Physikalisch-Technische Bundesanstalt

Guide DKD-L 13-2

Validation of measurement uncertainty budgets

Edition 10/2020

https://doi.org/10.7795/550.20211118

DKD-L 13-2	
Edition	10/2020
Revision:	0
Page:	2 / 29

Deutscher Kalibrierdienst (DKD) – German Calibration Service

Since its foundation in 1977, the German Calibration Service has brought together calibration laboratories of industrial enterprises, research institutes, technical authorities, inspection and testing institutes. On 3rd May 2011, the German Calibration Service was reestablished as a *technical body* of PTB and accredited laboratories.

This body is known as *Deutscher Kalibrierdienst* (DKD for short) and is under the direction of PTB. The guidelines and guides developed by DKD represent the state of the art in the respective areas of technical expertise and can be used by the *Deutsche Akkreditierungsstelle GmbH* (the German accreditation body – DAkkS) for the accreditation of calibration laboratories.

The accredited calibration laboratories are now accredited and supervised by DAkkS as legal successor to the DKD. They carry out calibrations of measuring instruments and measuring standards for the measurands and measuring ranges defined during accreditation. The calibration certificates issued by these laboratories prove the traceability to national standards as required by the family of standards DIN EN ISO 9000 and DIN EN ISO/IEC 17025.

Contact:

Physikalisch-Technische Bundesanstalt (PTB) DKD Executive Office Bundesallee 100 D-38116 Braunschweig P.O. Box 33 45 D-38023 Braunschweig Telephone: +49 531 592-8021 Internet: www.dkd.eu

DKD-L 13-2	
Edition	10/2020
Revision:	0
Page:	3 / 29

Suggestion for the citation of sources:

Guide DKD-L 13-2 Validation of measurement uncertainty budgets, Edition 10/2020, Revision 0, Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin. DOI: 10.7795/550.20211118

This document and all parts contained therein are protected by copyright and are subject to the Creative Commons user license CC by-nc-nd 3.0

(http://creativecommons.org/licenses/by-nc-nd/3.0/de/). In this context, "non-commercial" (NC) means that the work may not be disseminated or made publicly accessible for revenuegenerating purposes. The commercial use of its contents in calibration laboratories is explicitly allowed.

Authors:

- Bernd Pesch, Kalibrierzentrum der Bundeswehr, Mechernich
- Philip Fleischmann, esz AG calibration & metrology, Eichenau
- Dr. Stephan Mieke, Physikalisch-Technische Bundesanstalt (PTB), Berlin
- Dr. Rudolf Frieling, Helmstedt
- Nadine Schiering, Zentrum für Messen und Kalibrieren & ANALYTIK GmbH, Bitterfeld-Wolfen
- Dr.-Ing. Olaf Schnelle-Werner, Zentrum für Messen und Kalibrieren & ANALYTIK GmbH, Bitterfeld-Wolfen
- Horst Rötteken, Göttingen
- Dr. Bernd Schumacher, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
- Sven Friederici, Physikalisch-Technische Bundesanstalt (PTB), Berlin
- Dr. Torsten Augustin, Deutsche Akkreditierungsstelle GmbH (DAkkS), Berlin
- Dr. Burkhard Peil, Deutsche Akkreditierungsstelle GmbH (DAkkS), Frankfurt
- Dr. Werner Jordan, Munich
- Dr. Barbara Werner, Zentrum für Messen und Kalibrieren & ANALYTIK GmbH, Bitterfeld-Wolfen

Published by the Physikalisch-Technische Bundesanstalt (PTB) for the German Calibration Service (DKD) as result of the cooperation between PTB and the DKD Technical Committee *Measurement Uncertainty*.

DKD-L 13-2	
Edition	10/2020
Revision:	0
Page:	4 / 29

Table of contents

1	Purpose and scope of application	5
2	List of symbols, designations and abbreviations	6
3	General	9
3.1	Overview of the validation criteria	9
3.2	Basic principles	11
3.3	Normative principles	12
3.4	Comments on how to use the checklist	12
3.5	Example: Question concerning the general section (document header)	12
4	Checklist for the validation of the best measurement uncertainty	14
4.1	Formal inspections	14
4.2	Measurand	15
4.3	Measuring process	15
4.4	Measuring equipment	16
4.5	Modelling	17
4.6	Sensitivity coefficients	18
4.7	Analysis of the measurement uncertainty	18
4.8	Correlations	20
4.9	Creation of the measurement uncertainty budget	20
4.10	Verification of the effective degrees of freedom	21
4.11	Presentation of results	21
5	Checklist for the validation of the measurement uncertainty of an actual	
5.1	Formal examinations	
5.2	Measurand	
5.3	Measuring process	23
5.4	Measuring equipment	23
5.5	Modelling	23
5.6	Sensitivity coefficients	23
5.7	Analysis of the measurement uncertainty	23
5.8	Correlations	24
5.9	Creation of the measurement uncertainty budget	24
5.10	Verifying the effective degrees of freedom	24
5.11	Verification of the stated uncertainty	25
6	Appendix	26
6.1	Bibliography	26
6.2	Index	27

DKD-L 13-2	
Edition	10/2020
Revision:	0
Page:	5 / 29

Foreword

DKD guides are recommendations on technical issues arising from the practical work in accredited calibration laboratories. The guides describe procedures which may serve the accredited calibration laboratories as model for defining internal processes and regulations. DKD guides may become an essential component of quality management manuals of calibration laboratories. The implementation of the guidelines will help to incorporate the state of the art in the respective field into laboratory practice. Thus, a standardization of procedures as well as an increased efficiency in the work of calibration laboratories shall be achieved.

