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Deutscher Kalibrierdienst (DKD) – German Calibration Service 

Since its foundation in 1977, the DKD encompasses calibration laboratories of industrial 
enterprises, research institutes, technical authorities, surveillance and testing institutions. On 
3rd May 2011, the German Calibration Service was reestablished as a technical body of PTB 
and accredited laboratories. 

This body is known as Deutscher Kalibrierdienst (DKD for short) and is under the direction of 
PTB. The Guidelines and Guides developed by DKD represent the state of the art in the 
respective areas of technical expertise and can be used by the Deutsche Akkreditierungsstelle 
GmbH (the German accreditation body – DAkkS) for the accreditation of calibration 
laboratories. 

The accredited calibration laboratories are now accredited and supervised by DAkkS as legal 
successor to the DKD. They carry out calibrations of measuring instruments and measuring 
standards for the measurands and measuring ranges defined during accreditation. The 
calibration certificates issued by these laboratories prove the traceability to national standards 
as required by the family of standards DIN EN ISO 9000 and DIN EN ISO/IEC 17025. 

Contact: 
Physikalisch-Technische Bundesanstalt (PTB) 
DKD Executive Office 
Bundesallee 100 38116 Braunschweig 
P.O. Box 33 45 38023 Braunschweig 
Phone:  +49 531 5 92-8021 
Internet: www.dkd.eu
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Foreword

DKD Guidelines are application documents that meet the requirements of DIN EN ISO/IEC 
17025. The Guidelines contain a description of technical, process-related and organizational 
procedures used by accredited calibration laboratories as a model for defining internal  
processes and regulations. DKD Guidelines may become an essential component of the  
quality management manuals of calibration laboratories. The implementation of the Guidelines 
promotes equal treatment of the equipment to be calibrated in the various calibration  
laboratories and improves the continuity and verifiability of the work of the calibration  
laboratories. 

The DKD guidelines should not impede the further development of calibration procedures and 
processes. Deviations from Guidelines as well as new procedures are permitted in agreement 
with the accreditation body if there are technical reasons to support this action. 

The present Guideline was prepared in 2008 by the Technical Committee Temperature and 
Humidity in cooperation with PTB and accredited calibration laboratories.  
The revised new edition only contains an updated imprint. 
It is identical in content with DAkkS-DKD-R 5-6 (Edition 2010). DAkkS will withdraw the  
document DAkkS-DKD-R 5-6 by 01.01.2021 at the latest. 

Edition: 2003, published by DKD 

1. New edition 05/2008, by DKD 

2. New edition: 2010, by DAkkS 

3. New edition: 2018, by DKD, identical in content with the 2nd new edition 

In the current revision 1, printing errors in table 6.13 have been corrected. 
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1 Purpose and scope of application 

The purpose of this guideline is to define generally valid procedures for the approximation of 
the characteristic curves of industrially used thermometers in order to create a uniform and 
industry-wide basis for the surveillance of test equipment. Likewise, the user of this guideline 
– i.e. the calibration laboratory as well as the user of the thermometer – shall be given  
instructions regarding the handling of approximation equations as well as the performance of 
the actual approximation. 

Basically, this guideline is valid for all thermometers. However, it is especially tailored to the 
requirements of platinum resistance thermometers (especially Pt-100), thermocouples and 
thermistors. As these instruments have very different measurement uncertainties, depending 
on the type of sensor and temperature range, this guideline has been designed for different 
requirements related to the measurement uncertainty. 
For some thermometer types (e.g. thermometers with electronic display or liquid-in-glass  
thermometers) the determination of a characteristic curve involves fundamental problems. The 
present guideline is not applicable for these types of thermometer. 

This guideline is not intended to develop or prescribe newer or better approximation methods 
or characteristic curve types than those currently in use.  
It rather seeks to recommend the optimum type(s) of characteristic for certain boundary  
conditions – such as temperature range and required measurement uncertainty – which are 
state of the art today.  These recommendations are compatible with existing software and 
measuring instruments and can be easily entered or integrated. 
Possibly, there are other types of characteristics which are equally suited or may even be 
better than those described here. However, in the case of limited dissemination or  
practicability, other mathematical descriptions of characteristic curves should only be used in 
justified cases. 

2 Fundamentals 

Thermometers for industrial applications (e.g. platinum resistance thermometers / Pt-100,  
thermocouples, thermistors) are usually calibrated at several temperature points in a  
temperature range desired by the user. Usually, the thermometer is not used exactly at the 
calibration points, but also between them. Therefore, the user often requires a continuous  
description of the relation between temperature and resistance or temperature and  
thermoelectric voltage over the entire temperature range used. 
In most cases, this is achieved by specifying a mathematical equation which is determined by 
approximation of the measured temperature points. 
This guideline describes in which way and under which boundary conditions such an  
approximation calculation should be carried out. 
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2.1 Types of characteristics (general) 

Generally, the aim of determining a thermometer characteristic is to deduce a mathematically 
(mostly analytically) formulated relation  Y f T  from a small number of calibration points 

  ;
i i i

T Y f T  which can then be used in the whole covered measurement/calibration range to 
determine the temperature T from the measured quantity Y. 
Especially in the field of thermometer characteristics, there is the need to determine non-linear 
sensor characteristics from an often very small number of measuring points in such a way that 
the uncertainty in the entire range of interest is not significantly greater than the uncertainty of 
the measurement points (measured values).  
The decision as to which approach should be selected for the functions of the characteristic 
depends on a series of factors: 

 Existence of physically founded characteristic functions 
 Technically, historically or normatively defined approaches 
 Approaches supported by the software and hardware used 
 Number of available calibration points 
 Required measurement uncertainties 
 Temperature range 

When adapting model functions, the compatibility between data and model must always be 
checked, e.g. by means of the 2 criterion. However, based on decades of experience with 
thermometer characteristics, especially with characteristic curves of industrial resistance ther-
mometers, it can generally be assumed that the following model functions are compatible with 
the measurement data within the scope of uncertainties stated in Section 6, provided that no 
measurement error has occurred. 

In principle, the range of available and commonly used functions for describing the individual 
behaviour of temperature sensors can be divided into: 

1) Individual characteristics Y(T) with a thermometer-typical approach 

Example: Callendar-Van Dusen equation for Pt resistance thermometers (DIN EN 60751) 

     2 3
0 1 1 0 0 C w ith 0 fo r 0 CY T R T R A T B T C T T C T                

2) Individual characteristics Y(T) with a general approach 

Example: Polynomial for the characteristic of a thermocouple 

   Th

0

m
i

i

i

Y T U T a T


  

3) Deviation functions from the reference functions YN(T) as a function of  
temperature 

Example: Deviation of the thermoelectric voltage  
i i

U T  of a thermocouple from the reference 
values  

N i
U T  as a function of temperature. For Pt-PtRh thermocouples, 2nd order 

polynomials are commonly used in a wide temperature range. 

      2
N 0 1 2iU T U T U T a a T a T       
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4) Deviation functions from the reference functions YN(T) as a function of the displayed 

quantity 

Example: 
The calibration certificate of standard Pt resistance thermometers at fixed points according to 
ITS-90 indicates for the resistance ratio W(T90) deviation functions ΔW = ΔW(T90) = W(T90) – Wr(T90)
with respect to the reference characteristic Wr(T90). Depending on the temperature range, differ-
ent approaches – ΔW = f(W) or ΔW(T90) – f(W(T90)) – are defined for ΔW(T90) in the form of poly-
nomials (up to the 3rd order as maximum) in  W (for –38.8344 °C ≤ T ≤ 961.78 °C) or with an 
additional term in ln(W) (for –189.3442 °C ≤ T ≤ 0.01 °C) [18]. 

Almost all commonly used characteristic curve approaches do not allow directly interpretable 
statements about special thermometer characteristics, their changes or drifts. An exception is 
the Callendar-Van Dusen equation (DIN EN 60751), where R0 directly indicates the resistance 
at the ice point 0 °C and A the increase at the ice point as a measure of the quality of the Pt 
resistance wire used.  

Characteristics of the form Y(T) = f(T) contain the complete individual sensor  
description and must therefore describe (usually with only few coefficients) both the sensor 
type-specific non-linearity and the individual deviation of the sensor behaviour from the typical 
or standardized curve. By contrast, deviation functions just need to describe the individual 
deviation from the reference. Consequently, they allow a clearly better description of the sen-
sor behaviour with simpler approaches and thus with a smaller number of coefficients to be 
determined (this is very much in line with the frequent demand for a small number of calibration 
points). The amount and importance of the values calculated with such deviation functions 
correspond to the corrections of the measurement values which are furnished by the calibration 
item and are usually stated in the calibration results. 

Characteristics which – as calibration result – do not indicate the values of a reference  
characteristic YR(T) or the assigned deviations of the display of the calibration object from a 
reference characteristic ΔY = Yi – YR as a function of the temperature, but as a function of the 
display value itself ΔY = f(Y) or YR = f(Y) are particularly simple and universally applicable. In 
this case, only quantities of identical physical dimensions are linked. In this case, only quanti-
ties of identical physical dimensions are linked. The sensor-typical behaviour does not need to 
be taken into account (or even known), since it has already been completely determined with 
the determination of YR(T).  

A special case of this approach are characteristics for directly indicating thermometers which 
describe the correction or the “correct temperature” as a function of the displayed temperature. 

2.2 Approximation and interpolation procedures (general) 

A selected or specified characteristic approach can be adapted to the respective calibration 
results as an approximation function or as an interpolation function. Hereby, the fundamental 
differences between the function types have to be taken into account: 

2.2.1 Interpolation 

An interpolation function directly reproduces all calibration values used as reference points. 
Uncertainties of the individual calibration points enter directly and completely into the 
determined characteristic, both globally (i.e. the characteristic curve is influenced in the entire 
range by each calibration point) and locally (i.e. each calibration point particularly influences 
the course of the characteristic curve in the directly adjacent value ranges). This behaviour is 
particularly problematic with an increasing non-linearity of the characteristic curve approach in 



Determination of thermometer characteristics

https://doi.org/10.7795/550.20180828AGEN

DKD-R 5-6 

Edition: 09/2018 

Revision: 1 

Page: 10/54 

case of interpolation functions with a global approach, i.e. an approach which encompasses 
the entire calibration range. 
Interpolation with global approaches is mostly performed with polynomials which can ultimately 
be traced back to interpolation polynomials of the Lagrangian type. 

     
0

N

i i i

i

Y T Y T L T


 

with 

 

           

           

0;

0 1 1 1 1

0 1 1 1 1

N

i

k

i i k k i

k k N N

k k k k k k k N k N

T T
L T

T T

T T T T T T T T T T T T

T T T T T T T T T T T T

 

  

  






            


            



K K

K K

In the case of a larger number of calibration points, polynomials of a high degree are thus 
obtained. The coefficients determined are directly influenced by the selection of the calibration 
points. It is therefore not possible to compare characteristics with each other (not even those 
of the same sensor with characteristics that have been determined at an earlier time). With 
increasing polynomial degree (large number of calibration points), the instability of the course 
of the function increases between the reference points compared to smaller deviations at the 
reference points. Therefore, an upper reasonable limit for such global interpolation polynomials 
amounts to approximately 5 calibration points. 

Interpolation functions are suitable if the calibration points are well-defined, or if the points have 
a very small uncertainty (e.g. in the case of fixed-point calibrations) and/or if the  
characteristics have a very small non-linearity and thus only require very few calibration points 
(in the case of ITS-90 deviation functions or in the case of directly indicating thermometers). 
The characteristics of Pt resistance thermometers according to ITS-90 fulfil all these  
requirements at the same time and therefore are suitable for a simple description of the  
individuality of thermometers with smallest uncertainties. 

Interpolation procedures are also suitable for the piecewise determination of characteristics for 
the intervals between adjacent calibration points. Here, the problems of global approaches 
(tendency to oscillate due to the high order of the functions) can be avoided. The effects of a 
single calibration point on the shape of the curve are limited to adjacent reference point  
intervals (only local effects). For practical application, especially the piecewise linear  
interpolation (open polygon) and the interpolation with cubic spline functions (which is, how-
ever, no purely local procedure) are of special interest. 

Polygon interpolation: 

From N calibration points   with 0 1
i i i

Y Y T i N  K  , the N – 1 piecewise linear functions 

 
   

1 1

1

1

for with 0 2k k k k

k k k

k k

T T Y T T Y
Y T T T T k N

T T

 





    
    


K

are calculated. 
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Note: This is not a recursive representation. According to the nomenclature selected in the 
introduction, Y(T) is the function for the whole range T0 ≤ T ≤ TN-1. Yk(T) are the piecewise func-
tions, and Yk or Yk(Tk) are the reference points (measurement values). 

