit order. At this point higher virial coefficients can only be obtained
for equal temperatures of the measuring cells and the gas-handling system. In contrast, the
data evaluation by means of DCGT offers a variety of advantages. Corrections due to the
pressure deformation of the cells and the temperature of the gas-handling system do not
have to be taken into account here making the underlying working equation less complex.
Therefore, higher virial coefficients are easier to obtain, while, at the same time, the reachable
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6. Summary, conclusions and outlook

uncertainties of the DCGT virial coefficients are significantly lower than those of the density
virial coefficients from the Burnett expansion. It was shown that the determined dielectric
virial coefficients can be used to calculate the density virial coefficients from the DCGT
virial coefficients to further decrease their uncertainty. The reachable orders of uncertainty
are comparable to the most precise alternative methods.

To fully use the potential of this experimental approach, a few key considerations have to be
taken into account. Ideally, the measurements should be performed at completely isothermal
conditions. Furthermore, it has to be ensured that a reasonable number of measurements can
be taken with the defined volume ratio between measuring and expansion volume to enable
sufficient fit orders. The capacitors should be designed to have a low and easy to determine
compressibility (for instance by using tungsten carbide for the electrodes). They should
not be exposed to rapid pressure changes, while, at the same time, the expansion volume
needs to be evacuated properly. It was shown that the main contributions to uncertainty of
virial coefficients for all three methods arise from statistical scattering of data points from
isothermal measurements. As a consequence, the temperature stability is very important,
while, in contrast, the uncertainty of the absolute pressure and temperature measurement is
only of secondary importance.

Conclusions This last aspect offers a certain potential for the commercialization of this
approach with less expensive measuring equipment. Essentially, the precise measurement of
changes in pressure, capacitance and temperature is required, while their absolute assessment
is not dominating. This reduces the costs for the pressure and temperature measuring
equipment. Monte-Carlo simulations showed that unfortunately the demands in capacitance
measurement cannot be lowered. To the knowledge of the author, the used capacitance
bridge is at this point the only commercially available but also cost intensive option with
the required performance. As pointed out already, a highly accurate calibration of the
apparatus constant would be required to reach the full potential of the method. Aspects
that complicate the handling of such a system are the need to determine a suitable fit order
for the data and the fact that the working equations are based on the Clausius-Mosotti
equation, which does, for instance, not include polar molecules. It should also be pointed
out that the determined second and third density virial coefficient, which were obtained by
the measurements up to 7 MPa are only capable of describing the density well below 3 MPa
with reasonable uncertainty. In contrast, a proper densimeter will always measure the exact
density at the corresponding pressure and temperature.

Outlook The next step is to reduce the uncertainty of the constraint fits of the expansion
data. Therefore, further measurements with helium over a broader temperature range will
allow to determine the apparent apparatus constant at the individual measuring tempera-
tures with lower uncertainty. After that, the operating temperature range will be extended.
Therefore, the thermal stabilization of the gas-handling system will be improved by thermal
anchoring to a thermostated copper block. Furthermore, the reported temperature gradients
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inside the system will be decreased by adjustment of the fluid bath temperature and further
thermal bridges inside the measuring chamber. This is required in particular to assess the
potential of the method to be used as a compact and automated DCGT, which could be-
come a practical direct realization of the unit kelvin. At the same time, these modifications
will allow to assess the molar polarizability with lower uncertainty over a wider temperature
range than possible at this point. This is important for the measurement of molecules, as
for instance hydrogen, whose molar polarizability is temperature dependent. Experiments
with hydrogen and mixtures are intended after the work on the noble gases (neon is to be
measured) has finished. On the theoretical side, the derivation of an expression for the third
density and dielectric virial coefficients for temperatures other than ambient is targeted.
However, great care has to be taken since approximations are required to obtain solvable
equations for these properties.
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A. Relation between density and pressure
virial coefficients

To determine the relation between density and pressure virial coefficients, the equal com-
pressibility factors Z are compared

Z = 1 +B(T )ρm + C(T )ρ2
m + ... = 1 +Bp(T )p+ Cp(T )p2 + ... (A.1)

The pressure p is replaced by equation 3.2:

B(T )ρm + C(T )ρ2
m + ... =

Bp(T )ρmRT
(
1 +B(T )ρm + C(T )ρ2

m + ...
)

+

Cp(T )
(
ρmRT

(
1 +B(T )ρm + C(T )ρ2

m + ...
))2

+ ... =

Bp(T )ρmRT +Bp(T )B(T )ρ2
mRT +Bp(T )C(T )ρ3

mRT + ...

+ Cp(T )ρ2
m(RT )2

(
1 + 2B(T )ρm + 2C(T )ρ2

m +B2(T )ρ2
m+

2C(T )B(T )ρ3
m + C2(T )ρ4

m + ...
)

=

Bp(T )ρmRT +Bp(T )B(T )ρ2
mRT +Bp(T )C(T )ρ3

mRT + ...

+ Cp(T )ρ2
m(RT )2 + 2Cp(T )B(T )ρ3

m(RT )2 + 2Cp(T )C(T )ρ4
m(RT )2

+ Cp(T )B2(T )ρ4
m(RT )2 + 2Cp(T )C(T )B(T )ρ5

m(RT )2 + Cp(T )C2(T )ρ6
m(RT )2 + ...

(A.2)

Now, a comparison of coefficients of the particle densitiy reveals the relations given in
equation 3.5 of section 3.1.1

ρm : B = BpRT

ρ2
m : C = B2 + C2

p(RT )2
(A.3)
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B. Relation between dielectric and Mosotti
virial coefficients

To determine the relation between dielectric and Mosotti virial coefficients, the equal cor-
rection factors of equations 3.12 and 3.13 are compared.

1 + bε(T )ρm + cε(T )ρ2
m + ... = 1 + bCM(T )f + cCM(T )f2 + ... (B.1)

The Clausius Mosotti Term CM is replaced by equation 3.12:

bε(T )ρm + cε(T )ρ2
m + ... =

bCM(T )Aερm
(
1 + bε (T ) ρm + cε (T ) ρ2

m + ...
)

+

cCM(T )
(
Aερm

(
1 + bε (T ) ρm + cε (T ) ρ2

m + ...
))2

+ ... =

bCM(T )Aερm + bCM(T )bε(T )Aερ2
m + bCM(T )cε(T )Aερ3

m+

cCM(T ) (Aερm)2
(
1 + 2bε(T )ρm + 2cε(T )ρ2

m + b2ε (T )ρ2
m+

2bε(T )cε(T )ρ3
m + c2

ε (T )ρ4
m + ...

)
=

bCM(T )Aερm + bCM(T )bε(T )Aερ2
m + bCM(T )cε(T )Aερ3

m+

cCM(T ) (Aερm)2 + 2cCM(T )bε(T )A2
ερ

4
m + cCM(T )b2ε (T )A2

ερ
4
m+

2cCM(T )cε(T )bε(T )A2
ερ

5
m + cCM(T )c2

ε (T )A2
ερ

6
m + ...

(B.2)

Now, a comparison of coefficients of the particle densitiy reveals:

ρm : bε(T ) = bCM(T )Aε
ρ2
m : cε(T ) = b2ε (T ) + cCM(T )A2

ε

(B.3)
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C. Derivation of the virial equation of state

This chapter summarizes the derivation of the virial equation of state presented in [18].
Starting point is the partition function ZN , which is related to the pressure p by the well
known relationship:

p = kt

(
∂ lnZN
∂V

)
T

(C.1)

For N identical particles with mass m the partition function is given by:

Zn = 1
N !h3N

∫ ∫
exp

(
− 1
kT

(
N∑
i=0

p′2i
2m + Φ(rN )

))
drNdp′N (C.2)

In this formula, the bold symbols denote vector properties namely the spatial coordinate
r and the momentum coordinate p′. Furthermore, Φ(rN ) is the total potential energy of all
particles and h is the Planck constant. Integration over the momentum space of formula C.2
yields the following expression:

Zn = 1
N !λ3N

∫
exp

(
−Φ(rN )

kT

)
drN (C.3)

with λ = h/(2πmkT )1/2. The challenge lies in the integration over the spatial coordinate
of equation C.3 with the exponential term being the so called Boltzmann factor WN

(
rN
)
.

To solve the integral, the key idea is to split WN

(
rN
)
into a sum of products of so called U -

functions Ul (r). These functions are given by different combinations of Boltzmann factors
with l denoting the considered number of particles in a group for the corresponding U-
function. They have the Form:

U1 (ri) =W1 (ri)

U2 (ri, rj) =W2 (ri, rj)−W1 (ri)W1 (rj)

U3 (ri, rj , rk) =W3 (ri, rj , rk)−W2 (ri, ri)W1 (rk)−W2 (rj , rk)W1 (ri)

−W2 (rk, ri)W1 (rj) + 2W1 (ri)W1 (rj)W1 (rk)

(C.4)

It can be shown that the Boltzmannfactor is WN

(
rN
)

= ∑ ∏
Ul(r), which may be
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C. Derivation of the virial equation of state

inserted for the integration of equation C.3 resulting in:

Zn = 1
λ3N

∑ N∏
l=1

(V bl)ml
ml!