DKD guides should not impede the further development of calibration procedures and processes. Deviations from guidelines as well as new procedures are permitted if there are technical reasons to support this action

The present guide was prepared by the Technical Committee *Measurement Uncertainty* and approved by the Board of the DKD.

1 Purpose and scope of application

This Guide is a tool for the validation of determined measurement uncertainties.

It takes into account the determination of the smallest measurement uncertainty to be specified (best measurement uncertainty in the frame of the CMC¹) as well as the representation of the measurement uncertainty assigned to an actual measurement, which is to be stated in test or calibration certificates.

The Guide is intended for calibration and testing laboratories as well as for people preparing measurement uncertainty documentations (management documents). It shows the information to be provided when determining measurement uncertainties. Application-specific particularities that go beyond or deviate from general metrological requirements are addressed by way of example in the checklist.

This Guide has been developed in form of a checklist to provide an opportunity for carefully examining the available information, based on the questions asked.

The validation of procedures, quality-relevant documents, work aids and software prior to their release and application is a fundamental requirement of all QM systems. Validations must be documented. The checklist provided by this Guide may constitute such a proof of validation for measurement uncertainties.

If a laboratory deals with more than one measurand, a separate checklist for each measurand according to this Guide should be available.

¹ CMC = Calibration and measurement capability, see EN ISO/IEC 17011:2017, 7.8.3 c) and EA-4/02 M: 2013, Appendix B, B2.

DKD-L 13-2	
Edition	10/2020
Revision:	0
Page:	6 / 29

2 List of symbols, designations and abbreviations

Metrological symbols and formula symbols		
Symbol, designation or abbreviation	Definition	
Output quantity	Result of a measurement uncertainty budget or a calculation (of a result).	
Ci	Sensitivity coefficient. In many cases, c_i is a dimensionless multiplier. However, physical units are also possible.	
DAkkS	Deutsche Akkreditierungsstelle GmbH (German Accreditation Body)	
Effective degrees of freedom	Formula symbol v_{eff} (Greek: "ny"). In general, the <i>t</i> -distribution will not describe the distribution of the variable $(y - Y)/u_c(y)$ if $u_c^2(y)$ is the sum of two or more estimated variance components, even if each x_i is the estimate of a normally distributed input quantity X_i . However, the distribution of that variable may be approximated by a <i>t</i> -distribution with an effective degrees of freedom v_{eff} obtained from the Welch- Satterthwaite formula: $v_{eff} = \frac{u^4}{\sum_{i=1}^n \frac{u_i^4(y_i)}{v_i}}$ With <i>n</i> being the number of uncertainty contributions considered, u_i the respective uncertainty contribution in the measurement uncertainty budget, v_i the degrees of freedom of the respective uncertainty contribution, <i>u</i> (without index) the calculated measurement uncertainty of the result, without coverage factor. \rightarrow JCGM 100:2008, [1], section G.4	
Influence quantity	Quantity that is not the measurand but that affects the result of the measurement and whose value cannot be exactly specified. \rightarrow JCGM 100:2008, [1], B.2.10 \rightarrow VIM3, [2], 2.52	
Sensitivity coefficient	The sensitivity coefficients show the sensitivity by which the result of a measurement will depend on an influence quantity. They result from the model equation by partial derivation according to the respective influence quantities. The sensitivity coefficient is determined as follows: $c_i = \frac{\partial f(x)}{\partial x_i}$ With: c_i being the sensitivity coefficient of the influence quantity x_i	

Validation of measurement uncertainty budgets https://doi.org/10.7795/550.20211118