Spline interpolation: 

From N calibration points   with 0 1
i i i

Y Y T i N  K  , the N – 1 piecewise defined cubic func-

tions are calculated as follows  

The coefficients  
0 1 2 3

; ; ; 0 2
k k k k

a a a a k N K  are then calculated from a system of  

equations resulting from the consistency requirements of the functions including the 1st and 2nd

derivations at the reference points. 

Note: Under mathematical aspects, the spline interpolation is rather a local than a global  
procedure. Depending on the severity of the selected consistency conditions to be met, only 
the second and, maximally, the third adjacent point still have an influence on the coefficients 
in the respective interval. All other points lying further away do not have any influence. 

Attention: Some standard software for spline interpolation prerequires equidistant reference 
points! 

2.2.2 Approximation 

In the case of approximation procedures and characteristics determined by using the  

corresponding approaches, the number m of free parameters is always smaller than the num-

ber N of calibration points used for the determination of the characteristic. For that reason, the 

approximation function usually does not reproduce the calibration values exactly, i.e. a devia-

tion other than zero remains between the function values at the calibration temperatures and 

at the measured calibration values. In many practical cases, the course of the function is, on 

the other hand, no longer considerably influenced by small uncertainties of individual reference 

points. This is increasingly so, the larger the number of reference points N is in relation to the 

number of free parameters m, and results from the statistical properties of the determination 

procedure.  

The approximation is principally based on the fact that – on the basis of a selected measure – 

the deviations between the measured values  
i i

Y T  and a parameter-dependent function  

approach  
1 2

, , , ,
i m

f T a a aK  are minimized by a suitable variation of the parameters 
1 2
, , ,

m
a a aK . 

In most cases which are relevant to practice, the deviance S is used as measure to be mini-

mized according to Gauss: 

(2-1) 

The procedures based thereon are also referred to as “regression procedure” or “least square 

fit” procedure. The parameters of the regression function  
1 2

, , , ,
m

f T a a aK  are determined by 

solving the non-linear equation system: 

    
21

1 2

0

, , , ,
N

i i i i m

i

S g Y T f T a a a Minimum




    K

       
2 3

0 1 2 3 1
for with 0 2

k k k k k k k k k k
Y T a a T T a T T a T T T T T k N


             K
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Note: In conventional calculations, the uncertainty of the Ti is included in the uncertainty of the
Yi(Ti) and therefore, does not need to be considered in many cases. 

The following function approaches are commonly used:  

 Linear functions: 

 
1 2 1 2

, ,f T a a a a T  

 (m – 1) order polynomials: 

 Sensor-specific functions, e.g. in particular the Callendar-Van Dusen equation: 

The normal equation system can be established and solved using specially developed  
programmes. However, a constantly increasing number of standard and special software 
packages are available for this purpose. 

Under theoretical aspects, the equation should be overdetermined with 10 additional  
measurement values in order to be able to judge the suitability of the selected mathematical 
model. For the (usual) case – where the characteristics are determined for known sensor types 
for which agreement with the mathematical model has already been checked – the use of – at 
least – two additional measurement values (degree of freedom ν  ≥  2) is sufficient in order to 
reduce the measurement effort as far as possible. Investigations have shown that – under such 
conditions – the occurring additional error of the characteristic is small. 

Consequently, the following applies to the number of calibration points: 

 N ≥ m + 2 as minimum requirement for checked models 

 N ≥ m + 10 as a data set with good statistical certainty (for unchecked models) 

In the case of approximation procedures, the selection of the gi as weighting factors in the 
calculation of the sum S of the deviances allows the single calibration points to be weighted. 
A different measurement uncertainty ui which can be assigned to the single calibration points 
can thus easily be taken into account by selection of gi. 

(2-2) 

The multitude of standard software packages available for approximation is, however,  
considerably limited if weighting of the measurement values is required. 

1 2

0 ; 0 ; ; 0
m

S S S

a a a

  
  

  
K

  1
1 2

1

, , , , with
m

i
m i

i

f T a a a a T m N



  K

   2 3

0 0
, , , , 1 100 C with 0 for 0 C and 4f T R A B C R A T B T C T T C T N                

2

1
i

i
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2.3 Uncertainties of the characteristic (general) 

A user does not use the thermometer exactly at a calibrated temperature, but – with the aid of 
an interrelation determined between temperature and input quantity (e.g. resistance, thermo-
electric voltage, etc.) – at any temperature within the calibrated temperature range. The  
properties of the mathematical models usually applied in industry cause additional errors  
because these models cannot adequately reproduce the properties of the real thermometer 
characteristic. This can especially be seen in the case of precision measurements, considering 
that the function determined (on the basis of the selected mathematical model) often runs  
outside the uncertainty range (95 %) of the measuring points ±U[Yi(Ti)]. 

The uncertainty of the characteristic of the thermometer is composed of the uncertainty of the 
calibration points used for calculation, of the uncertainty of the agreement of the characteristic 
curve approach and the real thermometer behaviour, and of possible numerical uncertainty 
contributions (rounding errors). 

2.3.1 Uncertainty in the case of interpolation functions 

 The uncertainty at the individual calibration points is equal to the calibration uncertainty of 
the respective point. 

 The uncertainty between the calibration points depends only on the uncertainty of the  
adjacent reference points (piecewise interpolation) or on the uncertainties of all calibration 
points (global interpolation function) – depending on the approach applied. Due to the  
unequivocal functional interrelation between the interpolation function  Y T  and the  
reference points  i i

Y T , it can be calculated with the instruments of the Gaussian law of 
propagation on uncertainty if the individual contributions are not correlated:  

With only a few reference points, still manageable sensitivity coefficients Cn,i  can be  
obtained for polygonial interpolation or Lagrange polynomials; with many reference points 
or spline interpolation, the sensitivity coefficients Cn,i  obtained are no longer manageable. 
In these cases, the Cn,i can easily be determined by numerical calculation of the respective 
partial derivations at the reference points. 

2.3.2 Uncertainty in the case of approximation functions 

The determination of the uncertainty in approximation functions consists of several steps for 
the estimation of the individual contribution: 

1) Uncertainty of the approximation function  mi aaaTf ,,,, 21 K  at the calibration points 

The mean uncertainty of an approximation function with m coefficients (or free parameters of 
the approximation equation) to be determined and N reference points can be calculated from 
the sum of the deviances remaining after approximation (residual squares sum): 

with  = N – m    
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N–m is the effective degree of freedom   of the system. If this value assumes values smaller 
than 10 (this is almost always the case in temperature calibrations), a corresponding coverage 
factor ( Table G.2 from [1]) must – analogously to the determination of the type-A uncertainty 
of a measurement series of smaller extent ( equation (4) from [1] or equation (5) from [24]) 
– be taken into account. 

2) Estimation of the uncertainty of the approximation function  maaaTf ,,,, 21 K

between the calibration points 

The uncertainty contribution of the approximation function    maaaTfTY ,,,, 21 K  is  

generally obtained as follows: 

The first sum contains the uncertainty contributions of the individual coefficients 
1 2
, , ,

m
a a aK

and the second sum expression contains the contributions which are due to the correlation of 

the coefficients. The required derivations can easily be calculated analytically or numerically 

from the approach for  1 2
, , , ,

m
f T a a aK  and the determined coefficients 

1 2
, , ,

m
a a aK . They 

represent the sensitivity coefficients for the contributions of the individual uncertainties.  

However, the uncertainties  i
u a  and the covariances  ,

i l
u a a are not always available (if the  

coefficient matrix of the normal equation system for the approximation is available, they can 

be taken from this matrix).  

This results in a combined uncertainty which is not constant over the entire calibration range 

and which usually increases towards the edges of the calibration interval. 

If there are no covariances  ,
i l

u a a or uncertainties  i
u a , the residual square sum can be 

used as a good estimate. However, it does not consider the dependence on the model and  

– in unfavourable cases – can be falsifying. 

This, however, yields a fixed value for the entire calibration range while ignoring the variation 

of the approximation uncertainty over the calibration range.  

When using numerically determined values for the covariances  ,
i l

u a a  or the uncertainties 

 i
u a  from the coefficient matrix of the normal equation system, potential numerical  

uncertainty contributions of the software, caused by instability, are already partially considered. 

The uncertainty components caused by the deviation of the functional approach from the real 

thermometer behaviour are not covered by the uncertainties stated so far. This deviation is 

only recorded with a higher number of measuring points ( 10N m  ) in the case of approxi-

mation functions. With a small number of calibration points or interpolation  

functions, additional uncertainty contributions must be taken into account for which empirical 

values are given in the sections dealing with the individual thermometers; these values depend 

on the type of thermometer and characteristic as well as on the temperature range.
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The uncertainty ucharacteristic(T) of the temperature which is to be assigned can be estimated from 

the uncertainty u(Y(T)) of the characteristic curve by means of the increase of the characteristic 

curve. 

The uncertainty of the calibration points to be stated in the calibration result (temperatures and 

corrections calculated from the displayed values with the aid of the individual characteristic 

curve) is then made up of the uncertainty of the individual calibration point u(T) (taken from the 

measurement uncertainty budget) and the fraction ucharacteristic(T). 

2.4 Selection of the reference points and of the type of characteristic  
(general) 

In the case of global interpolation characteristics, the number of reference points should be as 

small as possible – depending on the non-linearity of the sensor – and the reference points 

should be distributed as uniformly as possible over the calibration range. For piecewise inter-

polation, this requirement is valid correspondingly for each interpolation interval. 

For approximation functions, the number of calibration points must be greater than the number 

of free characteristic parameters. The difference between the number of calibration points and 

the number of free parameters corresponds to the number of degrees of freedom of the  

system. There should be at least 2 but – if possible – the number should be greater than 5 

( 2.2.2). 

When determining the minimum number of calibration points, it must be considered that maybe 

not all coefficients of all measuring points are determined which means that additional condi-

tions have to be taken into account.  

A widely spread method for approximating the characteristic of Pt-resistance thermometers 

with the Callendar-Van Dusen equation (DIN EN 60751) is, for example, the following: 

First, the coefficients R0, A and B are determined using all calibration points Ti ≥ 0 °C. In a 

second step, the coefficient C is determined by using the calibration points Ti < 0 °C. 

Hence: 

Tmin ≥ 0 °C m = 3 (R0, A, B)
Tmax ≤ 0 °C m = 4 (R0, A, B, C) 
Tmin < 0 °C < Tmax m = 4 (R0, A, B, C) 

This results in the following requirement for the number of points N in the two temperature 

ranges: 

Tmin ≥ 0 °C  N ≥ 5 
Tmax ≤ 0 °C  N ≥ 6 
Tmin < 0 °C < Tmax N ≥ 8 (N ≥ 5 for step 1 and N ≥ 3 for step 2) 

The latter requirement, that is to say N ≥ 8, is a theoretical maximum estimate. In practice, it 

can probably be reduced. The extent to which this is possible in individual cases must be 

examined. 
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This example shows the problems of “divided functions”, i.e. a larger number of calibration 

points is required. 

In this case, the problem can be avoided by using the algorithm from chapter 6.3.2. Here, the 
approximation is carried out in one step, and the requirement regarding the number of  
reference points is obtained with N ≥ 6. 
In addition, the boundary conditions from chapter 3.4.4 must also be observed. 
As the uncertainty of the characteristic increases towards the ends of the calibration interval – 
taking the correlation between the coefficients into account which may never be completely 
neglected – extrapolations must – as far as possible – be avoided as they may very quickly 
lead to very great errors. Therefore, a least one point must be selected at the ends of the 
required calibration interval. 

Extrapolations are only possible by taking into account a significantly greater uncertainty under 
the following conditions (simultaneous compliance with all conditions required): 

 The characteristic represents a deviation function with little non-linearity. 
 An approximation with low order functions is performed (m ≤ 4), i.e. there are only a few 

free parameters. 
 The number of calibration points is significantly larger than the number of free para-

meters (N ≥ m + 5). 

In the case of Pt-PtRh thermocouples (type S), these requirements can, for example, be met 
at the upper temperature limit up to approx. 150 K extrapolation. 

In the case of very small uncertainties of the individual calibration points and a small number 
of points distributed approximately equidistantly, interpolation procedures should be preferred 
to approximation approaches. However, this requires an exactly known mathematical model 
of the desired characteristic curve. 

If a sufficient number of calibration points is available, approximation procedures can – due to 
their principle – partly compensate the effect of the uncertainty of the individual points on the 
characteristic. 

A physically justifiable approach with a corresponding physical importance of the single char-
acteristic coefficients is, in any case, to be preferred to a general approach, e.g. a polynomial 
approach. 