(C.5)

In this formula, V is the volume, ml is the number of groups containing l particles and bl
are the so called cluster integrals, which are given by:

bl = 1
V l!

∫
Ul (r1, r2,..., rl)dr1dr2...drl (C.6)

Solving equation C.5 is again complex and well described in reference [18]. The important
end result after insertion in equation C.1 is:

p

kT
= N

V
−
∞∑
k=1

kβk
k + 1

(
N

V

)k+1
(C.7)

In this formula, the βk denote different combinations of the cluster integrals bl. Lower
orders are, for instance, given by:

β1 =2b2
β2 =3b3 − 6b22

β3 =4b4 − 24b2b3 + 80
3 b

3
2

(C.8)

It is obvious that equation C.7 is very similar to the virial expansion defined in equation
3.2. Comparison of orders of particle density reveal the following relations between the
density virial coefficients and the βk for the lower orders:

B′(T ) = −1
2β1 = −b2

C ′(T ) = −2
3β2 = −2b3 + 4b22

D′(T ) = −3
4β3 = −3b4 + 18b2b3 − 20b32

(C.9)

The prime indicates that these are the microscopic rather than the molar virial coefficients.
Up to this point, the properties of the potential have not been further specified, which will
be necessary now. A valid assumption that has to be made for the further evaluation is
the assumption of additivity. This means that the force between any two particles shall not
depend on the configuration of the remaining particles. The potential may then be rewritten
as
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Φ(rN ) = 1
2

N−1∑
i=1

N∑
j=2

ϕij(rij) (C.10)

In this formula, ϕij(rij) denotes the interaction potential between two particles. Mayer
and co-workers used the function

fij(rij) = exp
(
−ϕij
kT

)
− 1 (C.11)

to further simplify the problem. Unless the particles are so close that the interaction
energy is significantly different from zero, this function is zero. With this formula, the
cluster integrals bl can be rewritten as follows:

b1 = 1
V

∫
dr1 = 1

b2 = 1
2V

∫ ∫
f12dr1dr2

b3 = 1
6V

∫ ∫ ∫
(f12f13 + f12f23 + f13f23 + f12f13f23) dr1dr2dr3

(C.12)

The big benefit of this notation is that the integrals of equation C.12 are reducible. As
a consequence, some of the terms in the integrals can be rewritten as products of integrals.
To illustrate the consequence, one may look at the integral b3. The first three terms can
now be expressed by means of b2 leading to cancelation in such a way that C ′(T ) does only
contain three particle interactions. It can be shown that this is true for all orders of the
virial coefficients. The most important correction to the ideal gas is, thus, the second density
virial coefficient containing the two particle interaction.
At this point it is in principle possible to calculate the virial coefficients for a given potential

by means of classical mechanics. Unfortunately, the integrals are complicated but solvable
for very simple potentials. However, with realistic potentials they are mostly not solvable.
For the noble gases used within this thesis, the valid assumption of an angle-independent
potential allows at least to derive an analytical expression for the second order, which is
given by [18]:

B′(T ) = −2π
∫ ∞

0

(
exp

(−ϕ(r)
kT

)
− 1

)
r2dr (C.13)

However, the previous considerations do not take quantum mechanical contributions into
account. Luckily, the derivation can be adapted with modest effort [18].
First, the classic partition function ZN has to be replaced by the quantum mechanical

one:
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C. Derivation of the virial equation of state

ZN,qm =
∑
n

exp
(
−En
kT

)
(C.14)

The En are the energy levels of the system. Secondly, the Boltzmann factor needs to be
replaced by the slater sum. For two particles, this is given by:

Ws(r1, r2) = 1± exp
(
−2πr12

λ2

)
(C.15)

The plus sign in the previous applies for Bose-statistics, while the minus is for Fermi-
statistics. Exchanging the two given quantities in the derivation given here and in appendix
C is leading directly to the quantum mechanical result. The introduction of discrete energy
levels and the need to distinguish between particles depending on the spin configuration
represent basic principles of quantum mechanics. The main task in calculating the density
virials lies now in the exact calculation of the energy levels, which is done by solving the
Schrödinger equation.

B′(T ) =λ3
(
±2−

5
2 − 2

3
2
∑
l

(2l + 1)
∑
n

e

(
−Enl
kT

)
−

2 3
2

π

∑
l

(2l + 1)
∫ ∞

0
e

(
− ~2κ2

2µmkT

) (
dδl
dκ

)
dκ

) (C.16)

In this formula µm = m1m2/(m1 +m2) is the reduced mass and κ = (2µmEn) 1
2 /~. Enl are

the discrete energy states of the system, δl(κ) is the phase-shift of the energy states, which
is caused by scattering, and the summation is carried out over the angular momentum l of
the two particle system.
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D. The Lorentz-Lorenz equation and
refractive virial coefficients

While the Clausius-Mosotti equation 3.12 of electrostatics can be used to describe the relation
between ε and the molar particle density, frequency dependencies need to be included for
optical experiments. This is done by the Lorentz-Lorenz equation:

n2 − 1
n2 + 2 = An (ω) ρm

(
1 + bn (ω, T ) ρm + cn (ω, T ) ρ2

m + ...
)

(D.1)

In this equation, n is the refractive index An (ω) is the dynamic molar polarizability (in
some works it is referred to as refractivity) and bn (ω, T ),cn (ω, T )...are the refractive virial
coefficients of second, third,... order. For the comparison of static and dynamic experiments,
it is useful to declare static and dynamic terms of the involved properties:

An (ω) = Aε +Aµ + ∆An (ω) = Aε +Aµ + α2ω
2 + α4ω

4 (D.2)

bn (ω, T ) = bε (T ) + ∆bn (ω, T ) (D.3)

cn (ω, T ) = cε (T ) + ∆cn (ω, T ) (D.4)

In this notation, it becomes obvious that equation D.2 turns into the Clausius-Mosotti
equation in the limit of zero frequency with n2 = εrµr.
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E. DCGT working equations

E.1. Derivation of the classic DCGT working equation

In the following derivation, the temperature dependence of the virial coefficients will not
be indicated in the formulas to ease reading. Combination of the gas equation 3.2 and the
Clausius-Mosotti equation 3.12 yields:

p = RT

Aε
f

(
1 +Bρm + Cρ2

m + ...
)

(1 + bερm + cερ2
m + ...) (E.1)

In this formula, f = εr−1
εr+2 is used to substitute the Mosotti-term. Since the dielectric virials

are typically two orders of magnitude smaller than the density virials, the denominator can
be expanded into a Taylor series resulting in:

p = RT

Aε
f
(
1 +Bρm + Cρ2

m + ...
) (

1− bερm + (b2ε − cε)ρ2
m + ...

)
(E.2)

Furthermore, the particle density in the small correction terms containing the virial coef-
ficients is replaced by the approximation ρm = f

Aε

(
1− bε fAε

)
:

p = RT

Aε
f

(
1 + (B − bε)

f

Aε
+
(
C − cε + 2b2ε − 2Bbε

)( f

Aε

)2
+ ...

)
(E.3)

For an ideal capacitor that is not deformed under pressure, the Mosotti-term f can be
expressed by means of the DCGT measuring quantity γ defined in equation 3.19 as the
relative change of capacitance.

f = εr − 1
εr + 2 = γ

γ + 3 = µ (E.4)

The working quantity µ of the DCGT is equal to the Mosotti-term for vanishing defor-
mation. For a real capacitor, this deformation needs to be taken into account. To obtain a
suitable expression, µ is written as:
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E. DCGT working equations

µ = εr − 1 + εrκeffp

εr + 2 + εrκeffp
= 1 + 3(f − 1)

3 + κeffp(1 + 2f) (E.5)

where εr is replaced by the rearranged equation E.4 εr = −2 − 3
f−1 . In the denominator

the small correction Term 2f is approximated by 2µ, while the pressure p is approximated
by the ideal formula p = RT

Aε
f resulting in

µ = 1 + 3(f − 1)
3 + κeffRT

Aε
f(1 + 2µ)

(E.6)

This equation can be rearranged for f :

f = µ

1 + κeffRT
3Aε (1− µ+ 2µ2)

≈ µ

1 + κeffRT
3Aε

(E.7)

where µ can be neglected in the denominator term containing κeff since it is typically much
smaller than one. Now, f in the linear term of equation E.3 is replaced by this expression,
while in the higher orders containing the virials f is approximated by µ resulting in:

p = 1
Aε
RT + κeff

3
µ

(
1 + (B − bε)

µ

Aε
+
(
C − cε + 2b2ε − 2Bbε

)( µ

Aε

)2
+ ...

)
(E.8)

This working equation allows the fit of data points of pressure and capacitance and has
been used typically for the determination of temperatures of less than 50 K. Since the
temperature is retrieved from the linear term, the approximations in the higher orders are
reasonable. However, for the derivation of virial coefficients another working equation needs
to be retrieved.

E.2. Derivation of a DCGT working equation for higher
temperatures and virial coefficients

The derivation of this working equation essentially starts the same way as the previous one.
However, since also the third virial coefficients shall be determined, it is necessary to include
also the fourth virial coefficients into this derivation. To ease readibility, the temperature
dependence of the virial coefficients is not indicated in the formulas. Furthermore, the
Clausius-Mossoti equation is substituted as follows:
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f = Aερm
(
1 + bερm + cερ

2
m + dερ

3
m + ...