DKD-L 13-2	
Edition	10/2020
Revision:	0
Page:	7 / 29

Symbol, designation or abbreviation	Definition
Coverage factor	Formula symbol k . numerical factor used as a multiplier of the combined standard uncertainty in order to obtain an expanded uncertainty.
k	\rightarrow Coverage factor.
Best measurement uncertainty	Smallest uncertainty of measurement that can be expected to be achieved by a laboratory for a specific quantity within its scope of accreditation (Calibration and measurement capability, CMC) under ideal measurement conditions. \rightarrow EA-4/02 M: 2013 [3], Appendix B, B2
MCS	Monte Carlo simulation
Measurement uncertainty contribution	Numerical portion of the influence of a measurement uncertainty on a measurement result within the scope of the uncertainty budget.
Uncertainty budget	Statement of a measurement uncertainty, of the components of that measurement uncertainty, and of their calculation and combination. Note: An uncertainty budget should include the measurement model, estimates, and measurement uncertainties associated with the quantities in the measurement model, covariances, type of applied probability density functions, degrees of freedom, type of evaluation of measurement uncertainty, and any coverage factor. \rightarrow VIM, 3rd edition, section 2.33
Influence of the measurement uncertainty	An influence causing a measurement error with statistical probability.
n/a	The abbreviation is used with two different meanings: "not applicable" or "not available".
PDF	Probability density function. Mathematical term used to describe the possible values of the quantity characterized by this function, e.g. the measurement result.
u u(x _i)	Formula symbol for the standard measurement uncertainty (also: standard uncertainty) associated with the estimated value of the measurand x_i (influence quantity). Same physical unit as the measurand.

DKD-L 13-2	
Edition	10/2020
Revision:	0
Page:	8 / 29

Symbol, designation or abbreviation	Definition
U U(y) U _{0,95}	Formula symbol for the expanded measurement uncertainty associated with the estimated value of the measurand y , that is to say, the result.
	An index value (in this case 0.95 for 95 %) can be assigned to the formula symbol of the expanded measurement uncertainty. This index value represents the coverage probability.
Validation	The verification of the procedure for determining a measurement uncertainty has been defined in accordance with the term "validation" pursuant to JCGM 200:2012 (VIM) [2], 2.45. Accordingly, the validation is a verification in which a fact is checked with regard to an intended use.
	→ JCGM 200:2012 (VIM) [2], 2.45
w $x(x_i)$	Formula symbol for the relative standard uncertainty attributed to the estimated value of the measurand x_i (influence quantity).
W W(y) W _{0,95}	Formula symbol for the relative expanded measurement uncertainty associated with the estimated value of the measurand y , i. e. the result.
	An index value (in this case 0.95 for 95 %) can be assigned to the formula symbol of the expanded measurement uncertainty. This index value indicates the coverage probability (or: the degree of confidence).

 Table 1: Metrological symbols and formula symbols

DKD-L 13-2	
Edition	10/2020
Revision:	0
Page:	9 / 29

3 General

3.1 Overview of the validation criteria

3.1.1 Criteria regarding the best measurement uncertainty

4.1.1	Denomination and identification of a document for calculating the measurement uncertainty	14
4.1.2	Designations used	14
4.1.3	Abbreviations	15
4.1.4	Formula symbols	15
4.2.1	Definition of the measurand	15
4.3.1	Description of the measuring process	15
4.3.2	Requirements concerning the measuring process	16
4.3.3	Limitations of the measurement process	16
4.3.4	Process equation	16
4.4.1	Requirements for measuring equipment and measuring devices	16
4.4.2	Metrological traceability	16
4.4.3	Measuring equipment for monitoring measurement or ambient conditions	17
4.4.4	Validation of the software used	17
4.4.5	Representation of the measuring arrangement	17
4.5.1	Model equation	17
4.5.2	Linearization of the model	17
4.5.3	Separation of the influence quantities	18
4.5.4	Requirements for the application of sub-models	18
4.6.1	Determination of the sensitivity coefficients	18
4.7.1	Relevant influences	18
4.7.2	Probability density function	19
4.7.3	Assumptions on influencing quantities	19
4.7.4	Properties of the device under test	19
4.7.5	External evaluations	19
4.7.6	Conversion factors and constants	19
4.8.1	Determination of correlations	20
4.9.1	Contributions with correct units	20
4.9.2	Presentation of the uncertainty budget in tabular form	20
4.9.3	Use of the units	20
4.10.1	Verifying the effective degrees of freedom	21
4.11.1	Presentation of the result	21
4.11.2	Quantity equations instead of numerical value equations	21

DKD-L 13-2			
Edition	10/2020		
Revision:	0		
Page:	10 / 29		

3.1.2 Additional criteria for the measurement uncertainty of an actual measurement

5.1.1	Designation and identification	22
5.3.1	Exceeding limit values	23
5.4.1	Requirements for measuring equipment and devices	23
5.11.1	Complete presentation of results	25
5.11.2	Reference to the calculation basis	25
5.11.3	Recording of readings	25
5.11.4	Validated calculations	25
5.11.5	Reference to the best measurement uncertainty	26

3.2 Basic principles

3.2.1 Objectives

The following distinctions must be made when determining the measurement uncertainty:

• **Best measurement uncertainty:** It depends on the requirements to be fulfilled, for example, as proof of competence of the calibration or testing laboratories during accreditations. This is where the potential of the laboratory is demonstrated: the routine calibration of real, high-quality measuring instruments under optimal conditions and by applying the methods commonly used in the laboratory².

→EA-4/02 M: 2013 [3], Appendix A

The laboratory's documentation on the measurement uncertainty must be available, and fully comprehensible to outsiders.