Types of characteristics which have already been realized in the software and/or in the hard-
ware of the calibration object are to be preferred. 

2.5 Software election / validation 

A variety of commercial software is available to numerically determine the coefficients of the 
selected equation with given value pairs (here: measured values. As to the software selection, 
no general specifications can be made. In addition to the use of standard software, it is also 
possible for the laboratory to create its own evaluation software or to use software supplied by 
the customer. 

In any case, the numerical method should be validated for each type of characteristic used. 
The use of test data sets with known characteristic curve results is recommended. For this 
purpose, the test and example data sets indicated in the individual sections of this Guideline 
for the different thermometer types ( 0) may be used. 
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It is also possible to compare the results of different programmes or calculation methods. In 
doing so, it is important not to compare the coefficients but only the resulting functions. Due to 
different algorithms and different calculation accuracies, there may be different coefficients. 
However, these coefficients compensate each other and thus lead to an almost identical curve. 

For that reason, the uncertainty of the coefficients is of lesser importance for the application. 
However, the uncertainty contribution of the resulting thermometer characteristic must be 
taken into account. 

The numerical stability is to be investigated with respect to the number of calibration points 
(addition or omission of points as reference points) and with respect to the effects of small 
uncertainties of the calibration points (defined slight change of individual points and investiga-
tion of the resulting effects on the specific characteristic curve). 

As part of the routine use of the software, it is strongly recommended to re-enter the 
original data (measured values) into the determined function after each approximation 
in order to check the correctness of the determined coefficients. 

2.6 Calibration certificate 

The document DAkkS-DKD-5 “Instructions on how to compile a calibration certificate” serves 
as basis for the creation of a calibration certificate. When specifying the measurement uncer-
tainty, the document DAkkS-DKD-3 “Indication of the measurement uncertainty in calibrations” 
and here, in particular, Chapter 6 must be observed. 

When specifying a characteristic curve in the calibration certificate, which is normally the case, 
it is stated in the section “Measurement results”. It is indicated after the individual calibration 
values and their measurement uncertainties. 

If several sensors are listed in a calibration certificate, e.g. for multi-channel measuring  
instruments, the characteristic curves can be summarized according to the calibration values 
of all sensors or measuring channels, or they can be summarized with the respective set of 
measured values of a sensor or measuring channel. a clear assignment of the sensor, the 
measurement channel, the calibration values, including their measurement uncertainties and 
the associated characteristic must be ensured. 

In some cases, e.g. in the case of thermocouples, it may be necessary to indicate several 
partial characteristics. The valid temperature ranges for the respective parts of the  
characteristic curve must be clearly assigned. Ambiguous definitions, e.g. by overlapping  
partial characteristic curves, are to be avoided. They are permissible if they are stated in valid 
standards or guidelines, e.g. ITS-90. 

In special cases, it may be necessary to specify several characteristic curve types for one set 
of calibration data. This may be necessary, for example, if a thermometer is operated on  
different devices which differ in their internal data preparation. However, this procedure should 
be limited to exceptions. Here, too, a clear assignment must be ensured. 

For each characteristic or partial characteristic, the valid temperature range must be indicated, 
and it must be possible to assign an uncertainty to it. The measurement uncertainty stated 
must contain all uncertainty components, including the components of the calibration values 
(influences of the standard, the calibration object and the calibration procedure) and the influ-
ence of the limited mathematical descriptiveness (approximability) of the thermometer behav-
iour by the corresponding characteristic function (mathematical model). 

If different measurement uncertainties are stated as a function of the temperature, the limits of 
the sections must not stringently coincide with the limits of possibly existing partial  
characteristics. 
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If an unambiguous assignment is possible, the measurement uncertainty for the characteristic 
can also be stated in the section “Measurement uncertainty”.

It is not necessary to indicate the uncertainty of coefficients; however, it may serve as an  
indication to limit the number of digits of the indicated coefficients to a reasonable level. 

An example for drawing up the sections “Measurement results” and “Measurement uncertainty” 
in a calibration certificate can be found in Appendix 6.4. 

3 Platinum resistance thermometers 

Basically. this chapter applies to all platinum resistance thermometers. However, it is specially 
tailored to the requirements of Pt-100 thermometers. As these show very different measure-
ment uncertainties – depending on the sensor type, the instrument model and the temperature 
range – different requirements for the measurement uncertainty are taken into account. 

3.1 Types of approximation equations 

Equations of the form  t f R  have not become generally accepted in practical applications, 
because they describe the behaviour of a platinum resistance thermometer less effectively. 
Only with higher-order functions (and their known disadvantages) can characteristics for  
platinum resistance thermometers be well described. 

In the following, some types of characteristics will be analysed which have proved their worth 
in practical applications, because – on the one hand – the behaviour of the platinum resistance 
thermometers is described with sufficient accuracy for most cases and – on the other hand – 
the mathematical effort required for the understanding and application of these equations is 
still justifiable. It is for this reason that the following types of characteristics have found wide-
spread use. 

The mathematical representation of the equations described is given in Table 3.1.  
Appendix 6.1.1 lists the uncertainty influences that are to be expected. 

3.1.1 Callendar-Van Dusen equation 

The Callendar-Van Dusen equation, which is also used in DIN EN IEC 60 751 to represent the 
so-called DIN characteristic curve, is widely used. (See equation No. 1 in Table 3.1) 

It is appropriate for moderate requirements on measurement uncertainty over a wide  
temperature range when using common Pt-100 types. 

3.1.2 Standard polynomial 

For applications from –40 °C to up to 600 °C, standard polynomials (equations Nos. 2 to 4 in 
Table 3.) are well suited for mean to high uncertainty requirements. This uncertainty depends 
on the degree of the polynomial (see Appendix 0). 

Before the approximation is performed it must be determined whether the polynomial function 
shall exactly pass through the value R0 at 0 °C. If this is not necessary, R0 can be approximated 
equitably with the other coefficients ( 0). 
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3.1.3 Deviation polynomial 

For large temperature ranges which shall be covered by approximation equations with small 
uncertainties, it is recommended to use polynomials to describe the deviation from the ITS-90 
reference function1. (See equations Nos. 5 to 7 in Table 3.1) 

Although calibration in accordance with ITS-90 is only permitted for platinum resistance  
thermometers made of high-purity platinum with a WGa  1.11807 (2), the ITS-90 reference 
function also describes the basic behaviour of industrial platinum resistance thermometers 
quite accurately. The deviation functions from this reference can be of very low order (typically 
of the first or second order). This – in addition to the small uncertainties – leads to a reduction 
in the measurement (time) effort. 

This type of approximation is recommendable only for thermally stable types of thermometers, 
whose characteristic has been investigated with additional measurement points (degrees of 
freedom3   5) for the suitability of this equation type (or of the ITS-90 reference function as 
the basic function). 

3.2 Use of the measurement values  

In many cases, the original data for the approximation will be measurement values as indicated 
in the calibration certificate. The way the data are fed into the approximation mathematics 
depends on the thermal stability of the respective thermometer, the temperature range used 
and the required measurement uncertainty. 

The following subsections deal with various aspects of data preparation; however, these  
aspects may not always be independent of each other and are therefore mentioned at several 
points. 

3.2.1 R0 value 

In almost each calibration, also the resistance of the platinum thermometer at the ice point (R0) 
or at the water triple point (R0.01) is determined (often even several times – for example at the 
beginning and at the end of the calibration. 

For less precise requirements, it is sufficient to approximate all data – including the measured 
values at the zero point – on an equal basis. Due to the measurements which are (in most) 
cases performed several times at the zero point, a higher weight is automatically obtained for 
this temperature ( chapter 0 and equation (2-2)) during the approximation. This is reasona-
ble, as the temperature of the zero point is generally represented with the largest accuracy 
and as the calibration object is – due to the multiple measurements (at different moments) – 
also very well known at this temperature. 

In the case indicated in the test data set ( 6.2.1), the R0 value results from the approximation, 
i.e. it is the result of a calculation. 

Alternatively, it is possible to use the arithmetic mean value of all R0 or R0.01 measurements or 
the value of the last zero-point measurement for the zero point. (This depends on whether a 
 “W value formation” is carried out; Section 3.2.2) 

The number of the required measurement values ( 0) is independent of whether the zero 
point is specified by a measurement value (or by a mean value of measurement values) or

1 Determination of the assignment of temperature and resistance of a platinum resistance  
thermometer with ideally pure platinum. [18] 

2  Resistance ratio of the thermometer: WGa = R(29,7646 °C) / R(0.01 °C)
3  Degree of freedom   = n – p with n: number of measurement points  p: number of the free parameters  
 of the approximation equation f(t)
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whether it is approximated. Although the equation has one free parameter less if the zero 
point is specified, this is equalled out by the measurement value required for specifying R0. 
The measurement effort thus remains unaffected.
In the equations, the zero point is usually represented by R0.  

If required by the customer, R0 can be replaced by R0.01. This must be taken into account before 
calculating the coefficients. 

R0.01 can be converted into R0 by means of the following relation: 

R0  R0.01  0.999 961 (3-1) 

3.2.2 Formation of the W value 

When a sensor shows drift, in most cases, mainly the resistance measurement values – e.g. 
at the water triple point – change. However, the characteristic in relation to the water triple 
point remains largely unchanged. An advantage of the ratio formation is that it allows a better 
characterization of the thermometer. As a result, it is largely independent of a change in the 
thermometer resistance after thermal or mechanical load, as long as a current water triple point 
value is known. 

For drift-affected sensors or in case of very precise approximation requirements, a W value 
must be formed before calculating the characteristic curve. This means that for each resistance 
measurement value Rx at a temperature tx, the ratio to the resistance value R0.01 at the water 
triple point (0.01 °C) is formed via  

W(tx) = Rx/R0.01. (3-2) 

Between the measurements at tx and 0.01 °C, the sensor of the thermometer must not  
considerably drift. These two measurements should be carried out as closely as possible in 
time. A measurement at the water triple point, directly after the measurement at tx, is optimal. 
The more often the water triple point is measured (in the ideal case: after each temperature 
tx), the more precise the approximation becomes. If – under certain conditions (e.g. in specific 
temperature ranges) – a drift of the sensor can be ruled out, a multiple measurement of the 
R0.01 value is not required. 

The equations 1 to 4 indicated below can also be used with W values. The multiplication of the 
W values with the current water triple point value results in resistance values equivalent to 
those used in the equations mentioned. 

The form of the equations 1 to 4 indicated here allows the use of a current measurement value 
at the zero point without having to redetermine the coefficients. For the equations 5 to 7, this 
applies anyway because of their principle. 

Similarly, this procedure can also be used with ice point measurements of R0 at 0 °C. The 
conversion from R0.01 into R0 is described in section 3.2.1. 

3.2.3 Weighting factors 

If the measurement values used are affected by different measurement uncertainties, this can 
be taken into account during approximation by introducing weighting factors. However, de-
pending on the arrangement of the measurement values and on the differences in the  
measurement uncertainties, there is the risk of polynomial overshoots. This risk is reduced by 
a large number of measurement values. Before weighting, an unfavourable or unrealistic  
approximation of the characteristic must be excluded. Especially the measurement  
uncertainties of the individual calibration points must be determined correctly.



Determination of thermometer characteristics

https://doi.org/10.7795/550.20180828AGEN

DKD-R 5-6 

Edition: 09/2018 

Revision: 1 

Page: 21/54 

In particular the marginal conditions in sections 0 and 0 must be taken into account here. 

The mathematical realisation of the weighting is shown in section 2.2.2. 

3.3 Arrangement of the reference points 

 The reference points (measured values) must be distributed as uniformly as possible over 

the entire temperature range. 

 When considering the deviation function between real characteristic and mathematical 

model, the reference points should ideally be located at the zero passages (“knots”) and 

extreme values (maxima / minima) of this deviation function. 

 There must be reference points at the limits of the temperature range.  

 An extrapolation beyond these limits is not permissible and would lead to rapidly increasing 

deviations compared to the real thermometer. 

3.4 Number of reference points  

Practical and numerical investigations show that from approx. two degrees of freedom on 
( ≥ 2), the influence of the number of reference points is only of secondary importance for the 
approximation function of a typical Pt-100 thermometer. 