)
= Aερm (1 + x)

(E.9)

With this, the molar particle density in the gas equation can be replaced leading to:

p = RTf

Aε(1 + x)

1 + B(
Aε
y (1 + x)

) + C(
Aε
f (1 + x)

)2 + D(
Aε
f (1 + x)

)3 + ...


= RTf ′

(1 + x)

(
1 +B

(
f ′

(1 + x)

)
+ C

(
f ′

(1 + x)

)2
+D

(
f ′

(1 + x)

)3
+ ...

) (E.10)

To ease reading, f
Aε

is substituted by f ′. Replacing the particle density in the Clausius-
Mosotti equation leads to:

(1 + x) = 1 + bε
f ′

(1 + x) + cε

(
f ′

(1 + x)

)2
+ dε

(
f ′

(1 + x)

)3
+ ... (E.11)

Up to this point no approximations were made, while in the simpler derivation the particle
density was replaced by the ideal Clausius-Mosotti equation. But, to linearize the problem, it
is necessary to approximate the terms containing (1+x) in the denominator. This is done by
expanding these terms into a Taylor series, where due to the smallness of the dielectric virial
coefficients only linear orders are considered starting with the Clausius-Mosotti equation:

(1 + x) = 1 + bεf
′(1− x) + cεf

′2(1− 2x) + dεf
′3(1− 3x) (E.12)

This equation can be rearranged for x giving:

x = bεf
′ + cεf

′2 + dεf
′3

1 + bεf ′ + 2cεf ′2 + 3dεf ′3
(E.13)

The denominator is again approximated by a Taylor series that is trunctuated after the
linear term resulting in:

x =
(
bεf
′ + cεf

′2 + dεf
′3
) (

1− bεf ′ − 2cεf ′2 − 3dεf ′3
)

=bεf ′ − b2εf ′2 + cεf
′2 − 3bεcεf ′3 + dεf

′3 − 2c2
εf
′4 − 4bεdεf ′4 − 5cεdεf ′5 − 3d2

εf
′6

(E.14)

To make use of this result, the denominator terms containing (1 + x) in equation E.10 are
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E. DCGT working equations

also developed into a Taylor series, where terms up to second order are included. Then, x is
inserted and terms up to order four in the Mosotti-term f are considered.

p =RTf ′
(
1− x+ x2

) (
1 +Bf ′

(
1− x+ x2

)
+ Cf ′2

(
1− 2x+ 3x2

)
+Df ′3

(
1− 3x+ 6x2

))
=RTf ′

(
1 + (B − bε)y′ + (C − cε + 2b2ε − 2bεB)f ′2+

(D − dε − 2b3ε + 5b2εB + 5bεcε − 2Bcε − 3bεC)f ′3 + ...
)

=RT f

Aε

(
1 + (B − bε)

f

Aε
+ (C − cε + 2b2ε − 2bεB)

(
f

Aε

)2
+

(D − dε − 2b3ε + 5b2εB + 5bεcε − 2Bcε − 3bεC) f
Aε

3
+ ...

)

(E.15)

This formula does include the dielectric virial coefficients in the higher orders that were
neglected previously. To adapt this equation to real measurement conditions, the defor-
mation of the capacitor under pressure needs to be taken into account again. Starting
from equation E.5, the pressure in the small correction term κeffp(1 + 2µ) is replaced by
fRT
Aε

(
1 + (B − bε) µ

Aε
+ C

(
µ
Aε

)2
)

rather than by the ideal term resulting in:

µ = 1 + 3(f − 1)

3 + κeff
RTf
Aε

(
1 + (B − bε) µ

Aε
+ C

(
µ
Aε

)2
)

(1 + 2µ)
(E.16)

In the correction terms containing the virial coefficients, the exact Mosotti-term f is
approximated by µ. Rearrangement for f yields:

f = µ

1− κeffRT
3A3

ε
(µ− 1)(1 + 2µ)(A2

ε +Aε(B − bε)µ+ cεµ2)

= µ

1 + κeffRT
3Aε + κeffRT

3Aε

(
µ
(
1 + (B−bε)

Aε

)
+ µ2

(
C
A2
ε

+ (B−bε)
Aε

− 2A2
ε

)
+ µ3

(
C
A2
ε
− 2(B−bε)

Aε

)
− µ4

(
2C
A2
ε

))
(E.17)

The denominator is expanded into a Taylor series for small values of µ up to the linear
order resulting in:
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f = µ

1 + κeffRT
3Aε

−
µ2 κeffRT

3Aε

(
1 + (B−bε)

Aε

)
(
1 + κeffRT

3Aε

)2 +

µ3
(
κeffRT

3Aε

)2
((

1 + (B−bε)
Aε

)2
+ κeffRT

3Aε

(
2− (B−bε)

Aε
− C

A2
ε

))
(
1 + κeffRT

3Aε

)3

(E.18)

Insertion of this expression in equation E.15 results in the given expression:

p = A1µ
(
1 +A1A2µ+A2

1A3µ
2 +A3

1A4µ
3 + ...

)
A1 = 1

Aε
RT + κeff

3

A2 = 1
RT

(B − bε)−
κeff
3

(
1 + B

Aε

)
A3 = 1

(RT )2 (C − cε − 2bε(B − bε))

+ κeff
3

1
RT

(
2Aε − 3(B − bε)−

1
Aε

(2(B − bε)2 + C)
)

+
(
κeff
3

)2 (
3 + 1

Aε
(B − bε) + 1

A2
ε

((B − bε)2 − C)
)

A4 = 1
(RT )3 (D − dε − 3bεC − 2Bcε + 5bεcε + 5b2εB − 2b3ε )

+ κeff
(RT )2

(
4Aε(B − bε)− 2(B − bε)2 − 6bε(B − bε) + 3(C − cε)

)
+ κeff

(RT )2
1
Aε

(
6bε(B − bε)2 + (B − bε)(3cε − 5C)

)
+
(
κeff
3

)2 1
RT

(
7(B − bε) + 1

Aε
4(B − bε)2 + 1

A2
ε

(
3(B − bε)3 − 2C(B − bε)

))
(E.19)
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F. Burnett expansion working equations

F.1. Ideal Burnett expansion working equation

The pressure ratio between the rth expansion and expansion r + j from volume VA into
volumes VA + VB may in accordance with equation 3.2 and utilizing the conservation of the
number of particles be written as:

pr
pr+j

=
RTρm,r(1 +Bρm,r + Cρ2

m,r +Dρ3
m,r + ...)

RTρm,r+j(1 +Bρm,r+j + Cρ2
m,r+j +Dρ3

m,r+j + ...) (F.1)

Assuming that the volumes remain constant independent of the pressure, the molar particle
densities are only defined by the two volumes VA and VB:

ρm,r+j
ρm,r

=
(

VA
VA + VB

)j
= Q−j (F.2)

In this formula, Q denotes the apparatus constant. Combining equations F.1 and F.2
results in:

pr
pr+j

=
RTρm,r(1 +Bρm,r + Cρ2

m,r +Dρ3
m,r)...)

RTρm,rQ−j
(
1 +Bρm,rQ−j + Cρ2

m,rQ
−2j +Dρ3

m,rQ
−3j + ...

) (F.3)

To derive a proper expression for the data evaluation, first, equation 3.2 is inverted to give
ρm,r as a function of pressure:

ρm,r = pr
RT

(
1− Bpr

RT
+ 2B2 − C

(RT )2 p2
r + ...

)
(F.4)

Furthermore 1
pr+j

is expanded into a Taylor series:

1
pr+j

= 1
RTρm,rQ−j

(
1−BQ−jρm,r + (C −B2)Q−2jρ2

m,r + ...
)

(F.5)

Combining equations F.4 and F.5 with equation F.3, results in the final expression given
in section 3.3.1:
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pr
pr+j

=Qj + (Qj − 1) B
RT
· pr + (Qj −Q−j)

RT
(B2 − C) · p2

r + ...)+

1
(RT )3

[( 1
Qj
− 1
Q2j

)
(BC −B3) +

(
Qj − 1

Q2j

)
(D − 3CB − 2B3)

]
· p3
r + ...

(F.6)

F.2. Isothermal Burnett expansion with deformation

Derivation of the working equation for the Burnett method with deformation of the cells
starts with relation 3.31, which may be written as:

prVA(1 + λApr)
(1 +Bppr + Cpp2

r +Dpp3
r + ...) = pr+1(VA + VB)(1 + λABpr+1)

(1 +Bppr+1 + Cpp2
r+1 +Dpp3

r+1 + ...) (F.7)

To ease the work, a combined compressibility κAB taking the deformation of cells A and
B combined into account is defined. Fitting of the final equation will be carried out in the
form of pressure ratios Pratio,r = pr

pr+1
over pr. Substitution with Pratio,r and rearrangement

of equation F.7 results in:

Pratio,rVA(1 + λApr)(
1 + λAB

pr
Pratio,r

(VA + VB)
) =

(
1 +Bppr + Cpp

2
r +Dpp

3
r ...
)(

1 +Bp
pr

Pratio,r
+ Cp

(
pr

Pratio,r

)2
+Dp

(
pr

Pratio,r

)3
+ ...