Checklist to be used \rightarrow Section 4, "Checklist for the validation of the best measurement uncertainty", page 14

- **Measurement uncertainty attributed to an actual measurement value:** This quantity describes the measurement uncertainty to be determined within the scope of practical measurements, as stated in calibration certificates or test reports.
 - If necessary, it must be possible to establish the traceability of the uncertainty determination from recordings of the measured value. The calculation methods are to be documented in a suitable place as, for example, in procedure or process descriptions.
 - It is assumed that the best measurement uncertainty for the measured variable has already been determined – or a comparable consideration is available – so that the representation of the actual measurement uncertainty only requires adjustments to the current measurement.

The influence quantities taken into account must also be documented in a practiceoriented manner, for example by way of measurement reports or measurement data files or descriptions of the measurement setup.

→ DIN EN ISO/IEC 17025:2018 [4], 7.5.1

• Checklist to be used → Section 5, "Checklist for the validation of the best measurement uncertainty (further requirements)", page 22.

3.2.2 Methods of evaluation

Moreover, the different methods by which the measurement uncertainty can be evaluated must be taken into account, such as:

² However, this does not exclude the possibility that a laboratory may achieve lower uncertainties by using different methods. Given that these services cannot be routinely offered to customers, they are not covered by the definition of *best measurement uncertainty* (smallest uncertainty to be specified).

DKD-L 13-2			
Edition	10/2020		
Revision:	0		
Page:	12 / 29		

- GUM Framework, according to JCGM 100:2008 [1]
- Vector/matrix form for multidimensional output quantities, as shown in JCGM 102:2009 [5]
- Monte Carlo Simulation (MCS) according to JCGM 101:2008 [6]
- Comparative investigations by means of other measuring devices and transfer to the measurement task under consideration

The questions in the checklist are kept general; this way they can be used – to a great extent – regardless of the adopted procedure. Specific requirements that differ from general metrological requirements are shown in rectangular brackets [...].

3.2.3 Liability

The checklist is non-binding. It is a recommendation. However, various contents are elementary for the verifiability of the measurement uncertainty and should be available. It is usually assumed that a laboratory seeking a DAkkS³ accreditation fulfils these requirements.

3.3 Normative principles

3.3.1 Validation

The verification of the procedure for determining a measurement uncertainty has been defined according to the term *"validation"* pursuant to JCGM 200:2012 (VIM) [2], 2.45⁴.

→ JCGM 200:2012 (VIM) [2], 2.45

→ DIN EN ISO/IEC 17025:2018 [4], 7.2

This checklist also contains cross-references to standards which do not necessarily form the basis for accreditation but are helpful when formulating certain points⁵. The checklist presented here may serve as proof of validation for measurement uncertainties.

→ DIN EN ISO/IEC 17025:2018 [4], 7.2 → DIN EN ISO 9001:2015 [7], 8.3.4.d

3.4 Comments on how to use the checklist

The checklist is only valid for one measurand at a time. If several measured variables are to be considered, an individual evaluation for each measurand is recommended.

3.5 Example: Question concerning the general section (document header)

³ DAkkS: Deutsche Akkreditierungsstelle GmbH (German Accreditation Body)

⁴ Hence, a validation is a verification in which a given issue is checked with regard to its intended use.

⁵ For instance, reference is made to the "QM standard" DIN EN ISO 9001:2008, regardless of whether a laboratory is certified according to this standard.

DKD-L 13-2			
Edition	10/2020		
Revision:	0		
Page:	13 / 29		

The document presenting the measurement uncertainty must be clearly identifiable.						
\rightarrow DIN EN ISO/IE \rightarrow DIN EN ISO 90	→ DIN EN ISO/IEC 17025:2018 [4], 7.11, 8.3 → DIN EN ISO 9001 [7], 4.2.3					
Name of the Appendix Measurement Uncertainty concerning working instruction						
document	WI-02/22, rev. 2.2					
Designation of the measurand	Rectangularity of material measures					
Version	2.2					
Release date	1.9.2008					
Issued by (Name)	Meier, Laboratory					
Approved by (Name)	Schmítt, Head of Laboratory					
Evaluation	All necessary information available.	⊙√	:	$\overline{\mathbf{S}}$		

- "Criterion fulfilled" (③) is to be selected if the degree of compliance with the criterion does not require further improvement. The criterion does not necessarily have to be 100 % fulfilled, but the main aspects must be complied with.
- "Criterion partly fulfilled" ([©]) means that, in principle, the criterion is being implemented, but potential for improvement has been identified.
- "Criterion not fulfilled" (8) indicates that there is no compliance with the criterion.
- If an option does not apply, you can enter "not applicable" or "n/a" under "Evaluation".
- If reworking is recommended, a corresponding recommendation can be made under "Evaluation".