In special cases, approximations with one degree of freedom ( = 1) or interpolations ( = 0) 
are also possible. However, in such cases the uncertainty of the resulting characteristic  
function is significantly increased. (cf. Table 6.1 and Table 6.2). It is only under certain  
conditions (e.g. limited temperature range) that such approximations yield useful results. 
( 3.4.2) 

3.4.1 Usually known thermometer types (normal case) 

Correspondingly, the following table shows the number of required measurement values for 
 = 2 – for a Pt 100 type that does not meet the requirements of Section 3.4.2 (normal case): 

No. Equation Minimum number 
of measured  

values 

1 Callendar-Van Dusen (CvD) 
R = R 0 · (1 + At + Bt 2 + C(t – 100 °C)t 3)   |   C = 0 for t > 0 °C 

64

5 for tmin 0 °C 

2 2nd order: R = R 0  (1 + at + bt 2) 5 

3 3rd order: R = R 0  (1 + at + bt 2 + ct 3) 6 

4 4th order: R = R 0  (1 + at + bt 2 + ct 3 + dt 4) 7 

5 ITS + 1st order: W(t) = Wr(t ) + a(W(t )–1) 4 

6 ITS + 2nd order: W(t) = Wr(t ) + a(W(t )–1) + b(W(t )–1)2 5 

7 ITS + 3rd order: W(t) = Wr(t ) + a(W(t )–1) + b(W(t )–1)2

+ c(W(t )–1)3

6 

Table 3.1 

4  When special attention is paid to chapters 2.4 and 3.4.4. 
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3.4.2 Closely investigated thermometer types (special case) 

Approximations with a lesser degree of freedom should, as a matter of principle, be performed 
only in exceptional, justified cases. 

The following preconditions must all be fulfilled with less than two degrees of freedom ( < 2) 
when characteristics are to be approximated or interpolated:

 The thermometer type (same type designation and instrument type) is known from earlier 
investigations with additional measurement points (degrees of freedom   5) with respect 
to the scatter of the characteristics of several ( 10) thermometer specimens; in the case of 
a maximum temperature range from 0 °C to 100 °C , degrees of freedom of   3 are  
sufficient for the investigation. 

 The interpolation function has been proved to be suitable for this type of thermometer and 
temperature range, i.e. the approximability of the characteristic of this type of  
thermometer has been examined in earlier investigations with additional measuring points 
and with respect to the deviation between the characteristic function and the measured 
values. 

 The temperature range should be limited (usually –40 °C to 200 °C – or part thereof) and 
must be within the thoroughly investigated temperature range. 

 The reference points (measured values) are evenly distributed over the entire temperature 
range (see also Section 3.3). 

 The influence of the number of measuring points on the uncertainty of the approximation of 
the characteristic must be determined and taken into account. 

 By this, the measurement uncertainty is increased compared to a calibration with additional 
measuring points. (This is to be taken into account in the uncertainty budget!) 

According to the degree of freedom, the number of required measurement values is reduced 
(see Table 3.1). 
If one of the above conditions is not fulfilled, two degrees of freedom are the absolute minimum.  
Further information regarding the selection of reference points ( 2.4) and the resulting  
uncertainties ( 2.3) are given in the chapter “Fundamentals”. 

3.4.3 Known thermometer specimens (recalibration) 

If an individual thermometer is recalibrated, and if that thermometer is known from at least one 
previous calibration with additional measurement points, the number of required measurement 
values for subsequent calibration(s) may be reduced. The requirements are comparable to 
those in Section 3.4.2. 

To approximate or interpolate characteristics with less than two degrees of freedom ( < 2), 
the following prerequisites must all be met: 

 The thermometer specimen is known from previous calibrations with additional  
measurement points (degrees of freedom   3); in the case of a maximum temperature 
range from 0 °C to 100 °C, additional measurement points for degrees of freedom   2 are 
sufficient. 

 The suitability of the characteristic function for this thermometer specimen has been  
confirmed by calibration(s) with additional measuring points. 

 The temperature range should be limited (usually –40 °C to 200 °C – or part thereof) and 
must lie inside the temperature range for which the calibration(s) with additional measure-
ment points has/have been performed. 

 The reference points (measured values) are uniformly distributed over the entire  
temperature range (see also Section 3.3). 
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 The influence of the number of measuring points on the uncertainty of the approximation of 
the characteristic must be determined and taken into account. 

 Thus, the measurement uncertainty is increased compared to a calibration with additional 

measuring points. (This is to be taken into account in the uncertainty budget!) 

3.4.4 Temperatures below 0 °C 

Due to the properties of platinum resistance thermometer sensors, the determination of the 

characteristic in the negative temperature range is sometimes problematic or affected by 

clearly larger uncertainties. 

When calibrating a platinum resistance thermometer in the negative temperature range, the 

following points must be observed: 

 For measuring ranges starting below –40 °C, at least two reference points have to be lo-

cated in the negative range. If the measuring range starts below –80 °C, at least three points 

are required in the negative range. The number is valid without counting the measurement  

values at 0 °C. 

 For measuring ranges starting below –40 °C and ending above 200 °C, the value for the 

minimum number of reference points from Table 3.1 must be increased by at least one 

(degrees of freedom   3). This may also be the case with lower upper range limits to 

ensure that there are enough reference points in the positive range of the characteristic. 

 For a good approximation in the negative temperature range below –80 °C, it is advisable 

to approximate the deviations of the measured values from the ITS-90 reference function 

( 3.1.3). 

Alternatively, a function divided at 0 °C can be used. However, this procedure requires a 

corresponding number of reference points for each partial function ( Table 3.1). This in 

turn requires an increased measuring effort. 

When using the Callendar-Van Dusen equation for a temperature range of Tmin < 0 °C < Tmax, 
the algorithm from Chapter 6.3.2 should be used to be able to use the number of required 
measuring points according to Table 3.1. Otherwise, special attention must be paid to  
Chapter 2.4. 

If – according to section 3.4.2 – the type of thermometer is very well known and if, for example, 
a deviation function is used for this specific type of thermometer, these points may be ignored. 
This may, however, result in – sometimes drastically – increased uncertainties of the approxi-
mation. 

3.4.5 High temperatures 

Above approx. 500 °C, some thermometer types show a behaviour which is untypical for 
Pt-100. This is reflected by a flattened characteristic of these thermometers.  

The actual shape of the characteristic in this temperature range must then be determined by 
means of additional measuring points. 

In this case, it must be clarified whether 

 the mathematical model selected for the desired application (temperature range,  
measurement uncertainty) in accordance with Appendix 6.1.1 is nonetheless applicable or 
if increased approximation errors must be expected, and 

 the number of reference points according to Table 3.1 is sufficient. 
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This investigation is only required for some representative specimens ( 5) of a thermometer 
type, but for each desired temperature range. 

3.5 Determination of an appropriate description of the characteristic 

The decision as to which approximation equation should be used depends primarily on the 

desired measurement uncertainty and the required temperature range. Given that – apart from 

exceptions ( 3.4.2, 3.4.3) – the condition regarding the number of degrees of freedom   2, 

must be met, these considerations should always be made before starting the calibration. That 

is the only way to select suitable calibration points (number and arrangement) for the desired 

approximation equation. 

Details regarding the selection of a suitable equation can be found in Section 3.1. Appropriate 

approximation equations and indications of their uncertainties are dealt with in Section 6.1. 

The mathematical bases are given in Section 2.3. 

Appendix 6.1.1 offers some standard approximation equations for different cases. Suitable  

equations can also be determined using commercially available mathematical or special ap-

proximation software. ( 2.5). 

The uncertainty component to be expected, which is not only caused by the measurement but 

also by the properties of the characteristic curve equation used, is given in Appendix 6.1.1. 

3.6 Calculation method 

The software is selected according to Section 2.5.  

All approximation equations listed in Appendix 6.1.1 can be traced back to a Gaussian  

polynomial which can be solved using a matrix equation. As an example, the equation system 

has been established for the second-order polynomial in Appendix 6.3.1. 

The Callendar-Van Dusen equation constitutes an exception. Although it is a divided function, 

a closed solution exists here, too, in the case of which all coefficients are determined in one 

step. The advantage is that the part of the characteristic curve below 0 °C is also used to 

determine the coefficients a and b. The equation system for the Callendar-Van Dusen equation 

is set out in Appendix 6.3.2. 

3.6.1 Testing of the calculation method 

After each approximation, the measured values should be entered into the resulting function 

and compared with the original data in order to rule out or detect calculation, measurement 

and transmission errors. 

In any case, new calculation methods or software must undergo a fundamental test. General 

information on this can be found in Chapters 2.5 and 6.2, special information on platinum  

resistance thermometers in 6.2.1. 
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4 Thermocouples 

4.1 Types of approximation equations 

Subsequently, we will look at two possibilities which, in practice, have proved to be useful for 

describing the individual thermoelectric properties of thermocouples sufficiently well, and which 

keep the mathematical effort for understanding and handling the associated equations at a 

reasonable level. 

4.1.1 Standard polynomial 

Standard polynomials are generally well suited to describe the relationship between  

temperature and thermoelectric voltage when calibrating thermocouples with ignoble  

thermo wires by means of the comparison method. Depending on the type of thermocouple 

and the required measurement uncertainties, 4th to 6th order polynomials are usually  

sufficient. For lower requirements on the measurement uncertainty and limited temperature 

ranges, it is often possible to use polynomials from the 2nd order on. 

4.1.2 Deviation polynomial 

To calibrate thermocouples with thermo wires of noble metals by the comparison method or at 

fixed points, it is recommended to use deviation polynomials of the 2nd or 3rd order for the 

respective reference characteristics. Especially for fixed-point calibrations with only a limited 

number of calibration points, it is necessary to establish a relationship to the respective  

reference characteristic. 

4.2 Use of the measurement values 

4.2.1 Weighting factors 

If the measured values have different measurement uncertainties, this can be taken into  

account during approximation by introducing weighting factors. However, depending on the 

arrangement of the measured values and the differences in the measurement uncertainties, 

there is the risk of polynomial overshoots. This risk can be reduced by using a large number 

of measurement values. Before weighting, it must be ensured that an unfavourable or  

unrealistic approximation of the characteristic can be ruled out. 

The general conditions specified in Sections 4.3 and 4.4 are to be particularly observed. 

The mathematical realisation of the weighting is shown in Section 2.2.2. 

4.3 Arrangement of the reference points 

 When using the comparison method, the reference points (measured values) must be  

distributed as evenly as possible over the entire temperature range. 

 Reference points must be provided at the limits of the temperature range.  

 Extrapolation beyond these limits is permissible but leads to increased measurement  

uncertainties in the extrapolated temperature ranges ( 4.3.1). 
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4.3.1 Extrapolation of the measurement results 

Basically, an extrapolation of measured values is only necessary when calibrating  

thermocouples made of noble metals (types S, R and platinum/palladium thermocouples) at 

fixed points due to a lack of calibration points above the solidification temperature of copper. 

For calibrations using the comparison procedure, the calibration points can generally be se-

lected without restriction, on the basis of the required temperature range. 

Estimates of the additional uncertainty in the case of an extrapolation of the measured ther-

moelectric voltages to 1200 °C can be derived from statistical investigations of the calibration 

results of 33 type S thermocouples which were calibrated at fixed points at PTB's  

“Temperature” department. Deviation functions of the 1st and/or 2nd to 3rd order from the refer-

ence characteristic were determined for all thermocouples. In a further step,  

the thermoelectric voltages at 1200 °C were calculated using the two or three approximation 

equations determined for each thermocouple, and the maximum difference between these 

voltages was determined. At 1200 °C, the mean voltage difference of the 33 thermocouples 

amounted to 2.3 µV and the maximum thermoelectric voltage difference (one thermocouple) 

amounted to 3.8 µV. If the last value is regarded as a limiting value, a rectangular distribution 

can be assumed so that an uncertainty contribution of 2.2 µV must be considered in the un-

certainty budget. If the mean thermoelectric voltage difference is used (normal distribution), a 

comparable value of 2.3 µV is obtained as uncertainty contribution.  

These estimates are in conformity with the published data [30] for the extrapolation of  

thermoelectric voltages of thermocouples types S and R up to 1300 °C (mean deviation:  

1.4 µV, maximum deviation: 3 µV). 

4.4 Number of reference points  

An interpolation ( 2.2.1) of the measured values, i.e. the use of only as many measuring 

points at different temperatures as the equation used has free parameters, only makes sense 

under limited conditions. The following prerequisites must be fulfilled: 

 the thermocouple is known from previous calibrations with additional measuring points  
(degrees of freedom   5) with respect to the scattering of the measured values; 

 the number of calculated coefficients of the selected interpolation equation (no deviation 
function) corresponds to the number of coefficients of the respective reference  
characteristic for this type of thermocouple and temperature range 

 or a deviation function from reference characteristics is determined; 

 the thermocouple is calibrated only in a very limited temperature range; 

 compared to a calibration with additional measurement points, an increased measurement 
uncertainty is stated, 

 this component must be determined and taken into account in the uncertainty analysis of 
the characteristic. 