)
(F.8)

Solving equation F.8 without approximations is only possible for orders up to the third
pressure virial coefficient. These results are exact since including higher orders would not
change the result for the second and third order virial coefficients but only higher virial
coefficients. The terms of equation F.8 are multiplied out and can be arranged in the following
way:

0 =P 2
ratio,r + Pratio,r ·

p2
r(VAλABp − CpVB)− prBpVB − (VA + VB)

VA(1 + λApr)
+

p3
rCp(λAVA − λAB(VA + VB))− p2

rBpλAB(VA + VB)− prλAB(VA + VB)
(F.9)

This binomial equation can be solved for Pratio,r, and the result may be arranged in a
series of powers of pr:
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F.2. Isothermal Burnett expansion with deformation

Pratio,r =(VA + VB)
VA

+ BpVB + λABVA − λA(VA + VB)
VA

· pr+(
λABVA(Bp − λAB)

(VA + VB) + (VA + VB)(λ2
A − λABp)

VA
+ Cp(V 2

B + 2VAVB)
VA(VA + VB)

)
· p2
r

(F.10)

The formula is simplified by using the introduced apparatus constant Q = (VA+VB)
VA

:

Pratio,r =Q+ [Bp(Q− 1) + λAB − λAQ] · pr+[
λAB(Bp − λAB)

Q
+Q(λ2

A − λABp) + Cp(Q−
1
Q

)
]
· p2
r+[

Dp

(
Q− 1

Q2

)
+ Cp

(
Bp(Q− 1)

Q2 + 2λAB
Q2 − λA(Q+ 1

Q
)
)

+

BpλAB
Q2 (λAB(Q− 3)−Bp(Q− 1)) +BpλA

(
λAQ+ λAB

Q

)
+

λ2
AB
Q

(2λAB
Q
− λA

)
− λ3

AQ

]
· p3
r + ...

(F.11)

Equation F.11 also contains the term for the fourth pressure virial coefficient Dp. It has
been calculated by approximating the term Dp

(
ps

Pratio,r

)3
≈ Dp

(
ps
Q

)3
in equation F.8 and

repeating the steps above. Though a determination of the fourth virial coefficients is beyond
the experimental capabilities of the apparatus, the term is important for cross checks with
constraints, especially for helium, whose virial coefficients can be precisely calculated.

Since the density virial coefficients are the target quantity, the used pressure virial coeffi-
cients are replaced according to the definitions in equation 3.5. Furthermore, the combined
compressibility is replaced by λAB = λA

Q + κB(1 − 1
Q) so the final result only contains the

compressibility of cell B λB. This results in the final expression given in section 3.3.2:

pr
pr+1

=Q+ (Q− 1)
(
B

RT
+ 1
Q

(λB − λA(Q+ 1))
)
· pr+[

C −B2

(RT )2

(
Q− 1

Q

)
+QλA(λA −

B

RT
)+

1
Q

(
B

RT

(
λA
Q

+ λB

(
1− 1

Q

))
−
(
λA
Q

+ λB

(
1− 1

Q

))2)]
· p2
r + ..

(F.12)

To compare the final working equation retrieved in section 3.3.4 to this result, the deriva-
tion has been repeated including the volumes of the gas-handling system and their deforma-
tion as depicted in figure 3.5. Thus, the starting equation is:
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pr (VA(1 + λApr) + VDA(1 + λGHSpr))
(1 +Bppr + Cpp2

r +Dpp3
r + ...) =

pr+1(VA(1 + λApr+s) + VB(1 + λBpr+1) + (VDA + VDB)(1 + λGHSpr+1))
(1 +Bppr+1 + Cpp2

r+1 +Dpp3
r+s + ...)

(F.13)

Since the gas-handling system is made of the same tubing, the pressure deformation coef-
ficient λGHS is valid for both volumes VDA and VDB. Solving this equation delivers the same
fit coefficient K0 = Q for the constant term. The second fit coefficient K1 is the linear term
multiplied by pr and is best displayed in the form:

K1
K0 − 1 = Bp + λA

 1
1 +QA

−
Q∗
(
1− 1

Q

)
1 +QB

+ λB

[ 1
Q(1 +QB)

]
+

λGHS

[
1

Q(1 + 1
QB

)
− 1

1 + 1
QA

+
( 1
Q
− 1

)
Q∗QA
1 +QB

] (F.14)

Q∗, QA and QB are the volume ratios defined in equation 3.37.

F.3. Burnett expansion with dead volumes

Starting point is equation 3.35, where the pressure is replaced with the pressure ratio before
and after the expansion Pratio,r = pr

pr+1

prVA
Tiso(1 +Bp,isopr + ...) + prVDA

TGHS(1 +Bp,GHSpr + ...) =

pr(VA + VB)
Pratio,rTiso(1 +Bp,iso

pr
Pratio,r

+ ...) + pr(VDA + VDB)
Pratio,rTGHS(1 +Bp,GHS

pr
Pratio,r

+ ...)

(F.15)

To further develop this equation into a suitable working equation, the help of the program
“Mathematica” is required. First, equation F.15 is solved for Pratio,r. The resulting bulky
expression is then displayed as a series in powers of pr with the result being:

Pratio,r =K0 +K1pr +K2p
2
r + ...

K0 =1 + TisoVDB + TGHSVB
TisoVDA + TGHSVA

K1 =(Bp,iso −Bp,GHS)(TGHSVB + TisoVDB)TGHSVA
(TisoVDA + TGHSVA)2 +

Bp,GHSTGHSVB +Bp,isoTGHSVA −Bp,GHSTGHSVA +Bp,GHSTisoVDB
TGHSVA + TisoVDA

−

(Bp,iso −Bp,GHS)TGHS(VA + VB)
TGHS(VA + VB) + Tiso(VDA + VDB)

(F.16)
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F.4. Final Burnett working equation with combined deformation and dead volumes

This formula is rather bulky. Though some of the terms can be simplified to some extend,
the clearest simplification is achieved when the following quotient is calculated:

K1
K0 − 1 =Bp,GHS+

(Bp,iso −Bp,GHS)

 1
1 + Tiso

TGHS
VDA
VA

− 1
1 + Tiso

TGHS
VDB
VB

+ 1
1 + Tiso

TGHS

(VDA+VDB)
(VA+VB)


(F.17)

F.4. Final Burnett working equation with combined deformation
and dead volumes

Starting from equation 3.39, the following assumptions are made to achieve a solvable equa-
tion. Considered virial coefficients are of second order only. In the terms describing the
deformation of the cells after the expansion, the pressure is approximated by pr

Q∆T
. Further-

more, the equation is expressed by means of the pressure ratio before and after the expansion
Pratio = pr

pr+1
.

prVA(1 + λApr)
Tiso(1 +Bp,isopr)

+ prVDA(1 + λGHSpr)
TGHS(1 +Bp,GHSpr)

=

pr(VA(1 + λA
pr
Q∆T

) + VB(1 + λB
pr
Q∆T

))
PratioTiso(1 +Bp,iso

pr
Pratio

) +
pr(VDA + VDB)(1 + λGHS

pr
Q∆T

)
PratioTGHS(1 +Bp,GHS

pr
Pratio

)

(F.18)

Solving the equation for Pratio as a function of pr and expanding the result as a series of
powers of pr results in: Pratio = K0 +K1pr +K2p

2
r + .... K0 is consistently equal to Q∆T .

K0 = 1 + TisoVDB + TGHSVB
TisoVDA + TGHSVA

(F.19)

The other coefficients are very long functions, which is why only the final expression
utilized for the evaluation of the data K1

K0−1 is shown here:
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K1
K0 − 1 = Bp,iso

 1
1 + Tiso

TGHS

(VDB+VDA)
(VB+VA)

+ 1
1 + TGHS

Tiso
VB
VDB

− 1
1 + TGHS

Tiso
VA
VDA

+

Bp,GHS

 2
1 + Tiso

TGHS
VDB
VB

+ 1
1 + TGHS

Tiso
VB
VDB

− 1
1 + Tiso

TGHS
VDA
VA

− 1
1 + Tiso

TGHS

(VDB+VDA)
(VB+VA)

+

λB

 1
Q∆T

(
1 + Tiso

TGHS
VDB
VB

)
+

λA

 1
Q∆T

− 1(
VB
VA

+ Tiso
TGHS

VDB
VA

) − 1
1 + TGHS

Tiso
VDA
VA

+

λGHS

 1
Q∆T

− 1(
VDB
VDA

+ TGHS
Tiso

VB
VDA

) + 1
Q∆T

(
1 + TGHS

Tiso
VB
VDB

) − 1
1 + TGHS

Tiso
VA
VDA


(F.20)

By means of the volume ratios defined in equation 3.37 and the temperature ratio Tratio =
Tiso
TGHS

equation F.20 can be expressed by:

K1
K0 − 1 = Bp,iso

 1
1 + 1

TratioQB

− 1
1 + 1

TratioQA

+ 1
1 + Tratio

(QB+QAQ∗)
(1+Q∗)

+

Bp,GHS

1 + 1
1 + TratioQB

− 1
1 + Tratio

QB+QAQ∗

1+Q∗

− 1
1 + TratioQA

+

λB

[ 1
Q∆T

( 1
1 + TratioQB

)]
+

λA

[( 1
Q∆T

− 1
)

Q∗

1 + TratioQB
− 1

1 + TratioQA

]
+

λGHS

[
1

Q∆T

(
QAQ

∗

QB + 1
Tratio

+ 1
1 + 1

TratioQB

)
− 1

1 + 1
TratioQA

− QAQ
∗

QB + 1
Tratio

]
(F.21)

After converting the pressure virial coefficients to the density virial coefficients, this is the
final result given in section 3.3.4
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G. Dielectric expansion working equations

G.1. Ideal dielectric expansion

The ratio of the Mosotti-term between the rth expansion and expansion r + j from volume
VA into volumes VA + VB may in accordance with equation 3.12 be written as:

fr
fr+j

=
Aερm,r

(
1 + bερm,r + cερ

2
m,r + ...