DKD-L 13-2			
Edition	10/2020		
Revision:	0		
Page:	14 / 29		

4 Checklist for the validation of the best measurement uncertainty

- 4.1 Formal inspections
- 4.1.1 Denomination and identification of a document for calculating the measurement uncertainty

If there is a separate document for the documentation of the measurement uncertainty, it must be clearly identifiable.					
	→ DIN EN ISO/IEC 1702	5:2018	[4], 7.1	1, 8.3	
	\rightarrow DIN E	N ISO	9001 [7	7], A.6	
Name of the document					
Designation of the measurand					
Version					
Release date					
Issued by (Name)					
Approved by (Name)					
Evaluation		\odot	:	3	

4.1.2 Designations used

The designations used in the document must be unambiguous and must not be in contradiction to normatively regulated designations.				
Evaluation		\odot	:	$\overline{\boldsymbol{\otimes}}$

DKD-L 13-2			
Edition	10/2020		
Revision:	0		
Page:	15 / 29		

4.1.3 Abbreviations

All (metrological) abbreviations used must be defined in a QM-monitored document and must be easy to find.					
Evaluation		()	:	\odot	

4.1.4 Formula symbols

Physical quantities are represented by formula symbols. These must be unambiguous. In the case of self-explanatory formula symbols ⁶ or those explained in the text, a definition is not required.						
ightarrow Table 1, "Metrological symbols and formula symbols", page 8						
Evaluation 😊 🗀						

4.2 Measurand

4.2.1 Definition of the measurand

The measurand must be clearly defined.					
Evaluation		\odot	::	$\overline{\otimes}$	

4.3 Measuring process

4.3.1 Description of the measuring process

The measurement process and procedure must be described in a comprehensible manner.					
Evaluation		(;)	:	$\overline{\mathbf{S}}$	

⁶ Formula symbols are self-explanatory if it is directly and unambiguously recognisable which quantity is meant. If necessary, the unambiguity is given by the context. Example: "A time interval of t = 10 s is read". In this example, t is directly assigned to a time interval and is thus unambiguously defined.

DKD-L 13-2		
Edition	10/2020	
Revision:	0	
Page:	16 / 29	

4.3.2 Requirements concerning the measuring process

Relevant specific documented. Th laboratory itself.	cations under which a measurement is to be perform e specifications may be required, for example, by the	med mus ne client	st be define or by the	ed and	
Evaluation 🙂 😑 😣					

4.3.3 Limitations of the measurement process

Limit values which have to be observed during measurement in order to ensure the validity of the determined measurement uncertainty must be defined at a suitable point.				
Evaluation		(;)	:	$\overline{\mathbf{i}}$

4.3.4 Process equation

Before establishi described in tern expression, usin	ng the model equation, the measurement process ns of its physical relationships. This should be done g a process equation ⁷ .	should b e using a	e consider mathemat	ed and ical	
Evaluation 😳 😑 😣					

4.4 Measuring equipment

4.4.1 Requirements for measuring equipment and measuring devices

The standards, measuring equipment and auxiliary means planned for the measurement must be clearly described.					
Evaluation		<u>(;)</u>	(:)	$\overline{\mathbf{i}}$	

4.4.2 Metrological traceability

The metrological documented in a the measurand of the mea	traceability of all measuring equipment and auxilia suitable place whenever it is to be assumed that the or the measurement uncertainty.	ry mean ney have	s used is to an influen	o be ce on	
Evaluation 🙂 🙁 😣					

⁷ The use of a process equation is not illustrated in JCGM 100:2008. It is used to mathematically describe the measurement process. Its establishment is recommended for preparing the model equation.

DKD-L 13-2			
Edition	10/2020		
Revision:	0		
Page:	17 / 29		

4.4.3 Measuring equipment for monitoring measurement or ambient conditions

(Secondary) measuring equipment used for monitoring measurement or ambient conditions shall be subject to the same conditions as those specified in 4.4.1 and 4.4.2.				
Evaluation		\odot		\odot

4.4.4 Validation of the software used

Software used for the determination of the measurand or the measurement uncertainty must be validated.						
\rightarrow "Validation" in Table 1, "Metrological symbols and formula symbol", page 8 \rightarrow DIN EN ISO/IEC 17025:2018 [4], 7.2.1, 7.2.2						
Evaluation 🙂 😑 😣						

4.4.5 Representation of the measuring arrangement

A clear representation of the measuring arrangement in pictorial, graphic or written form must be available.				
Evaluation		:	(])	$\overline{\mathbf{i}}$

4.5 Modelling

4.5.1 Model equation

A model equatio components of t quantities.	n (measurement model) has to be established. In a he process equation, the model equation contains a	ddition t all knowr	o the n influence	
Evaluation		(;)	:	$\overline{\mathbf{S}}$

4.5.2 Linearization of the model

The model equation must be sufficiently linear and continuously differentiable (at least at the measuring point).						
If the model equation is not linear, this must be taken into account by suitable mathematical methods (keywords: linearization, Taylor series expansion, MCS).						
Evaluation 😳 😑 😣						

DKD-L 13-2		
Edition	10/2020	
Revision:	0	
Page:	18 / 29	

4.5.3 Separation of the influence quantities

The model must clearly show which influence quantities are taken into account and how they contribute to the measurement result.				
Evaluation		\odot	:	$\overline{\mathbf{S}}$