In all other cases, the number of known reference points must exceed the number of free 

parameters searched for. For calibrations using the comparison method, the number of  

degrees of freedom must – in the normal case (i.e. the above conditions are not met) – be set 

to   2. 

Further information on the selection of the reference points ( 2.4) and the resulting  
uncertainties ( 2.3) is given in the chapter “Fundamentals”. 
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4.5 Determination of a suitable description of the characteristic 

The decision as to which approximation equation should be used depends primarily on the 

desired measurement uncertainty and the required temperature range. As the requirement for 

the number of the degrees of freedom   2 must, apart from some exceptions ( 0), be com-

plied with, the number of the free parameters or the order of the approximation equation is 

limited due to a limited number of measurement values (reference points). In the case of a 

fixed-point calibration, this is of particular relevance. 

When calibrating according to the comparison procedure, the desired measurement  

uncertainty should always be considered before starting the calibration. This is the only way to 

select suitable calibration points (number and arrangement) for the desired approximation 

equation. 

Details on how to select an appropriate equation can be found in Section 4.1. Suitable  

approximation equations are dealt with in Section 6.1. The mathematical principles are given 

in Section 2.3. 

Appendix 6.1.2 proposes common approximation equations for various cases. Suitable  

equations can also be determined by means of commercially available mathematical or special 

approximation software ( 2.5). 

4.6 Calculation method 

The software is selected according to Section 2.5. 

All approximation equations listed in Appendix 6.1.2 can be traced back to a Gaussian  

polynomial which can be solved using a matrix equation. Appendix 0 shows the equation sys-

tem for the 2nd order polynomial. 

4.6.1 Testing of the calculation method 

After each approximation, the measured values should be entered into the resulting function 

and compared with the original data in order to rule out or detect calculation, measurement 

and transmission errors. 

Independent of this, new calculation methods or software must be subjected to a fundamental 

test. Corresponding general information can be found in Chapters 2.5 and 6.2, and special 

information on thermocouples in 6.2.2. 
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5 Other thermometers 

5.1 Thermistors 

Thermistors are ceramic semiconductor resistors. For thermometric measurement tasks, above 

all the types with a negative temperature coefficient (thermistors, NTC resistors) are appropri-

ate. These thermistor types are mainly used in the temperature range between –100 °C and 

maximally 300 °C. 

The approximated exponential dependence of the resistance on the temperature is indicated 

by characteristic curves for which the following applies: 
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with 
T temperature in K 
T0 reference temperature in K 
RT resistance at temperature T
RT0 resistance at reference temperature T0

 constant (form- and material-dependent) in K 

The same is valid for the dependency of the temperature on the resistance T = f(R): 
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Within limited temperature ranges (see Table 5.1), the characteristic of a thermistor can be 

approximated in principle by means of a linear correlation between ln RT and 1/T.  

Temperature margin (t  0 °C) Uncertainty 

10 K 0.01 K 

20 K 0.04 K 

30 K 0.10 K 

40 K 0.20 K 

50 K 0.30 K 

Table 5.1: Uncertainties when using equations 5-1 and 5-2 [34] 

Over larger temperature ranges, the uncertainties associated with such a linear approximation 

are often no longer tolerable. For this reason, the dependence ln RT = f(1/T) should be  

approximated with higher-order polynomials. Very good results were achieved by using a third-

degree polynomial (Steinhart and Hart equation): 
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Extensive investigations with 17 different metal oxide ceramics in the temperature range be-

tween –80 °C and 260 °C and with resistances between 10 Ω and 2 MΩ at 25 °C were carried 

out by Sapoff et al. [35]. When using 3rd degree polynomials (equations 5-3 and 5-4), the results 

can be summarized as follows: 

When using equations 5-3 and 5-4, interpolation errors occur; these errors lie in the order of 

the measurement uncertainty during the calibration of the thermistors if the following conditions 

are fulfilled: 

 temperature margin of 100 K in the temperature range –80 °C  t  260 °C 

 temperature margin of 150 K in the temperature range –60 °C  t  260 °C 

 temperature margin von 150 K to 200 K in the temperature range 0 °C  t  260 °C 

As the equations 5-3 and 5-4 have four unknown parameters, at least four measurement points 

are required for a calibration to determine the values of the parameters. When the thermistor 

types are not exactly known (normal case), at least six measurement points are required to 

avoid an unnecessary increase in the uncertainty of the resulting characteristic function and to 

check the mathematic model used. 

With a small temperature range (max. 50 K) the approximability of the thermistor characteristic 

improves; in this case, five measuring points may be sufficient. 

In order to approximate or interpolate characteristics (of exactly known thermistor types) with 

less than two degrees of freedom ( < 2), all of the following points should be observed: 

 the type of thermometer (same designation and type) is known from previous investigations 
with additional measuring points (degrees of freedom   5) with respect to the scattering of 
the characteristic of several ( 10) thermometer specimens; at a temperature margin of 
max. 60 K, degrees of freedom of   3 are sufficient for the investigation 

 the interpolation function has been proved to be suitable for this type of thermometer and 

temperature range, i.e. the possibility of approximating the characteristics of this thermom-

eter type has been investigated in previous investigations with additional measurement 

points with respect to the deviation between the characteristic function and the measure-

ment values 

 the temperature margin should not exceed 100 K and must lie within the thoroughly  
investigated temperature range 

 the reference points (measurement values) are uniformly distributed over the entire  
temperature range 

 the influence of the number of measuring points on the uncertainty of the characteristic 
approximation must be determined and taken into account 

 the measurement uncertainty is thus increased compared to a calibration with additional 
measuring points. (This is to be taken into account in the uncertainty budget!) 
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Similar requirements apply when recalibrating an individual thermistor specimen with  < 2. 

Again, all requirements must be met: 

 the thermometer specimen is known from previous from previous calibrations with additional 
measurement points (degrees of freedom   3); at a temperature margin of max. 60 K, 
additional measurement points for degrees of freedom   2 are sufficient 

 the suitability of the characteristic function for this thermometer specimen has been  
confirmed by calibration(s) with additional measuring points 

 the temperature margin should not exceed 100 K and must lie within the temperature range 
in which the calibration(s) with additional measuring points has (have) been performed 

 the reference points (measured values) are equally distributed over the entire temperature 
range 

 the influence of the number of measuring points on the uncertainty of the characteristic 
approximation must be determined and taken into account 

 the uncertainty of measurement is thus increased compared to a calibration with additional 

measuring points. (This is to be taken into account in the uncertainty budget!) 

Approximations with less than two degrees of freedom ( < 2) should only be performed in 

justified exceptional cases. 

However, the calibration effort can also be reduced for less well-known thermistor types by 

omitting the quadratic terms in the above equations. Sapoff und Siwek [36] investigated the 

accuracies of the characteristic which can be achieved by using the simplified equations 5-5 

and 5-6 for the description of the relationship between temperature and resistance. 
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The uncertainty contribution caused by the approximation of the characteristic when using 
equations 5-5 and 5-6 is estimated as summarized in Table 5.2 [34]. 

Temperature margin Temperature range Uncertainty 

50 K 0 °C  t  260 °C 0.001 K to 0.003 K 
50 K –80 °C  t  0 °C 0.01 K to 0.02 K 

100 K 0 °C  t  260 °C 0.01 K 

100 K –80 °C  t  25 °C 0.02 K to 0.03 K 
150 K 50 °C  t  200 °C 0.015 K 

150 K 0 °C  t  150 °C 0.045 K 
150 K –60 °C  t  90 °C 0.1 K 
200 K 0 °C  t  200 °C 0.08 K 

Table 5.2: Uncertainties when using equations 5-5 and 5-6 

As the non-linearity of the relation ln RT = f(1/T) depends – in addition to the temperature range 
used – also on the material properties of the thermistor, the stated uncertainties are only  
estimates of the uncertainty contribution caused by the approximation of the characteristic. 
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The software or calculation method used to calculate the coefficients of the above equations 
(5-3 and 5-5) should be thoroughly tested before release. For this purpose, fictitious  
measurements are given in Appendix 6.2.3. After approximation of these values, the result can 
be compared with the results given in the same section. 

After each approximation, the measured values should be entered into the resulting function 

and compared with the original data in order to rule out or detect calculation, measurement 

and transmission errors. 

5.2 Liquid-in-glass thermometers  

The linearity of the reading of a liquid-in-glass thermometer largely depends on the cross- 
sectional area of the thermometer capillaries and their change over the length of the  
thermometer. A non-linear expansion of the thermometer liquid can also contribute to the non-
linearity of the thermometer reading; however, this should already be taken into account in the 
scale division since the behaviour of the usual thermometer liquids (mercury and alcohol) is 
well known. 

The change of the cross-sectional area of the thermometer capillaries does not follow any 
principles which can be approximated. An interpolation between the measurement points is, 
therefore, normally not performed. 
A possible approach, however, is the gradual linear interpolation between the measuring 
points. Also see Chapter 2.2.1. 

Normally, however, characteristics are not approximated for liquid-in-glass thermometers. 

Further details regarding the handling of liquid-in-glass thermometers can be found in the re-
spective PTB Testing Instruction [13]. 

5.3 Direct-reading electronic thermometers 

Direct-reading thermometers with electronic (generally digital) display consist of a sensor ele-
ment (e.g. Pt-100, thermocouple, thermistor, diode sensor, transistor sensor, band gap sensor, 
quartz oscillator (QuaT) sensor) and a measuring and indicating electronics. The electronics 
linearizes the characteristic of the corresponding sensor and leads to a direct indication of the 
sensor temperature. In a first approximation, an (additional) linearization of the sensor charac-
teristic by the user is not required. 

However, there are errors caused by an insufficient description of the characteristic by the 
electronic system. As the characteristic used by the electronic system is in most cases not 
known, it is not possible for the user to apply a sensor-based characteristic curve, because a 
backward calculation to the actual measurement values of the sensor is not possible. 

Instead, the attempt can be made to correct the indicated values – section by section – by a 
linear interpolation between the measurement points (2.2.1, polygon interpolation).  
For direct-reading electronic thermometers, however, characteristics are normally not  
approximated. 
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6 Appendix 

6.1 Recommended approximation equations 

The following subsections 6.1.1 to 6.1.2 offer common approximation equations for widely 

spread thermometer types. The indicated measurement uncertainties to be expected only refer 

to the properties of the resulting function – which describes the thermometer behaviour– as 

compared to the real characteristic of the respective thermometer. The actual measurement 

errors (i.e. measurement deviations) must be considered separately. 

In the case of measurement errors that are assumed to be approximately random, the effects 

on the resulting function become smaller with the number of measurement points; i.e., the 

more measurement points there are, the smaller the effects on the resulting function. In this 

case, the approximated function has a compensating effect ( 2.2.2). The limits of the  

calibration range form an exception; here, the influence of measurement errors increases. 

The component of the uncertainty of the characteristic function which is caused by measure-
ment errors (deviation-affected reference points) can be estimated with the aid of “worst-case 
simulations” (variation of the measurement values in the range of the measurement uncer-
tainty) when the calculated coefficients are checked ( 0). This component thus describes the 
influence of the measurement errors between the reference points. This is, among others, 
caused by the propagation of (and a possible increase in) the measurement uncertainty of 
single measurement points to the complete characteristic function. The component has not 
been (and cannot be) considered in the uncertainty tables in the following subsections.  

In general, this uncertainty component is negligible compared to the actual measurement  

uncertainties of the calibration points – given that a reasonable approximation equation is 

used, and the arrangement and number of reference points have been selected in accordance 

with this Guideline. 

In summary, there are three uncertainty components which contribute to the overall uncertainty 

of the approximated characteristic of a thermometer: 

 the actual measurement uncertainties of the calibration points, 

 the error in the characteristic curve caused by the propagation of the measurement errors, 

 and the error of the mathematical model – i.e. the deviation between calculated and actual 

thermometer characteristic, in the case of an ideal measurement. 

Only the error of the mathematical model is discussed and estimated in Chapter 6.1.1. 

All three influences are partially correlated with each other, so the overall uncertainty can only 

be determined in a first approximation by formation of a quadratic sum. Further information 

can be found in Chapter 2.3.2. 
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6.1.1 Recommended approximation equations for Pt-100 

The following tables list the recommended approximation equations of the Pt-100 characteris-

tic curve for different temperature ranges along with the error intervals estimated as typical. 

The half-width of the respective error interval is given. The probability distribution is rectangu-

lar. The error interval only refers to the approximation, i.e. the quality of the respective  

mathematical model, and does not include any other uncertainty components. 

The indicated limits were obtained both from practical measurements and from mathematically 

theoretical considerations. For thermometers behaving untypically for a Pt-100 or being very 

unstable, an approximation might show much larger deviations.  