)
Aερm,r+j

(
1 + bερm,r+j + cερ2

m,r+j + ...
) (G.1)

Combination with the apparatus constant defined by the volume ratio ρm,r+j
ρm,r

=
(

VA
VA+VB

)j
=

Q−j results in:

fr
fr+j

=
Aερm,r

(
1 + bερm,r + cερ

2
m,r + ...

)
Aερm,rQ−j

(
1 + bερm,rQ−j + cερ2

m,rQ
−2j + ...

) (G.2)

The denominator of the right side is expanded into a Taylor series

1(
1 + bερm,rQ−j + cερ2

m,rQ
−2j + ...

) = 1− bεQ−jρm,r +Q−2j(b2ε − cε)ρ2
m,r + ... (G.3)

To derive a proper expression for the data evaluation, equation 3.12 is inverted to give
ρm,r as a function of the Mosotti-term:

ρm,r = fr
Aε

(
1− bεfr

Aε
+ 2b2ε − cε

A2
ε

f2
r + ...

)
(G.4)

Inserting equations G.3 and G.2 into equation G.2 results in the final expression given in
3.4.1:

fr
fr+j

= Qj + (Qj − 1)
Aε

bεfj + (Qj −Q−j)
A2
ε

(
cε − b2ε

)
f2
j + ... (G.5)
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G.2. Improvements to the dielectric expansions

Improvements to the procedure described in section 3.4.1 were implemented rather quickly.
Orcutt and Cole published a system with three vessels of equal volume and each one equipped
with a capacitor of same capacity in 1967 [113]. The setup is shown in figure G.1. Expansions
were carried out in a cyclic manner. For instance, cells A and B are filled and the gas is
expanded into cell C. After this, cell A is evacuated and the gas is expanded from B and C
into it. The last turn is the expansion from A and C into the evacuated cell B. Thus, the
gas was expanded once into each cell and one cycle is completed. If the volumes are defined
as VA = V (1 + δA), VB = V (1 + δB) and VC = V (1 + δC), it can be shown (see appendix
G.2.1) that the ratio of the densities Qcycle,3 is:

Qcycle,3 = ρr+3
ρr

=
(2

3

)3 (
1 + 1

4 (δAδB + δBδC + δCδA)− 1
8δAδCδC + ...

)
(G.6)

under the auxialary condition that δA + δB + δC = 0. Deviations from the ideal density
ratio are thus automatically only a second order effect, which allows to determine Qcycle,3

with relative uncertainties of a few ppm. The exact determination of δA, δB and δC and, thus,
the apparatus constant is carried out by additional pressure measurements. The procedure
is shown in appendix G.2.2. Knowing Qcycle,3 and the molar polarizability Aε, the data can
be evaluated by the following working equation [118]:

p

C B

A

gas

(a)

p

BA

gas
(b)

Figure G.1.: Schemes of the setups used by Orcutt and Cole (a) for the cyclic expansion
with three cells [113] and as proposed by Buckingham et al. (b) and adapted
later by Koschine et al. with two cells [100, 117]. The pressure measurement in
scheme (b) was introduced by Koschine et al. to also determine density virial
coefficients.
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fr −
fr+3
Qcycle,3

= bε(t)
Aε

(1−Qcycle,3) · f2
r+(

cε(T )
A2
ε

(1−Q2
cycle,3)−

2b2ε (T )
A2
ε

(1−Qcycle,3)
)
· f3
r + ...

(G.7)

Dielectric virial coefficients retrieved by this method are believed to be a factor 2 - 5
times more accurate than the ones obtained with the standard method [84]. The published
relative uncertainties of the second dielectric virial coefficients measured with this method
are typically less than 10 % [113, 114, 118]. Another big advantage of this method is the
implicit detection of errors in case constant and linear terms different from zero arise in the
polynomial used to fit the data [100]. Experiments with three vessels were not published any
more after 1970 probably for two reasons. Koschine et al. have shown that a cyclic expansion
is also possible by utilizing only two vessels in 1992 reducing the experimental complexity
[100, 119]. Their setup is shown in figure G.1. The additionally installed differential pressure
transducer allowed to measure the density virial coefficients as well. The working equation
is identical to the one for the three vessel cyclic expansion G.7, but the apparatus constant
Qcycle,3 has to be replaced by Qcycle,2. For the two volumes being VA = V +δ and VB = V −δ,
it is given by:

Qcycle,2 = 1
4

(
1−

(
δ

V

)2)
(G.8)

A method to determine the small correction term δ
V from additional pressure measurements

is shown in appendix G.2.2. The vanish of three cell expansions may as well be due to an
idea of Buckingham et al. published in 1970 [117]. Their method requires only two cells
with matched volumes and matched capacitances as well. The sum of both capacitances is
measured for cell A being filled and cell B being evacuated. The gas is then expanded into cell
B and the sum of capacitances is measured again. Using the nomenclature VA = V (1 + δV )
and VB = V (1− δV ) for the volumes as well as CA = C(1 + δC) and CB = C(1− δC) for the
capacitances, it can be shown that the change in the sum of capacitance ∆A is [6]:

∆A

C(εr,A − 1) =(δV − δC)− bε(T ) +Aε
6Aε

(εr,A − 1)+(
4b2ε (T )− 3cε(T ) + 2bε(T )Aε +A2

ε

36A2
ε

)
(εr,A − 1)2−(

cε(T ) + 2Aεbε(T ) +A2
ε

36A2
ε

)
δV (εr,A − 1)2

(G.9)

with εr,A denoting the dielectric constant for the expansion from A to B. After that, the
process is repeated, but with cell B being filled and gas being expanded into cell A.
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G. Dielectric expansion working equations

∆B

C(εr,B − 1) =− (δV − δC)− bε(T ) +Aε
6Aε

(εr,B − 1)+(
4b2ε (T )− 3cε(T ) + 2bε(T )Aε +A2

ε

36A2
ε

)
(εr,B − 1)2−(

cε(T ) + 2Aεbε(T ) +A2
ε

36A2
ε

)
δV (εr,B − 1)2

(G.10)

in this case ∆B denotes the change of the sum of capacitances for the expansion from B
into A and εr,B is the corresponding dielectric constant. By summation of equations G.9 and
G.10, the linear term of the deviations cancels resulting in [6]:

∆A

C(εr,A − 1)+ ∆B

C(εr,B − 1) = −
(
bε(t) +Aε

6Aε

)
((εr,A − 1) + (εr,B − 1)) +

1
2

(
4b2ε (T )− 3cε(T ) + 2bε(T )Aε +A2

ε

36A2
ε

)
((εr,A − 1) + (εr,B − 1))2 + ...

(G.11)

Fitting the left handside of equation G.11 over (εr,A− 1) + (εr,B− 1) with a polynomial of
appropriate order allows to retrieve the dielectric virial coefficients from the fit coefficients.
Due to the matched volumes and skillful arrangement of the equation, neither the abso-
lute volumes or apparatus constants nor the small deviations are included in the working
equation in first orders. Dielectric virial coefficients measured in this manner have similar
uncertainties as the one from the cyclic expansions. This method was successfully used for
the determination of the dielectric virial coefficients of noble gases [3, 6].
Though the improvements made from the standard dielectric expansion method are promis-

ing, they all require to have precisely matched volumes. Since an automated pressure mea-
surement has to be carried out for the determination of the density virial coefficients and
the DCGT evaluation, this requirement could not be met within the frame of this work.
Further details on the design of the current apparatus are given in chapter 4. Eventually,
it could be possible to adapt the method of Buckingham to the system by expanding gas
for instance between two equally sized cells, whereas gas is expanded from cell A including
the dead volume of the pressure sensor at a different temperature into another cell B. The
inverse expansion is then carried out from cell B and the dead volume into cell A. This has
not been done within the framework of this thesis for two reasons. Preliminary experiments
with equal sized cells have shown that it is only possible to carry out around 8 expansions
before the uncertainty of the pressure measuring equipment is getting too high. 8 data points
are not even enough to fit a polynomial of third order, while a fourth order fit is required due
to the influence of the higher density virials. For the exclusive evaluation of the dielectric
virials the, fit order may actually be sufficient, but it is at this point unclear how the dead
volume can be included in the working equation.
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G.2. Improvements to the dielectric expansions

It should be noted that the dielectric method has also been transferred to optical exper-
iments [50, 120]. Instead of the Clausius-Mosotti equation, the Lorentz-Lorenz equation is
used to derive the working equation (see also appendix D). The particle density is assessed
via measurements of the refractive index with appropriate spectrometers.