4.5.4 Requirements for the application of sub-models

In principle, the use of sub-models is permitted. However, it must be checked and ensured that there are no correlations of influence quantities in different sub-models.				
Evaluation		(;)	:	$\overline{\mathbf{i}}$

4.6 Sensitivity coefficients

4.6.1 Determination of the sensitivity coefficients

Where sensitivity coefficients have been determined by partial derivation, the correctness of the derivation has to be confirmed.						
If sensitivity coefficients have been determined by other numerical methods (e. g. approximations or estimates), the validity of the determination method must be checked.						
Method used Partial derivation Numerical approximation Does not apply (e. g. in case of the Monte Carlo Simulation)						
Evaluation			© <u>©</u> ⊗			

4.7 Analysis of the measurement uncertainty

4.7.1 Relevant influences

All relevant uncertainty influences must be recorded. Known or neglected influences must be named and the reasons for not being taken into account must be stated.				
→ DIN EN ISO/IEC 17025:2018 [4], 7.6.1				
Evaluation		\odot	:	8

DKD-L 13-2		
Edition	10/2020	
Revision:	0	
Page:	19 / 29	

4.7.2 Probability density function

Assigning the probability density function (PDF^8) to an influence quantity must be plausible.				
Evaluation		\odot		(;)

4.7.3 Assumptions on influencing quantities

Estimates of influence quantities must be based on reasonable assumptions and documented.				
Evaluation		<u>(;)</u>	()	$\overline{\mathbf{i}}$

4.7.4 Properties of the device under test

The properties of the device under test are to be taken into account when establishing the model equation.				the
Evaluation		\odot		$\overline{\mathbf{i}}$

4.7.5 External evaluations

If the evaluation of influence quantities is based on external opinions (e. g. expert opinions), the source of information must be stated.				
Evaluation		\odot		$\overline{\otimes}$

4.7.6 Conversion factors and constants

Conversion factors and constants must be considered as possible influence quantities.					
Evaluation		()	:	$\overline{\mathbf{i}}$	

⁸ In English, the probability density function is abbreviated as PDF.

DKD-L 13-2			
Edition	10/2020		
Revision:	0		
Page:	20 / 29		

4.8 Correlations

4.8.1 Determination of correlations

If there is reason to suspect that there is a correlation between influence quantities, the correlation is to be determined and included in the uncertainty budget. Even if no correlations are found, it is useful to indicate that the matter has been examined.

Are there any correlations?	□ Yes / □ No			
Evaluation		\odot	:	:0

4.9 Creation of the measurement uncertainty budget

4.9.1 Contributions with correct units

The measurement uncertainty budget must be physically and mathematically correct.				
Evaluation		<u>(</u>	:	$\overline{\mathbf{i}}$

4.9.2 Presentation of the uncertainty budget in tabular form

Where the entrie the contents is re interpretation.	s in the uncertainty budget are not self-explanatory equired. The calculation steps used must unambigu	v, a clear Ious, lea	description	n of om for
Evaluation 😳 😑 😣				

4.9.3 Use of the units

The measurement uncertainty is stated either in relation to the measurand or in the unit of the measurand. The use of the SI or of legally regulated units is recommended.					
\rightarrow Units and Time Act (law on units in metrology) [8]					
\rightarrow Regulation on units [9]					
Evaluation	S (S)				

DKD-L 13-2			
Edition	10/2020		
Revision:	0		
Page:	21 / 29		

4.10 Verification of the effective degrees of freedom

4.10.1 Verifying the effective degrees of freedom

If the determined measurement uncertainty has an effective degrees of freedom greater than fifty, the coverage factor k = 2 can be applied without further testing to achieve a coverage probability of approximately 95 %. Otherwise, a larger coverage factor must be applied according to the Student Table (*t*-distribution, see Appendix E in EA-4/02 M: 2013).

[MCS: Not applicable when using Monte Carlo simulation.]

Have the degrees of freedom been determined?	□Yes/□No		
Effective degrees of freedom higher than 50?	□Yes / □No		
Evaluation		\odot	$\overline{\mathbf{i}}$

4.11 Presentation of results

4.11.1 Presentation of the result

The expanded uncertainty is to be indicated as a positive quantity value with an associated coverage factor and a coverage probability.					
Usually, the expanded uncertainty is rounded to two significant digits.					
Evaluation 🙂 😑 😣					

4.11.2 Quantity equations instead of numerical value equations

Where measurement uncertainties are expressed by equations, quantity equations instead of numerical equations are to be used.				
Evaluation		\odot	:	\odot

DKD-L 13-2			
Edition	10/2020		
Revision:	0		
Page:	22 / 29		

5 Checklist for the validation of the measurement uncertainty of an actual measurement (further requirements)

5.1 Formal examinations

5.1.1 Designation and identification

The determination of the measurement uncertainty is described in the following document. Alternatively, a validated and traceable spreadsheet (or similar) can be named.					
	→ DIN EN ISO/IEC 1702	5:2018	[4], 7.1	1, 8.3	
	\rightarrow DIN EN	I ISO 9	001 [7],	4.2.3	
Name of the document or file					
Designation of the measurand					
Version					
Release date					
Issued by					
Approved by (Name)					
Evaluation		\odot	:	$\overline{\mathbf{o}}$	

5.2 Measurand

The questions concerning the best measurement uncertainty apply.