In addition, the general conditions specified in Sections 3.2 to 3.4 apply. 

The indications for the equations 6.1.1-5 to 6.1.1-7 are approximate values, as they could be 

determined only from practical measurements which are always also affected by a measure-

ment uncertainty and whose thermometer types used must not necessarily be representative. 

The grey-coloured cells in the Tables are approximation equations which are not suitable for 

the respective temperature range as the number of parameters (or the order) would be  

unnecessarily high. The measurement uncertainty of the calibration which could usually be 

achieved would oppose a further reduction in the overall uncertainty when the respective  

equations were used. 

Especially for calculations without degree of freedom ( = 0, Table 6.2) there is – in the case 

of these temperature ranges and equations – also the risk of polynomial overshoots and dis-

proportionately large deviations from the real characteristic of the thermometer. As basically 

no additional measurement values are available here for the checking of the characteristic 

function, the mentioned deviations would usually not be recognized. 
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Degrees of freedom    2

Temperature range  –190 to 
600 °C

–80 to 
200 °C

–80 to 
600 °C

–40 to 
0 °C

–40 to 
200 °C

–40 to 
400 °C

0 to 50 °C 0 to 
100 °C

0 to 
200 °C

0 to 
400 °C

0 to 
600 °C

Eq. 6.1.1-1 CvD 40 mK 6 mK 40 mK < 1 mK 5 mK 25 mK < 1 mK < 1 mK 4 mK 25 mK 40 mK 
Eq. 6.1.1-2 2nd order 1.3 K 40 mK 120 mK < 1 mK 10 mK 40 mK 
Eq. 6.1.1-3 3rd order 0.8 K 20 mK 70 mK 1 mK 5 mK < 1 mK 4 mK 40 mK 
Eq. 6.1.1-4 4th order 0.4 K 10 mK 15 mK 2 mK 1 mK 5 mK 

Eq. 6.1.1-5 ITS+1st ord. 5 ( 60 mK)5 (100 mK)5 < 5 mK < 10 mK < 10 mK < 60 mK 

Eq. 6.1.1-6 ITS+2nd ord. 5 ( 15 mK)5 ( 20 mK)5 < 5 mK < 5 mK < 10 mK 

Eq. 6.1.1-7 ITS+3rd ord. 5 ( 15 mK)5

Table 6.1: Typical error intervals of the uncertainty contribution of the characteristic approximation of Pt-100 ( = 2) 

Degrees of freedom   = 0

Temperature range  –190 to 
600 °C

–80 to 
200 °C

–80 to 
600 °C

–40 to 
0 °C

–40 to 
200 °C

–40 to 
400 °C

0 to 50 °C 0 to 
100 °C

0 to 
200 °C

0 to 
400 °C

0 to 
600 °C

Eq. 6.1.1-1 CvD < 1 mK < 10 mK < 1 mK < 2 mK < 8 mK 
Eq. 6.1.1-2 2nd order < 1 mK < 20 mK 
Eq. 6.1.1-3 3rd order < 2 mK < 1 mK 
Eq. 6.1.1-4 4th order

Table 6.2: Typical error intervals of the uncertainty contribution of the characteristic approximation of Pt-100 ( = 0) 

5 Estimation or statement currently not possible due to lack of sufficiently available measurement data. 
Grey fields: Corresponding equations are not reasonable for these temperature ranges.
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Eq. 6.1.1-1 Callendar-Van Dusen (CvD):  
R = R0  (1 + At + Bt2 + C(t – 100 °C)t3) | C = 0 für t > 0 °C 

Eq. 6.1.1-2 2nd order: R = R0  (1 + at + bt2)

Eq. 6.1.1-3 3rd order: R = R0  (1 + at + bt2 + ct3)

Eq. 6.1.1-4 4th order: R = R0  (1 + at + bt2 + ct3 + dt4)

Eq. 6.1.1-5 ITS + 1st order: W(t) = Wr(t) + a(W(t) – 1)

Eq. 6.1.1-6 ITS + 2nd order: W(t) = Wr(t) + a(W(t) – 1) + b(W(t) – 1)2

Eq. 6.1.1-7 ITS + 3rd order: W(t) = Wr(t) + a(W(t) – 1) + b(W(t) – 1)2 + c(W(t) – 1)3

Required number of calibration points, see Table 3.1 in Section 3.4.1. 

6.1.2 Recommended approximation equations for thermocouples 

Standard polynomial of m-th order: 

for calibrations including ice point measurement (0 °C), e.g. to consider thermoelectric  

inhomogeneity at room temperature. 

Required number of calibration points N (including ice point measurement): N  m + 3

Standard polynomial of m-th order: 

for calibrations without ice point measurement (0 C). 

Required number of calibration points N  m + 2

Deviation polynomial of m-th order: 

for calibrations including ice point measurement (0 °C), e.g. to consider thermoelectric  

inhomogeneity at room temperature. 

With Er(t) being the reference thermoelectric voltage of the respective thermocouple type at 

temperature t. 

Required number of calibration points N (including ice point measurement): N  m + 3

Deviation polynomial of m-th order: 

for calibrations without ice point measurement (0 °C). 

With Er(t) being the reference thermoelectric voltage of the respective thermocouple type at 

temperature t. 

Required number of calibration points N  m + 2
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When standard polynomials are used for the determination of the characteristic, the uncertainty 
of the approximation can at the same time be regarded as the uncertainty of the characteristic 
determined. When polynomials are used which deviate from the respective reference charac-
teristics, the uncertainty of the reference characteristics with respect to the ITS-90 must be 
considered in addition for the determination of the individual characteristic for the thermocouple 
to be calibrated. This uncertainty contribution can be estimated from the uncertainty of the 
respective measurements (or calculations) performed for its determination. Up to  
approximately 1000 °C it lies, for type S and R thermocouples, in the range of a few mK. In the 
case of higher temperatures and for type B thermocouples, it corresponds approximately to 
the temperature differences between the temperature scales IPTS-68 and ITS-90. 

6.2 Test data sets 

Before a self-established calculation method or a software (regardless of whether the same 
has been self-established or has been bought as standard software) is released for the  
concrete case of the calibration of thermometers (Pt-100, thermocouples, NTCs etc.) and/or 
the subsequent approximation of the characteristics, this software or procedure must be tested 
for its functionality. 

If different programs or calculation methods are used, this can be done by a comparison of the 
results. It is important not to compare the coefficients of the approximated equation but only 
the resulting functions. Due to different algorithms and different calculation accuracies, differ-
ent coefficients may occur which, however, compensate each other and thus lead to approxi-
mately identical curve shapes. 

For the testing of the software or of the approximation procedure, test data sets are shown in 
the subsections 6.2.1 to 6.2.3. An approximation based on these data should lead to a function 
curve comparable to the characteristic curve on the basis of the coefficients which are also 
indicated there. 

An agreement within 10 % of the error intervals or uncertainties indicated in Appendix 6.1 can 
be regarded as sufficient for practical applications. 

6.2.1 Test data set for Pt-100 

To check the software or the approximation procedure, a test data set (fictitious calibration of 
a Pt-100) is given in Table 6.3. An approximation based on these data with equations 6.1.1-1 
to 6.1.1-7 should lead to a comparable function curve of the characteristic based on the coef-
ficients given in Table 6.4 to Table 6.7, Table 6.9 and Table 6.10. 



Determination of thermometer characteristics

https://doi.org/10.7795/550.20180828AGEN

DKD-R 5-6 

Edition: 09/2018 

Revision: 1 

Page: 37/54 

If already the digits of the coefficients shown in large print in the tables in chapters 6.2.1.1 to 
6.2.1.3 are identical with the calculations of software to be tested, the two results agree to a 
few 0.1 mK or better, and a comparison of the curve shapes can in most cases be dispensed 
with. 

Temperature Resistance Measurement uncertainty 
(k = 2)

Weighting factor 

in °C in Ω in mΩ corresponds 
in mK to 

(in mΩ–2) normalized 

0.010 100.0054 4.0 10 0.0625 1.591981 

417.765 253.3138 10.0 25 0.01 0.254717 

303.988 213.5463 10.0 25 0.01 0.254717 

200.000 175.9075 6.0 15 0.0277778 0.707547 

80.008 130.9283 4.0 10 0.0625 1.591981 

0.010 100.0047 4.0 10 0.0625 1.591981 

–51.275 79.7726 6.0 15 0.0277778 0.707547 

–25.714 89.8977 6.0 15 0.0277778 0.707547 

0.010 100.0045 4.0 10 0.0625 1.591981 

Table 6.3: Test data set for Pt-100 

The weighting factors are calculated according to equation (2-2). The normalized weighting 

factors are calculated such that their sum corresponds to the number of data pairs. Thus, it is 

easier to statistically compare the results with the unweighted results (e.g. number of effective 

degrees of freedom, standard uncertainty, etc.). Neither the actual coefficients nor the course 

of the curve is affected by the standardisation (normalization) of the weighting factors. 

6.2.1.1 Unweighted measurement values 

All measured values (including the R0.01 values6) were approximated for the standard  

polynomials (equations 6.1.1-2 to 6.1.1-4) using the least squares method. A W value  

formation was not performed. All values were equally weighted. 

The following coefficients are obtained: 

2nd order polynomial 3rd order polynomial 4th order polynomial Unit
(Equation 6.1.1-2) (Equation 6.1.1-3) (Equation 6.1.1-4) 

R0 99.995516119 99.999381848 100.000751561 

a 3.9117908987E-03 3.9135250878E-03 3.9136086594E-03 °C–1

b –5.7880716086E-07 –5.9617124471E-07 –6.0537905213E-07 °C–2

c 3.1212478437E-11 8.3204212690E-11 °C–3

d –7.4250861722E-14 °C–4

Table 6.4: Coefficients for standard polynomials from the test data (unweighted) 

Below you will find the coefficients for the Callendar-Van Dusen equation which have been  

approximated according to the method described above. Positive, negative and R0.01values 

6 Attention: The R0.01 values (from Table 6.3) are measured values, the R0 values (from Table 6.4 ff.), however, 
are coefficients (calculated values).
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have been equally considered and approximated in one step. There is no difference in the 

weighting of the values. 

Callendar-VanDusen Unit
(Equation 6.1.1-1)

R0 100.000443911 Ω 

A 3.9107762809E-03 °C–1

B –5.7693522900E-07 °C–2

C –1.1855984344E-11 °C–4

Table 6.5: Coefficients of the Callendar-Van Dusen equation from the test data (unweighted) 

6.2.1.2 Weighted measurement values 

As opposed to the previous chapter, the measurement uncertainty of the values is taken into 
account and the measured values are weighted according to Section 2.2.2 / Equation (2-2). 
Apart from that, the calculations are carried out according to the procedure described in  
Chapter 6.2.1.1. 

When using weighted measurement values, the following coefficients are obtained for the 
standard polynomials (equations 6.1.1-2 to 6.1.1-4): 

2nd order polynomial 3rd order polynomial 4th order polynomial Unit
(Equation 6.1.1-2) (Equation 6.1.1-3) (Equation 6.1.1-4) 

R0 99.998008247 99.999914018 100.000805602 Ω 

a 3.9120434880E-03 3.9134693887E-03 3.9135562623E-03 °C–1

b –5.8008948879E-07 –5.9704124207E-07 –6.0599486783E-07 °C–2

c 3.3545043917E-11 8.9273621082E-11 °C–3

d –8.4635350764E-14 °C–4

Table 6.6: Coefficients for standard polynomials from the test data (weighted) 

For the Callendar-Van Dusen equation (equation 6.1.1-1), the following coefficients are  
obtained for weighted measurement values: 

Callendar-Van Dusen Unit
(Equation 6.1.1-1)

R0 100.000923150 Ω
A 3.9111868772E-03 °C–1

B –5.7817938946E-07 °C–2

C –1.0825644340E-11 °C–4

Table 6.7: Coefficients of the Callendar-Van Dusen equation from the test data (weighted) 

The digits in small print have an influence of less than 0.1 mK of the temperature equivalent 

when calculating the resistance. Normally, they do not need to be indicated, but are listed here 

for better comparability. The required number of digits also depends on the temperature range 

of the thermometer and the exponent of the coefficient which means that it is not necessarily 

identical for different thermometers. The data here refer to the temperature range of the test 

data set. 
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6.2.1.3 Deviation function with W values 

According to the mathematics of the ITS-90, the deviation from the ITS-90 reference function 
can also be approximated. However, this is not an ITS-90 calibration [18], given that industrial 
Pt100 sensors do not meet the criteria for WGa or WHg (see also Section 3.1.3 and [19]) and that 
the calibration is usually not performed at the temperatures of the ITS-90 fixed points. 