G.2.1. The three cell cyclic expansion by Orcutt and Cole

The ratio of density ρr and after ρr+3 one expansion cycle including in total three expansions
may be written as:

ρr+3
ρr

= VA + VB
VA + VB + VC

· VB + VC
VA + VB + VC

· VC + VA
VA + VB + VC

(G.12)

following the declaration of the volumes as VA = V (1 + δA), VB = V (1 + δB) and VC =
V (1 + δC) this results in:

ρr+3
ρr

= V (2 + δA + δB) · V (2 + δB + δC) · V (2 + δC + δA)
V 3(3 + δA + δB + δC) (G.13)

The denominator is simplified by the additional postulation that the sum of volume devi-
ations shall be zero δA + δB + δC = 0

ρr+3
ρr
· 33 = 8 + 8(δA + δB + δC) + 6(δAδB + δBδC + δCδA) + 2(δ2

A + δ2
B + δ2

C)+

(δ2
Aδb + δ2

AδC + δAδ
2
C + δ2

BδA + δ2
BδC + δ2

CδB) + 2δAδBδC
(G.14)

This expression can be written as:

ρr+3
ρr
· 33 = 8 + 2(δA + δB + δC)2 + 2(δAδB + δBδC + δCδA)+

(δA + δB + δC)(δAδB + δBδC + δCδA)− δAδBδC
(G.15)

which leads to the final simplification due to the demanded restriction δA + δB + δC = 0.

ρr+3
ρr

=
(2

3

)3 (
1 + 1

4 (δAδB + δBδC + δAδC)− 1
8δAδBδC

)
(G.16)

It shall be noted that in the original publication the two last terms in the above equation
have exactly opposite signs [113]. Eventually, this lead to a slightly different reassessment of
the working equation in a later publication [118].
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G. Dielectric expansion working equations

G.2.2. The two cell cyclic expansion by Koschine and Lehmann - correction to
the apparatus constant

In the following, the determination of the corrections to the apparatus constant is shown by
the example of the two cell cyclic expansion [100]. Let cell A with volume VA = V + δV

be filled with nA1 moles of gas at a pressure pA1, while cell B with volume VB = V − δV is
evacuated. This initial condition can be written as:

pA1 = nA1RTZA1
VA

(G.17)

after the expansion this changes to

pA2 = nA1RTZA1
VA + VB

(G.18)

With the volumes defined as in the text above, the ratio of both pressures can be written
as:

pA2
pA1

= ZA2
ZA1

V + δV
2V = 1

2
ZA2
ZA1

(1 + δV
V

) (G.19)

The same procedure is repeated with cell B being filled initially and expansion into cell A:

pB2
pB1

= 1
2
ZB2
ZB1

(1− δV
V

) (G.20)

Multiplication of equation G.19 with the inverted ratio of equation G.20 leads to:

pA2pB1
pA1pB2

= ZA2ZB1
ZA1ZA2

1 + δV
V

1− δV
v

(G.21)

By choosing the same starting pressures, the compressibility factors cancel and the formula
may be simplified to:

pA2pB1
pA1pB2

≈ 1 + 2δV
V

(G.22)

Thus, the small correction term δV
V can be determined by simple pressure ratios. Since

the influence on the apparatus constant is of quadratic order, relative uncertainties in the
pressure measurement in the order of 10−4 are already sufficient. The apparatus constant
can, then, be calculated by the given equation G.8 Qcycle,2 = 1

4

(
1−

(
δV
V

)2
)
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G.3. Dielectric expansion with deformation of the cells

G.3. Dielectric expansion with deformation of the cells

Derivation of the working equation for the dielectric expansion method with deformation of
the cells starts with relation 3.44, which may be written as:

frVA (1 + λApr)
fr+1(VA + VB) (1 + λABpr+1) = 1 + bCMfr + cCMf

2
r + ...

1 + bCMfr+1 + cCMf2
r+1 + ... (G.23)

In analogy to the derivation given in section F.2, the combined compressibility λAB taking
the deformation of both cells into account is used. Though the pressure is measured in
this experiment, it is replaced in the following step, so others can apply the equation to
experiments, where the pressure is not assessed at the same time. The idealized relation
p = fRT

Aε
is used to rewrite fr and fr+1 in the small correction terms. Furthermore, the

ratios of Mosotti-terms Fratio,r = fr
fr+1

are used to replace fr+1:

Fratio,rVA
(
1 + λA

frRT
Aε

)
(VA + VB)

(
1 + λAB

f1RT
Fratio,rAε

) = 1 + bCMfr + cCMf
2
r + ...

1 + bCM
fr

Fratio,r
+ cCM

(
fr

Fratio,r

)2
+ ...

(G.24)

Following the routine given for the evaluation of equation F.8, this equation can be mul-
tiplied out and solved for Fratio,r. The result can be arranged as a series in powers of fr and
is:

Fratio,r = (VA + VB)
VA

+
bCMVB + RT

Aε
(λBVA − λA(VA + VB))

VA
· fr+[

cCM
V 2
B + 2VAVB

(VA + VB)VA
+ λART

A2
ε

(λART − bCMAε)
(VA + VB)

VA
+

λABRT

A2
ε

(bCMAε − λABRT ) VA
(VA + VB)

]
· f2
r

(G.25)

This expression is simplified by substitution with the apparatus constant Q.

Fratio,r = Q+
(
bCM(Q− 1) + RT

Aε
(λAB − λAQ)

)
· fr+[

cCM(Q− 1
Q

) + λART

A2
ε

(λART − bCMAε)Q+

λABRT

QA2
ε

(bCMAε − λABRT )
]
· f2
r + ...

(G.26)

To retrieve the dielectric virial coefficients, the Mosotti virial coefficients are replaced by
the relations given in equation 3.14. Furthermore, the combined compressibility is replaced
by λAB = λA

Q + λB(1− 1
Q) so the final result only contains the compressibility of cell B λB.

This results in the final expression:
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G. Dielectric expansion working equations

Fratio,r = Q+ (Q− 1)
(
bε
Aε

+ RT

Aε

1
Q

(λB − λA(Q+ 1))
)
· fr+[

cε − b2ε
A2
ε

(
Q− 1

Q

)
+ QλART

A2
ε

(λART − bε)+

(RT )2

QA2
ε

(
bε
RT

(
λA
Q

+ λB

(
1− 1

Q

))
−
(
λA
Q

+ λB

(
1− 1

Q

))2)]
· f2
r + ..

(G.27)

Rearrangement of this equation leads to the final form given in section 3.4.3

G.4. Dielectric expansions with dead volumes

Carrying on the discussion from section 3.4.3, the Mosotti-terms at TGHS are directly linked
to the ones at Tiso by means of the DCGT data evaluation. The ansatz in equation 3.48 is
simplified by neglecting the small corrections due to κeff for this assessment. Furthermore,
µr ≈ fr, when the influence of the compressibility is neglected. With these assumptions,
equation 3.48 can be written as:

Tisofr,iso

(
1 + BDCGT,iso

Aε
fr,iso

)
= TGHSfr,GHS

(
1 + BDCGT,GHS

Aε
fr,GHS

)
(G.28)

Solving this equation for fr,GHS yields:

fr,GHS = Aε
2BDCGT,GHS

(√
Tiso
TGHS

4BDCGT,GHS
Aε

fr,iso(1 + BDCGT,iso
Aε

fr,iso) + 1− 1
)
(G.29)

Replacing fr,GHS with this expression in the starting equation 3.47 results in a non-solvable
equation. That is why equation G.29 is expanded into a Taylor series that is truncated after
the quadratic term:

fr,GHS = Tiso
TGHS

· fr,iso + BDCGT,isoTisoTGHS −BDCGT,GHST
2
iso

T 2
GHSAε

· f2
r,iso + ... (G.30)

Using this expression and after incorporation of Fratio,iso = fr,iso
fr+1,iso

, consequent substitution
results in:
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fr,isoVA
(1 + bCM,isofr,iso)

− fr,iso(VA + VB)
Fratio,iso(1 + bCM,iso

fr,iso
Fratio,iso

)
=

(
Tiso
TGHS

· fr,iso
Fratio,iso

+ BDCGT,isoTisoTGHS−BDCGT,GHST
2
iso

T 2
GHSAε

· f
2
r,iso
Q2

∆T

)
(VDA + VDB)(

1 + bCM,GHS

(
Tiso
TGHS

· fr,iso
Fratio,iso

+ BDCGT,isoTisoTGHS−BDCGT,GHST 2
iso

T 2
GHSAε

· f
2
r,iso
Q2

∆T

))

−

(
Tiso
TGHS

· fr,iso + BDCGT,isoTisoTGHS−BDCGT,GHST
2
iso

T 2
GHSAε

· f2
r,iso

)
VDA(

1 + bCM,GHS

(
Tiso
TGHS

· fr,iso + BDCGT,isoTisoTGHS−BDCGT,GHST 2
iso

T 2
GHSAε

· f2
r,iso

))
(G.31)

considering only the orders for the second virial coefficients. In order for equation G.31
to be solvable for Fratio,r as a function of fr,iso, F 2

ratio,r had to be replaced by the apparent
apparatus constant Q2

∆T , which will be the first fit coefficient of the final form. The solution
can be described by:

Fratio,r =D0 +D1fr +D2f
2
r + ...