 \rightarrow Section 4.2, page 15

DKD-L 13-2		
Edition	10/2020	
Revision:	0	
Page:	23 / 29	

5.3 Measuring process

5.3.1 Exceeding limit values

If limit values originally defined for the measurement process are exceeded, the effects of exceeding the limit values must be investigated and, if necessary, adequately considered as part of the measurement uncertainty budget.

Evaluation

© © ©

5.4 Measuring equipment

5.4.1 Requirements for measuring equipment and devices

It is assumed that all standards, measuring devices and auxiliary means intended to be used for the measuring process have actually been used. Should this not be the case, it must be examined whether the change of measuring equipment affects the measurement uncertainty and if so, whether this must be taken into account.

Evaluation		\odot		$\overline{\mathbf{i}}$
------------	--	---------	--	-------------------------

5.5 Modelling

Actual measurer determination of and that this mod	nents do not require a new model, provided that the best measurement uncertainty (\rightarrow Section 4.5, pagel is referred to.	e model ge 17) ca	from the an be adop ⁻	ted
Evaluation		\odot	\ominus	$\overline{\mathbf{i}}$

5.6 Sensitivity coefficients

 \rightarrow Section 4.6 applies accordingly.

5.7 Analysis of the measurement uncertainty

It has to be check can also be used the two models a	It has to be checked whether the model used to determine the best measurement uncertainty can also be used for an actually determined measurement uncertainty. Deviations between the two models are to be examined.			ertainty veen
Evaluation		\odot		$\overline{\mathbf{S}}$

DKD-L 13-2		
Edition	10/2020	
Revision:	0	
Page:	24 / 29	

5.8 Correlations

The question in \rightarrow Section 4.8.1, "Determination of correlations", page 20, applies accordingly. The references mentioned there are also referred to.

5.9 Creation of the measurement uncertainty budget

Not required for actual measurements because usually reference can be made to the budget
best measurement uncertainty for this measurand according to \rightarrow Section 4.9, page 20.
Otherwise, a new uncertainty budget has to be prepared.Evaluation \bigcirc \bigcirc \bigcirc

5.10 Verifying the effective degrees of freedom

If the determined measurement uncertainty has an effective degrees of freedom greater than fifty, the coverage factor k = 2 can be applied without further testing to achieve a coverage probability of approximately 95 %. Otherwise, a larger coverage factor must be applied according to the Student Table (*t*-distribution, see Appendix E in EA-4/02 M: 2013).

[**GUM Framework:** If the modelling of the task allows to rule out in advance the possibility that the degrees of freedom of a result can be assumed to be in the order of $v_{eff} = 50$ or smaller, there is no need for verification]

[MCS: Not applicable when using Monte Carlo simulation.]

Have the degrees of freedom been determined?	□Yes / □Non		
Degrees of freedom higher than 50?	□Yes / □No		
Evaluation		\odot	$\overline{\mathbf{S}}$

DKD-L 13-2		
Edition	10/2020	
Revision:	0	
Page:	25 / 29	

5.11 Verification of the stated uncertainty

5.11.1 Complete presentation of results

When presenting measurement results, they must be stated in full, i. e. including the associated measurement uncertainty.				
Evaluation		()		$\overline{\otimes}$

5.11.2 Reference to the calculation basis

When stating me determination of	easurement uncertainties, an indication as to where these values can be found.	informa	tion on the	
Evaluation		\odot	::	$\overline{\mathbf{i}}$

5.11.3 Recording of readings

The readings used to determine the measurement uncertainty (determined numerical values) must be documented as raw data.				
	\rightarrow DIN EN ISO/	IEC 170	25:2018 [4], 7.5.1
Evaluation		\odot	\bigcirc	$\overline{\boldsymbol{\otimes}}$

5.11.4 Validated calculations

The software used must be validated. Proof of validation must be provided and documented as required by the QM system.				
\rightarrow Entry and	definition "Validation" in Table 1,"Metrological sym	bols and	l formula s	ymbol",
				page 8
	→ DIN EN ISO 9001:2008 [7], 7.5.2], 7.5.2
	ightarrow DIN EN ISO/IEC	; 17025::	2018 [4], 7.	2, 7.11
Evaluation		\odot	:	$\overline{\mathbf{i}}$

DKD-L 13-2		
Edition	10/2020	
Revision:	0	
Page:	26 / 29	

5.11.5 Reference to the best measurement uncertainty

If the laboratory is accredited for the measurand, the stated uncertainty must not be smaller than the best measurement uncertainty.				
	\rightarrow EA-4/0	02 M: 20	13 Append	ix A [3]
Evaluation		\odot	(;)	\odot