In many cases, however, the mathematical method is also suitable for Pt-100 to describe the 
behaviour of thermometers over large temperature ranges with relatively small uncertainties 
using relatively few calibration points. 

The coefficients of equations 6.1.1-5 to 6.1.1-7 are determined by transforming the equation 

     2 3

90 90 r 90 90 90 90
( ( )) ( ) ( ) ( ) 1 ( ) 1 ( ) 1W W T W T W T a W T b W T c W T            (6.2.1-1) 

with W(T90) = R(T90)/R(0.01 °C)
R(T90): Thermometer resistance at temperature T90

R(0.01 °C): Thermometer resistance at temperature 0.01 °C 
Wr(T90): W value of the ITS-90 reference function at temperature T90 ( [18]) 

into the following form 
2 3y a x b x c x      . (6.2.1-2) 

Depending on the desired equation (6.1.1-5 to 6.1.1-7), the coefficients b and/or c can be set 
to zero. 

The coefficients of the transformed form can thus be calculated using any standard  
approximation software. 

Before the actual approximation, the resistance values are converted into W values. Each  
resistance value is divided by the corresponding resistance value at the triple point of the water. 
The more often the water triple point is measured – ideally after every other calibration point – 
the more accurate the method. As can be expected, this will rarely be the case in industrial 
practice; therefore, the test data set is designed accordingly (Table 6.3). 

In this example, the next water triple point measurement is used for calculating the W value. 
The formulas for the calculation of Wr of the ITS-90 can be found in [18]. 

T90 W(T90) W(T90) – 1 Wr(T90) W(T90) – Wr(T90) 
in °C (x) (y) 

417.765 2.5330189481  1.5330189481 2.5627566505 –0.0297377024 

303.988 2.1353626380  1.1353626380 2.1573226787 –0.0219600407 

200.000 1.7589923274   0.7589923274 1.7736633068 –0.0146709794 

  80.008 1.3092214666   0.3092214666 1.3152020735 –0.0059806069 

–51.275 0.7976901039 –0.2023098961 0.7938191079   0.0038709960 

–25.714 0.8989365479 –0.1010634521 0.8969957508   0.0019407970 

Table 6.8: Transformed test data set with W values for Pt-100 

The measurement points at 0.01 °C are omitted as here, the characteristic must, as a matter 
of principle, pass through the point (T90 = 0.01 °C; W = 1). 
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Without weighting, the following coefficients are obtained for equations 6.1.1-5 to 6.1.1-7: 

ITS + 1st order ITS + 2nd order ITS + 3rd order Unit
(Equation 6.1.1-5) (Equation 6.1.1-6) (Equation 6.1.1-7) 

a –1.9368259648E-02 –1.9241321496E-02 –1.9240372859E-02 — 

b –1.0023952445E-04 –1.0254256788E-04 — 

c   1.1402911401E-06 — 

Table 6.9: Coefficients for the ITS deviation function (unweighted) 

If the transformed test data from Table 6.8 are approximated using the weighting factors from 
Table 6.3, the following coefficients are obtained for equations 6.1.1-5 to 6.1.1-7: 

ITS + 1st order ITS + 2nd order ITS + 3rd order Unit
(Equation 6.1.1-5) (Equation 6.1.1-6) (Equation 6.1.1-7) 

a –1.9355977513E-02 –1.9266959203E-02 –1.9257654779E-02 — 

b –8.2649269755E-05 –1.1036006940E-04 — 

c   1.5035448679E-05 — 

Table 6.10: Coefficients for the ITS deviation function (weighted) 

In order to calculate the temperature from a W value by means of the equation 6.2.1-1 and the 
determined coefficients, the value of the ITS-90 reference function Wr(T90) must be calculated 
by using the following equation:  

     2 3

r 90 90 90 90 90
( ) ( ) ( ) 1 ( ) 1 ( ) 1W T W T a W T b W T c W T          (6.2.1-3) 

By using the inverse reference function from [18] the temperature T90 searched for can be  
determined. 
To determine the value W(T90), a rapidly converging approximation solution can be used: 

1) W*(T90) := Wr(T90)

2)      2 3

90 r 90 90 90 90
*( ) : ( ) *( ) 1 *( ) 1 *( ) 1W T W T a W T b W T c W T         

3) Step 2 is to be repeated until the change of W*(T90) can be neglected. 
4) W(T90) ≈ W*(T90) 

Typically, no more than 5 iteration steps are required. 

6.2.1.4 Tabular values of the approximated test data 

To check the calculation methods from temperature to resistance (or W value) and vice versa, 
the results obtained using the coefficients determined above are shown below. 
Using the temperature values directly on the original test data ( Table 6.3 or Table 6.8), it is 
also possible to check the suitability of the mathematical models for this specific case (test 
data set). 
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In the following table, the resistance values were determined from given temperatures using 
equations 6.1.1-1 to 6.1.1-4 and the coefficients from Table 6.4 and Table 6.5 (unweighted 
approximation. 

2nd order  

polynomial

3rd order  

polynomial 

4th order  

polynomial 

CvD 

Temperature Resistance Resistance Resistance Resistance 

in °C in Ω in Ω in Ω in Ω 

–50 80.292 74 80.282 45 80.280 13 80.280 01 

0 99.995 52 99.999 38 100.000 75 100.000 44 

50 119.408 90 119.418 23 119.418 59 119.410 18 

100 138.532 89 138.541 34 138.539 33 138.531 44 

150 157.367 49 157.371 05 157.367 53 157.364 24 

200 175.912 70 175.909 70 175.906 66 175.908 57 

250 194.168 52 194.159 63 194.159 06 194.164 42 

300 212.134 95 212.123 17 212.125 95 212.131 81 

350 229.811 99 229.802 68 229.807 45 229.810 73 

400 247.199 64 247.200 50 247.202 56 247.201 18 

–51.275 79.786 54 79.775 75 79.773 24 79.771 99 

–25.714 89.898 92 89.896 73 89.897 05 89.903 55 

0.010 99.999 43 100.003 30 100.004 67 100.004 35 

80.008 130.921 08 130.930 49 130.929 42 130.920 61 

200.000 175.912 70 175.909 70 175.906 66 175.908 57 

303.988 213.555 49 213.543 68 213.546 71 213.552 47 

417.765 253.307 79 253.314 56 253.313 73 253.310 56 

Table 6.11: Tabular values for standard polynomials and CvD (unweighted) 
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In the following table, the resistance values were determined from given temperatures using 
equations 6.1.1-1 to 6.1.1-4 and the coefficients from Table 6.6 and Table 6.7 (weighted  
approximation). 

2nd order  

polynomial

3rd order  

polynomial 

4th order  

polynomial 

CvD 

Temperature Resistance Resistance Resistance Resistance 

in °C in Ω in Ω in Ω in Ω 

–50 80.293 16 80.282 90 80.280 20 80.279 96 

0 99.998 01 99.999 91 100.000 81 100.000 92 

50 119.412 82 119.418 40 119.418 31 119.412 49 

100 138.537 59 138.540 89 138.538 76 138.534 97 

150 157.372 32 157.369 88 157.366 97 157.368 35 

200 175.917 01 175.907 91 175.906 44 175.912 64 

250 194.171 66 194.157 47 194.159 43 194.167 84 

300 212.136 27 212.121 10 212.126 93 212.133 95 

350 229.810 85 229.801 30 229.808 64 229.810 96 

400 247.195 38 247.200 59 247.203 01 247.198 89 

–51.275 79.786 90 79.776 20 79.773 30 79.772 04 

–25.714 89.900 42 89.897 29 89.897 18 89.903 06 

0.01 100.001 92 100.003 83 100.004 72 100.004 83 

80.008 130.925 54 130.930 31 130.928 95 130.923 72 

200 175.917 01 175.907 91 175.906 44 175.912 64 

303.988 213.556 64 213.541 64 213.547 72 213.554 48 

417.765 253.302 28 253.315 40 253.313 55 253.307 21 

Table 6.12: Tabular values for standard polynomials and CvD (weighted)  
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In the following table, the W values were determined from given temperatures using equations 
6.1.1-5 to 6.1.1-7 and the coefficients from Table 6.9 (unweighted approximation). The values 
Wr(T90) of the ITS-90 reference function are also listed for comparison. 

ITS + 1st order ITS + 2nd order ITS + 3rd order Wr(T90) 

Temperature W value W value W value 

in °C

–50 0.802 805 47 0.802 777 09 0.802 776 81 0.798 986 16 

0 0.999 960 87 0.999 960 86 0.999 960 86 0.999 960 11 

50 1.194 110 95 1.194 131 42 1.194 131 52 1.197 870 54 

100 1.385 310 03 1.385 343 41 1.385 343 50 1.392 772 81 

150 1.573 585 73 1.573 624 81 1.573 624 81 1.584 695 09 

200 1.758 963 50 1.759 001 37 1.759 001 27 1.773 663 31 

250 1.941 469 36 1.941 499 43 1.941 499 24 1.959 703 98 

300 2.121 126 03 2.121 142 04 2.121 141 82 2.142 840 29 

350 2.297 947 13 2.297 943 10 2.297 942 95 2.323 086 11 

400 2.471 932 34 2.471 902 58 2.471 902 63 2.500 441 10 

–51.275 0.797 736 60 0.797 707 38 0.797 707 09 0.793 819 11 

–25.714 0.898 952 86 0.898 939 27 0.898 939 15 0.896 995 75 

0.010 1.000 000 00 1.000 000 00 1.000 000 00 1.000 000 00 

80.008 1.309 213 15 1.309 242 26 1.309 242 36 1.315 202 07 

200.000 1.758 963 50 1.759 001 37 1.759 001 27 1.773 663 31 

303.988 2.135 333 25 2.135 347 87 2.135 347 66 2.157 322 68 

417.765 2.533 063 87 2.533 023 67 2.533 023 82 2.562 756 65 

Table 6.13: Tabular Values for ITS deviation function (unweighted) 

To obtain resistance values, the corresponding W values must be multiplied by the last  
(current) resistance value at the water triple point. In this case: 

90 90
( ) ( ) 100.0045R T W T  . 
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In the following table, the W values were determined from given temperatures using equations 
6.1.1-5 to 6.1.1-7 and the coefficients from Table 6.9 (weighted approximation). The values 
Wr(T90) of the ITS-90 reference function are also listed for comparison. 

ITS + 1st order ITS + 2nd order ITS + 3rd order Wr(T90) 

Temperature W value W value W value 

in °C

–50 0.802 803 10 0.802 782 72 0.802 779 75 0.798 986 16 

0 0.999 960 87 0.999 960 86 0.999 960 86 0.999 960 11 

50 1.194 113 29 1.194 127 19 1.194 128 04 1.197 870 54 

100 1.385 314 67 1.385 336 28 1.385 336 61 1.392 772 81 

150 1.573 592 64 1.573 616 06 1.573 615 13 1.584 695 09 

200 1.758 972 65 1.758 992 22 1.758 989 94 1.773 663 31 

250 1.941 480 70 1.941 491 05 1.941 487 86 1.959 703 98 

300 2.121 139 54 2.121 135 53 2.121 132 38 2.142 840 29 

350 2.297 962 77 2.297 939 53 2.297 937 83 2.323 086 11 

400 2.471 950 07 2.471 902 95 2.471 904 52 2.500 441 10 

–51.275 0.797 734 16 0.797 713 18 0.797 710 10 0.793 819 11 

–25.714 0.898 951 64 0.898 941 99 0.898 940 77 0.896 995 75 

0.010 1.000 000 00 1.000 000 00 1.000 000 00 1.000 000 00 

80.008 1.309 216 88 1.309 236 13 1.309 236 79 1.315 202 07 

200.000 1.758 972 65 1.758 992 22 1.758 989 94 1.773 663 31 

303.988 2.135 346 93 2.135 341 56 2.135 338 47 2.157 322 68 

417.765 2.533 082 34 2.533 025 67 2.533 028 91 2.562 756 65 

Table 6.14: Tabular Values for ITS deviation function (weighted) 

To obtain resistance values, the corresponding W values must be multiplied by the last  
(current) resistance value at the water triple point. In this case: 

90 90
( ) ( ) 100.0045R T W T  . 
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6.2.2 Test data set for thermocouples 

Table 6.15 provides a set of test data (calibration of a Type S thermocouple by means of the 

comparison procedure) for checking the software or the approximation procedure. An  

approximation on the basis of these data should lead to a comparable course of the function 

of the characteristic based on the coefficients shown in Table 6.16 and on the residual  

deviations of the measurement values from the respective characteristic in Table 6.17. 