D0 =1 + TisoVDB + TGHSVB
TisoVDA + TGHSVA

= Q∆T

D1 =bCM,iso + (bCM,GHSTiso + bCM,isoTGHS) (TGHSVB + TisoVDB)
TGHS(TGHSVA + TisoVDA)+

(bCM,GHSTiso − bCM,isoTGHS) (VA + VB)
TGHS(VA + VB) + Tiso(VDA + VDB)−

(bCM,GHSVA + bCM,isoVDA)Tiso(TGHS(VA + VB) + Tiso(VDA + VDB))
(TisoVDA + TGHSVA)2 +

(BDCGT,GHSTiso −BDCGT,isoTGHS)
Aε

· Tiso
TGHS

·

TGHS(VA + VB) + Tiso(VDA + VDB)
TGHS(TGHSVA + TisoVDA)2 ·

(
VDA −

VDA + VDB
Q2

∆T

)

(G.32)

A comparison with equation 3.36 shows, that the coefficient D0 corresponds to the ap-
parent apparatus constant Q∆T as well and converges to the ideal apparatus constant Q for
equalizing the temperatures. Instead of the D1 term, it is again beneficial to calculate the
ratio D1

D0−1 :
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D1
D0 − 1 =bCM,iso

(
1 +

VA + Tiso
TGHS

VDA

VB + Tiso
TGHS

VDB

)
+ bCM,GHS

Tiso
TGHS

−

(bCM,GHSVA + bCM,isoVDA) Tiso
TGHS

(
1

VB + Tiso
TGHS

VDB
+ 1
VA + Tiso

TGHS
VDA

)
(
bCM,GHS

Tiso
TGHS

− bCM,iso

) (VA + VB)(VA + Tiso
TGHS

VDA)
(VB + Tiso

TGHS
VDB)(VA + VB + Tiso

TGHS
(VDA + VDB))

+

(BDCGT,GHSTiso −BDCGT,isoTGHS)
Aε

· Tiso
TGHS

(VA + VB + Tiso
TGHS

(VDA + VDB))
(VB + Tiso

TGHS
VDB)(VA + Tiso

TGHS
VDA)

·(
VDA −

VDA + VDB
Q2

∆T

)
(G.33)

With the volume ratios defined in equation 3.37 and the temperature ratio Tratio = Tiso
TGHS

,
equation G.33 can be simplified to the expression given in section 3.4.3:

Fratio,r =D0 +D1 · fr +D2 · f2
r + ...

D0 =Q∆T

D1
D0 − 1 = bCM,iso

 1
1 + TratioQA

− 1
1 + TratioQB

+ 1
1 + Tratio

(QB+QAQ∗)
(1+Q∗)

+

bCM,GHSTratio

1 + 1
1 + TratioQB

− 1
1 + TratioQA

− 1
1 + Tratio

(QB+QAQ∗)
(1+Q∗)

+

(BDCGT,iso − TratioBDCGT,GHS)
Aε

[(
1

Q2
∆T
− 1

)(
1

1 + 1
TratioQA

+ QAQ
∗

1
Tratio

+QB

)
+

1
Q2

∆T

 1
1 + 1

TratioQB

+
QB
Q∗

1
Tratio

+QA


(G.34)

G.5. Final working equation for dielectric expansions

As previously described, the equation is solved for Fratio,iso with the help of the program
“Mathematica” (Wolfram Research) and the result is rearranged as Fratio,iso = D0+D1fr,iso+
D2f

2
r,iso + ..... The term D0 = Q∆T is equivalent to all previous results. To display the result

required for the data evaluation in this thesis, the term D1
D0−1 is depicted:
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D1
D0 − 1 = bCM,iso

 1
1 + Tiso

TGHS
· VDBVB

− 1
1 + Tiso

TGHS
· VDAVA

+ 1
1 + Tiso

TGHS
· (VDA+VDB)

(VA+VB)

+

bCM,GHS ·
Tiso
TGHS

1 + 1
1 + Tiso

TGHS
· VDBVB

− 1
1 + Tiso

TGHS
· VDAVA

− 1
1 + Tiso

TGHS
· (VDA+VDB)

(VA+VB)

+

λB ·
RTiso
AεQ∆T

 1
1 + Tiso

TGHS
· VDBVB

+

λA ·
RTiso
AεQ∆T

( 1
Q∆T

− 1
) 1

VB
VA

+ Tiso
TGHS

· VDBVA

− 1
1 + Tiso

TGHS
· VDAVA

+

λGHS ·
RTiso
AεQ∆T

 1
Q∆T

 1
VDB
VDA

+ TGHS
Tiso

VB
VDA

+ 1
1 + TGHS

Tiso
· VBVDB

−
1

VDB
VDA

+ TGHS
Tiso
· VBVDA

− 1
1 + TGHS

Tiso
· VAVDA

+

BDCGT,GHS
Aε

· Tiso
TGHS

(1− 1
Q2

∆T

) 1
1 + TGHS

Tiso
· VAVDA

+ 1
VDB
VDA

+ TGHS
Tiso
· VBVDA

−
1

Q2
∆T

 1
1 + TGHS

Tiso
· VBVDB

+ 1
VDA
VDB

+ TGHS
Tiso
· VAVDB

+

BDCGT,iso
Aε

( 1
Q2

∆T
− 1

) 1
1 + TGHS

Tiso
· VAVDA

+ 1
VDB
VDA

+ TGHS
Tiso
· VBVDA

−
1

Q2
∆T

 1
1 + TGHS

Tiso
· VBVDB

+ 1
VDA
VDB

+ TGHS
Tiso
· VAVDB

+

(G.35)
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system
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Figure H.1.: Examples of the temperature stability of the gas-handling system during an
isotherm measurement for each temperature. The isotherm numbers are de-
fined in table 5.1 and are the same as in figure 4.3. Data point 1 corresponds
to the starting pressure of 7 MPa. At each data point, the temperature was
measured for 2 hours with the error bars indicating the corresponding standard
uncertainty of these averaged temperatures. The solid lines indicate the average
value of temperature over the whole isotherm measurement, while the dashed
line shows the corresponding standard deviation. The depicted temperature is
the internal temperature of Digi1.
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I. Linearity of the pressure sensors

A two point calibration of the pressure sensors can only be performed if they have a linear
characteristic or one that can be described by two parameters. To demonstrate this for
the used pressure sensors, the data sets plotted in figure 4.11 were used to calculate the
absolute deviations to the pressure balance for four distinct temperatures utilizing the the
temperature sensitivity coefficients βDigi1 and βDigi1 . The results are visualized in figures I.1
for Digi1 and in I.2 for Digi2.
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Figure I.1.: Linearity of Digi1 depicted for four different sensor temperatures measured with
three different pressure balances “Ruska 4” (open circles), “Ruska 5” (open stars)
and “Ruska 6” (open cubes). Dashed lines are linear fits applied to the data.
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I. Linearity of the pressure sensors
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Figure I.2.: The characteristic curve of Digi2 depicted for four different sensor temperatures
measured with three different pressure balances “Ruska 4” (open circles), “Ruska
5” (open stars) and “Ruska 6” (open cubes). Dashed lines are polynomial fits of
second order applied to the data.
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J. DCGT results

J.1. Average pressure and capacitance values of argon

Table J.1 summarizes the corrected and averaged pressure and capacitance data of the DCGT
evaluation of argon.
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J. DCGT results

Tiso =253.8975 K
data point pr [Pa] µ data point pr [Pa] µ

1 7 022 767.2 0.014 977 13 9 2 387 512.3 0.004 824 71
2 6 152 329.6 0.012 997 91 10 2 080 491.4 0.004 188 29
3 5 385 715.4 0.011 280 73 11 1 812 158.7 0.003 635 91
4 4 710 996.6 0.009 790 84 12 1 577 794.3 0.003 156 41
5 4 117 698.0 0.008 498 08 13 1 373 277.4 0.002 740 22
6 3 596 532.3 0.007 376 26 14 1 194 889.0 0.002 378 93
7 3 139 266.4 0.006 402 78 15 1 039 391.7 0.002 065 29
8 2 738 458.1 0.005 557 93 16 903 920.3 0.001 793 02

Tiso =273.1613 K
data point pr [Pa] µ data point pr [Pa] µ

1 7 021 651.2 0.013 585 86 9 2 354 716.5 0.004 386 23
2 6 135 591.9 0.011 794 41 10 2 050 190.4 0.003 808 51
3 5 358 806.0 0.010 239 45 11 1 784 485.7 0.003 306 93
4 4 677 996.1 0.008 889 72 12 1 552 779.9 0.002 871 44
5 4 081 625.7 0.007 718 12 13 1 350 816.9 0.002 493 34
6 3 559 533.7 0.006 701 05 14 1 174 871.4 0.002 165 04
7 3 102 801.7 0.005 818 14 15 1 021 643.7 0.001 879 99
8 2 703 534.1 0.005 051 66 16 888 244.6 0.001 632 48