6 Appendix

6.1 Bibliography

- [1] Joint Committee for Guides in Metrology, JCGM 100:2008 Evaluation of measurement data Guide to the expression of uncertainty in metrology, Paris: BIPM, 2008.
- [2] Joint Committee for Guides in Metrology, "JCGM 200:2008 International vocabulary of metrology Basic and general concepts and associated terms (VIM)," BIPM, Paris, 2008.
- [3] European Accreditation, "EA-4/02 M: 2013 Evaluation of the Uncertainty of Measurement in Calibration," 2013.
- [4] Deutsches Institut f
 ür Normung e.V., DIN EN ISO/IEC 17025:2018 Allgemeine Anforderungen an die Kompetenz von Pr
 üf- und Kalibrierlaboratorien, Berlin: Beuth Verlag, 2018.
- [5] Joint Committee for Guides in Metrology, "JCGM 102:2011: Evaluation of measurement data Supplement 2 to the Guide to the expression of uncertainty in measurement Models with any number of output quantities," BIPM, Paris, 2011.
- [6] Joint Committee for Guides in Metrology, "JCGM 101:2008 Evaluation of measurement data - Supplement 1 to the Guide to the expression of uncertainty in measurement -Propagation of distributions using a Monte Carlo method," BIPM, Paris, 2008.
- [7] Deutsches Institut für Normung e.V., "DIN EN ISO 9001:2015 Qualitätsmanagementsysteme - Anforderungen," Beuth Verlag, Berlin, 2015.
- [8] "Gesetz über Einheiten im Messwesen und die Zeitbestimmung," http://www.gesetze-iminternet.de/me_einhg/EinhZeitG.pdf, 2016.
- [9] "Einheitenverordnung," http://www.gesetze-im-internet.de/einhv/EinhV.pdf, 2009.

DKD-L 13-2		
Edition	10/2020	
Revision:	0	
Page:	27 / 29	

6.2 Index

A

Abbreviation	
DAkkS	6
n/a	7
Abbreviations	15
Analysis of the measurement uncertainty	18, 23
Approval	22
Approved by	13, 14
Authors	3
Auxiliary means	16, 23

B

Basics	11
Best measurement uncertainty	11, 26
definition	7
Budget	24

C

Calculation	
Validation	25
Check list	14
Ci	
formula symbol	6
Conditional equation	20
Conversion factors	19
Copyright	3
Correlations	20, 24
Coverage factor	7
Creative Commons	3
Criteria	
CMC	9
real measurement	10
Criterion	12

D

DAkkS	6
Definition	
Best measurement uncertainty	7
Degree of fulfilment	13
Degrees of freedom	21
effective	6, 24
Derivation, partial	18
Designation	
document	13
measurand	22
Designation	
measurand	14
Designations	14
Deutsche Akkreditierungsstelle	6
Deutscher Kalibrierdienst	3
Device under test	

properties	19
DKD	→ Deutscher Kalibrierdienst
Documentation	11

Е

7
6, 24
12
11
14, 22

G

W 8 Formula symbols

12

6, 15

I

Imprint	26
Influence of the measurement uncertainty	7
Influence quantities	
assumptions	19
Influence quantity	6
Influence quantity, relevant	18
Issued by	13, 22

L

Limit values	16, 23
Linearization	17

Μ

7
15, 22
15
14
17
7
11
11

Validation of measurement uncertainty budgets https://doi.org/10.7795/550.20211118 Revis

DKD-L 13-2	
Edition	10/2020
Revision:	0
Page:	28 / 29

result	6
Maggurament uncertainty contribution	7
measurement uncertainty contribution	/
Measuring arrangement	
representation	17
Measuring equipment	16, 23
Measuring equipment secondary	17
Measuring process	15, 23
criterion	15
requirements	16
Methods of determination	11
Model	17, 23
Model equation	17
Monte Carlo Simulation	12
Must	12

Ν

n/a	7
Name of the document	13, 14, 22

0

Objectives	11
Output quantity	6

P

PDF.	
Abbreviation	7
Probability density function	7, 19
Process equation	16, 17
Published by	3

Q

Quantity equations	21

R

Recordings	
readings	25
Release date	13, 14, 22
Result	
representation of	21
Results	
completeness	25

S

Sample	12
Secondary measuring equipment	17
Sensitivity coefficient	
Formula symbol	6
Sensitivity coefficients	18, 23
SI 15, 20	
Software	25
validation	17
Standard uncertainty	7
Standards	
Basics	12
Stated uncertainty	11
Sub models	18
Symbols	6

Т

Table of contents	4
Tabular form	20
Traceability	
representation	16

U

Unambiguity	18
Uncertainty budget	7, 20
Uncertainty contribution	7
Units	20

V

Validation	8
definition	12
proof	12
software	17
Validity	12
Version	13
Version	14
Version number	22

W

W	
Formula symbol	8
W	
Formula symbol	8
Working instructions	12

Published by:

Physikalisch-Technische Bundesanstalt Deutscher Kalibrierdienst Bundesallee 100 38116 Braunschweig

www.dkd.eu www.ptb.de