Tiso =296.1256 K
data point pr [Pa] µ data point pr [Pa] µ

1 7 022 759.9 0.012 281 79 9 2 329 811.8 0.003 975 15
2 6 123 995.1 0.010 666 16 10 2 027 228.1 0.003 452 51
3 5 338 904.1 0.009 263 11 11 1 763 583.4 0.002 998 62
4 4 653 176.0 0.008 044 80 12 1 533 921.7 0.002 604 39
5 4 054 284.1 0.006 986 75 13 1 333 940.5 0.002 262 00
6 3 531 397.3 0.006 067 91 14 1 159 861.1 0.001 964 64
7 3 075 060.5 0.005 269 97 15 1 008 374.1 0.001 706 37
8 2 676 962.9 0.004 576 98 16 876 567.5 0.001 482 07

Tiso =302.9126 K
data point pr [Pa] µ data point pr [Pa] µ

1 7 022 723.0 0.011 949 42 9 2 324 100.3 0.003 870 10
2 6 121 117.2 0.010 378 50 10 2 021 950.2 0.003 361 46
3 5 334 226.9 0.009 014 21 11 1 758 759.0 0.002 919 68
4 4 647 400.7 0.007 829 26 12 1 529 580.1 0.002 535 99
5 4 047 954.6 0.006 800 12 13 1 330 062.1 0.002 202 74
6 3 524 911.5 0.005 906 28 14 1 156 420.0 0.001 913 28
7 3 068 680.9 0.005 129 98 15 1 005 329.9 0.001 661 86
8 2 670 869.7 0.004 455 72 16 873 887.7 0.001 443 50

Table J.1.: Averaged pressure and capacitance data at the four different temperatures.
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J.2. Fit coefficients of the averaged DCGT isotherm fits

J.2. Fit coefficients of the averaged DCGT isotherm fits

Table J.2 summarizes the fit results of the polynomial fit to the DCGT data of argon.

Tiso [K] 253.898 273.161 296.126 302.913
A∗1 [108Pa] 5.099 375 5.486 820 5.948 512 6.085 060
u(A∗1) [108Pa] 0.000 014 0.000 024 0.000 025 0.000 042
A∗2 [109Pa] −3.3076 −2.8642 −2.3548 −2.2118
u(A∗2) [109Pa] 0.0005 0.0010 0.0012 0.0002
A∗3 [1010Pa] 3.722 3.759 3.824 3.888
u(A∗3) [1010Pa] 0.006 0.013 0.017 0.030
A∗4 [1010Pa] 4.48 5.08 5.82 4.48
u(A∗4) [1010Pa] 0.22 0.52 0.73 1.32

Table J.2.: Fit coefficients and their standard uncertainty of the polynomial fit of fourth
order to the averaged data for corresponding average values of the four measured
temperatures.

183





K. Data of the expansion experiments

The averaged pressures and Mosotti-terms as well as their corresponding ratios are given in
table K.1 (pressure data) and table K.2 (dielectric expansions). The values are visualized in
figure K.1. Both values are plotted over the measured pressure to illustrate the convergence
towards Q∆T (see section 5.2). Due to the required correction to the temperature TGHS

described in section 4.7, the ratios are not identical with the ratio of two consecutive pressures
or Mosotti-Terms. Furthermore, the values are, therefore, slightly different compared to the
ones given in table J.1 for the DCGT data.
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Figure K.1.: Pressure ratios (open circles) and ratios of Mosotti-terms (open squares) of
argon plotted over the measured pressures at the indicated temperatures. The
solid line indicates the apparent apparatus constant Q∆T .
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K. Data of the expansion experiments

Tiso =253.8975 K
data point pr [Pa] Pratio,r data point pr [Pa] Pratio,r

1 7 022 765.7 1.141 481 9 2 387 515.5 1.147 571
2 6 152 331.7 1.142 340 10 2 080 492.8 1.148 075
3 5 385 713.6 1.143 222 11 1 812 157.5 1.148 542
4 4 711 003.5 1.144 086 12 1 577 792.8 1.148 927
5 4 117 706.1 1.144 893 13 1 373 275.6 1.149 294
6 3 596 547.6 1.145 663 14 1 194 885.2 1.149 603
7 3 139 269.1 1.146 366 15 1 039 387.9 1.149 873
8 2 738 462.4 1.146 990

Tiso =273.1613 K
data point pr [Pa] Pratio,r data point pr [Pa] Pratio,r

1 7 021 455.4 1.144 413 9 2 354 549.8 1.148 541
2 6 135 385.8 1.144 959 10 2 050 035.4 1.148 904
3 5 358 595.5 1.145 538 11 1 784 339.1 1.149 226
4 4 677 804.1 1.146 118 12 1 552 645.4 1.149 517
5 4 081 436.1 1.146 680 13 1 350 693.5 1.149 767
6 3 559 345.3 1.147 205 14 1 174 757.7 1.149 990
7 3 102 621.2 1.147 692 15 1 021 539.0 1.150 188
8 2 703 363.9 1.148 141

Tiso =296.1256 K
data point pr [Pa] Pratio,r data point pr [Pa] Pratio,r

1 7 022 794.3 1.146 758 8 2 676 982.6 1.149 003
2 6 124 009.7 1.147 042 9 2 329 828.6 1.149 263
3 5 338 945.9 1.147 370 10 2 027 272.5 1.149 506
4 4 653 211.2 1.147 719 11 1 763 595.0 1.149 725
5 4 054 314.3 1.148 066 12 1 533 931.0 1.149 916
6 3 531 421.8 1.148 399 13 1 333 947.9 1.150 088
7 3 075 084.8 1.148 714

Tiso =302.9126 K
data point pr [Pa] Pratio,r data point pr [Pa] Pratio,r

1 7 022 691.2 1.147 293 9 2 324 097.4 1.149 436
2 6 121 103.7 1.147 519 10 2 021 947.8 1.149 649
3 5 334 227.9 1.147 788 11 1 758 756.6 1.149 836
4 4 647 397.1 1.148 085 12 1 529 577.0 1.150 008
5 4 047 958.3 1.148 383 13 1 330 057.8 1.150 156
6 3 524 908.1 1.148 672 14 1 156 416.0 1.150 290
7 3 068 684.1 1.148 949 15 1 005 325.8 1.150 409
8 2 670 867.6 1.149 202

Table K.1.: Averaged pressures and pressure ratios of the Burnett expansion.
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Tiso =253.8975 K
data point fr Fratio,r data point fr Fratio,r

1 0.014 981 85 1.152 270 9 0.004 826 30 1.151 951
2 0.013 002 04 1.152 217 10 0.004 189 67 1.151 921
3 0.011 284 33 1.152 169 11 0.003 637 12 1.151 914
4 0.009 794 00 1.152 126 12 0.003 157 46 1.151 882
5 0.008 500 82 1.152 071 13 0.002 741 13 1.151 873
6 0.007 378 67 1.152 039 14 0.002 379 72 1.151 862
7 0.006 404 88 1.152 011 15 0.002 065 98 1.151 845
8 0.005 559 76 1.151 970

Tiso =273.1613 K
data point fr Fratio,r data point fr Fratio,r

1 0.013 590 14 1.151 889 9 0.004 387 47 1.151 699
2 0.011 798 10 1.151 862 10 0.003 809 56 1.151 678
3 0.010 242 60 1.151 834 11 0.003 307 83 1.151 668
4 0.008 892 45 1.151 804 12 0.002 872 21 1.151 651
5 0.007 720 45 1.151 782 13 0.002 493 99 1.151 645
6 0.006 703 04 1.151 756 14 0.002 165 60 1.151 629
7 0.005 819 84 1.151 736 15 0.001 880 47 1.151 626
8 0.005 053 12 1.151 713

Tiso =296.1256 K
data point fr Fratio,r data point fr Fratio,r

1 0.012 286 51 1.151 468 8 0.004 578 78 1.151 397
2 0.010 670 25 1.151 457 9 0.003 976 71 1.151 383
3 0.009 266 84 1.151 444 10 0.003 453 97 1.151 379
4 0.008 047 93 1.151 436 11 0.002 999 80 1.151 376
5 0.006 989 47 1.151 423 12 0.002 605 41 1.151 362
6 0.006 070 27 1.151 413 13 0.002 262 89 1.151 357
7 0.005 272 03 1.151 406

Tiso =302.9126 K
data point fr Fratio,r data point fr Fratio,r

1 0.011 954 12 1.151 363 9 0.003 871 65 1.151 315
2 0.010 382 60 1.151 351 10 0.003 362 81 1.151 312
3 0.009 017 79 1.151 349 11 0.002 920 86 1.151 301
4 0.007 832 37 1.151 340 12 0.002 537 01 1.151 291
5 0.006 802 83 1.151 334 13 0.002 203 62 1.151 288
6 0.005 908 63 1.151 325 14 0.001 914 05 1.151 292
7 0.005 132 03 1.151 328 15 0.001 662 52 1.151 269
8 0.004 457 50 1.151 315

Table K.2.: Averaged Mosotti-terms and corresponding ratios of the dielectric expansion.
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