Temperature 
t / °C 

Thermoelectric  
voltage 
U / µV 

Reference voltage 
UR / µV 

Difference 
U – UR / µV 

0 0.1 0 +0.1 

200 1439.0 1440.8 –1.8 

350 2783.5 2785.8 –2.3 

500 4231.3 4233.3 –2.0 

650 5752.0 5753.0 –1.0 

800 7345.5 7345.0 +0.5 

900 8451.0 8449.2 +1.8 

1000 9589.7 9587.1 +2.6 

1100 10759.5 10756.5 +3.0 

Table 6.15: Test data set for thermocouples 

For a 3rd order deviation polynomial and two standard polynomials of the 5th and 6th order, the 
coefficients shown in Table 6.16 are obtained. 

Coefficients 3rd order

deviation  
polynomial 

5th order

standard polynomial

6th order

standard polynomial

a0 / µV 0.1979 0.0059 0.1006 

a1 / µV°C–1 –0.01697 5.57712 5.44478 

a2 / µV°C–2 3.21919E-5 0.01049 0.01181 

a3 / µV°C–3 –1.29895E-8 –1.38628E-5 –1.86144E-5 

a4 / µV°C–4 1.03401E-8 1.81586E-8 

a5 / µV°C–5 –2.95240E-12 –8.96427E-12 

a6 / µV°C–6 1.75112E-15 

Table 6.16: Coefficients of the polynomials from the test data set for thermocouples 
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Table 6.17 shows the residual deviations of the calculated characteristics from the given  

measurement values. 

Temperature 
t / °C 

3rd order

deviation  
polynomial 

5th order 

standard polynomial 

6th order 

standard polynomial

0 –0.10 0.09 –0.00 

200 0.21 –0.68 0.01 

350 0.05 1.32 –0.01 

500 –0.14 –0.63 0.00 

650 –0.20 –0.83 0.04 

800 –0.07 0.79 –0.11 

900 0.27 0.78 0.12 

1000 0.17 –1.24 –0.06 

1100 –0.19 0.39 0.01 

Table 6.17: Residual deviations of the measured thermoelectric voltages from the  
respective calculated characteristic (Umeasurement value – Ucharacteristic) in µV

6.2.3 Test data set for thermistors 

Table 6.18 provides a set of test data (fictitious calibration of a thermistor) to check the software 
or the approximation method. An approximation based on these data with equations 6.2.3-1 to 
6.2.3-4 should lead to a comparable course of the function of the characteristic on the basis of 
the coefficients indicated in Table 6.19. 

If already the large-print digits of the coefficients indicated in the tables of this chapter are 
identical with the calculations of the software to be tested, the two results agree to a few 0.1 mK 
or better and a comparison of the curve shapes can in most cases be dispensed with. 

Temperature t Thermistor resistance RT

in °C in Ω

–40 336 500 

–20 97 080 

   0 32 650 

 25 10 000 (RT0) 

 50 3 603.0 

 80 1 255.0 

Table 6.18: Test data set for thermistors 

The above data are entered into 

   3310 lnln
1

TT RaRaa
T

 (6.2.3-1) 



Determination of thermometer characteristics

https://doi.org/10.7795/550.20180828AGEN

DKD-R 5-6 

Edition: 09/2018 

Revision: 1 

Page: 47/54 

or 

     33

2

210 lnlnln
1

TTT RaRaRaa
T

 (6.2.3-2) 

with T = t + 273.15 K. 

Likewise, the form 

   303010 )/ln()/ln(
1

TTTT RRaRRaa
T

 (6.2.3-3) 

or 

     303

2

02010 )/ln()/ln()/ln(
1

TTTTTT RRaRRaRRaa
T

 (6.2.3-4) 

is sometimes applied. 

1) Approximation by means of transformation 

The approximation is usually performed by using standard polynomials; the data are trans-
formed beforehand with x = ln (RT) or x = ln (RT /RT0) and y = 1/T. 
An approximation then furnishes the coefficients given in Table 6.19 and Table 6.20 or  
an equivalent function curve. 

Equation 6.2.3-1 Equation 6.2.3-2 Unit 

a0 1.1295343566E-03 1.1418856078E-03 K–1

a1 2.3409324908E-04 2.3020424818E-04 (ln Ω)–1 K–1

a2 — 3.9895899090E-07 (ln Ω)–2 K–1

a3 8.7532010810E-08 7.4178797508E-08 (ln Ω)–3 K–1

Table 6.19: Coefficients for thermistors from the test data with x = ln(RT)

Equation 6.2.3-3 Equation 6.2.3-4 Unit 

a0 3.359490268E-03 3.3539460517E-03 K–1

a1 2.53930869E-04 2.5643118888E-04 K–1

a2 — 2.4485949237E-06 K–1

a3 8.396964E-07 7.4178791523E-08 K–1

Table 6.20: Coefficients for thermocouples from the test data with x = ln (RT/RT0)

The equations 6.2.3-2 and 6.2.3-4 are equally well suited and, with the respective coefficients 
indicated, lead to an identical course of function. 
However, equations 6.2.3-1 and 6.2.3-3show a different behaviour. 
When using this test data, equation 6.2.3-3 is much less suited! 
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Other test data show a similar behaviour. The larger the temperature range of the  
measurement values, the worse suited seems equation 6.2.3-3 compared to equation 6.2.3-1. 

If this equation is to be used in spite of all difficulties, the suitability must – as already explained 
in the section “Fundamentals” – be checked for the concrete case. 

2) Approximation of the original function 

If the original function is directly approximated (without previous transformation of the  
measurement data) – e.g. by approximation methods – then different coefficients with a slightly 
changed course of the function are obtained. This method leads to slightly better results [see 
equation (2-1)] but is mathematically more difficult to solve. 

An approximation then yields the coefficients given in the following tables or an equivalent 
course of the function. 

Equation 6.2.3-1 Equation 6.2.3-2 Unit 

a0 1.1302024127E-03 1.1470200810E-03 K–1

a1 2.3398622636E-04 2.2856809546E-04 (ln Ω)–1 K–1

a2 — 5.6885010109E-07 (ln Ω)–2 K–1

a3 8.7895497057E-08 6.8425603427E-08 (ln Ω)–3 K–1

Table 6.21: Coefficients for thermistors from the untransformed test data (1 and 2) 

Equation 6.2.3-3 Equation 6.2.3-4 Unit 

a0 3.359512929E-03 3.3539278611E-03 K–1

a1 2.52740115E-04 2.5646040935E-04 K–1

a2 — 2.4595194192E-06 K–1

a3 8.897925E-07 6.8425589256E-08 K–1

Table 6.22: Coefficients for thermistors from the untransformed test data (3 and 4) 

The above-mentioned warnings also apply to equation 6.2.3-3! 

The digits in small print have an influence of less than 0.1 mK on the calculation of the  
temperature. Normally, they do not need to be specified but are listed here for better  
comparability. The required number of digits also depends on the temperature range of the 
thermometer and the exponent of the coefficient, so it is not necessarily identical for different 
thermometers. The data here refer to the temperature range of the test data set. 

By way of example, the following deviations from the calculated characteristic curves have 
been determined using the coefficients from Table 6.19 and the resulting functions for the 
measured values (reference points): 
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Temperature Deviation equation 6.2.3-1 Deviation equation 6.2.3-2 

in °C in Ω in °C in Ω in °C

–40 25.6 0.001 –34.3 –0.002 

–20 5.0 0.001 34.5 0.006 

0 –13.2 –0.008 –8.7 –0.005 

25 –0.5 –0.001 –2.7 –0.006 

50 2.7 0.019 1.6 0.012 

80 –0.5 –0.013 –0.2 –0.005 

Table 6.23: Deviations of the measured thermistor resistance values from the respective 
calculated characteristic (Rmeasurement value – Kcharacteristic)

6.3 Mathematical tools 

6.3.1 Algorithm for polynomial approximation 

To determine, for example, the coefficients for a 2nd order polynomial by using the equation  

Ri = R0  (1 + ati + bti
2) (corresponds to equation (6.1.1-2), Appendix 6.1.1) with n measurement 

values Ri (ti), the following matrix equation must be solved: 
2

0

2 3

0

2 3 4 2

0

i i i

i i i i i

i i i i i

n t t R R

t t t R a R t

t t t R b R t

   

 

    
    
    

    
    

  
   
   

(6.3.1-1) 

6.3.2 Algorithm for the Callendar-Van Dusen approximation 

To determine the coefficients of the widely used Callendar-Van Dusen equation 

Ri = R0 (1 + Ati + Bti
2 + C(ti – 100 °C)ti

3) with C = 0 für ti > 0 °C) (corrresponds to equation 

(6.1.1-1)), the matrix system expands as follows: 
2 3

neg, neg,

2 3 4

neg, neg,

2 3 4 5

neg, neg,

3 4 5 6 2

neg, neg, neg, neg, neg, neg, neg, neg,

( 100 C)

( 100 C)

( 100 C)

( 100 C) ( 100 C) ( 100 C) ( 100 C)

i i j j

i i i j j

i i i j j

j j j j j j j j

n t t t t

t t t t t

t t t t t

t t t t t t t t

 

 

 

       

 
 
 
 
  
 

  
   
   

   

0

0

2

0

3

neg, neg, neg,0
( 100 C)

i

i i

i i

j j j

RR

R tR A

R tR B

R t tR C


 



  

  
  
  
  
    

   







(6.3.2-1) 

with tneg,j representing only the subset of all measured negative temperatures (ti < 0 °C) and 
Rneg,j(tneg,j) representing only the resistance measurement values at negative temperatures. 
The advantage of this closed procedure is that the approximation is performed in one step and 
positive and negative values equally influence all coefficients. Thus, the C coefficient is not 
only determined by the negative measurement values, and the other coefficients are not only 
determined by the positive measurement values. 
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6.4 Sample of a calibration certificate 

The sections “Measurement results” and “Measurement uncertainty” in a calibration certificate 
can, for example, be drawn up as follows: 

DEUTSCHE AKKREDITIERUNGSSTELLE     DAkkS

Measurement results 

Table 1 shows the measurement results in the order of calibration: 

Table 1: Measurement values

The cha

measure

laborato

E / µV  =

E / µV  =

with E: 

and t90: 

T

Cu fixe

Ag fixe

Al fixed

Zn fixe

Sn fixe

Ice poin

*) The indic
emperature t90 in °C Thermoelectric voltage in µV Uncertainty in µV *)

d point 1084.62 13158.1 4.5 

d point 961.78 10708.0 3.7 

 point 660.32 5710.4 2.1 

d point 419.53 2918.7 1.5 

d point 231.93 ———— ——  

t 0.00 ———— ——  
racteristic function of the calibrated thermocouple is calculated from these  

ment values and from the reference function for thermocouples used in the  

ry as subsequent polynomial with the coefficients stated in Table 2: 

8

  ai • (t90 /°C)i for the temperature range:  0 °C to 660.323 °C 
i = 0

6

  bi • (t90 /°C)i for the temperature range:  > 660.323 °C to 1100 °C 
i = 0

Thermoelectric voltage in µV  

Temperature in °C (ITS-90). 

ated uncertainty comprises the uncertainty components of the temperature measurement and realisation. 
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Table 2:   Coefficients 

Measu

The u

measu

accord

within

These

of the 

as of t

stabili

not inc

a

a

a

a

a

a

a

a

a

The co

rapidly
0 –5.40580438 • 10-02 b0 –4.97767758 • 10+02

1 5.18978480 • 10+00 b1 1.00753718 • 10+01

2 4.60796668 • 10-03 b2 –1.57960423 • 10-02

3 –9.60227100 • 10-06 b3 3.63617000 • 10-05

4 2.99224300 • 10-08 b4 –2.69015090 • 10-08

5 –2.01252300 • 10-11 b5 9.56273660 • 10-12

6 –1.26851400 • 10-14 b6 –1.35707370 • 10-15

7 2.25782300 • 10-17

8 –8.51006800 • 10-21

efficients are only valid for the temperature range 0 °C to 1100 °C. An extrapolation leads to  
rement uncertainty 

ncertainty stated is the expanded measurement uncertainty resulting from the standard 

rement uncertainty multiplied by the coverage factor k = 2. t has been determined  

ing to DAkkS-DKD-3. With a probability of 95 %, the value of the measurand lies 

 the assigned value interval. 

 increasing deviations from the actual thermometer behaviour. 
Temperature range Measurement uncertainty 

0 °C to 960 °C 0.4 K 
> 960 °C to 1100 °C 0.5 K 
 measurement uncertainties comprise the uncertainties of the standards (fixed points), 

calibration procedure, of the mathematical approximation of the characteristics as well 

he properties of the calibrated thermocouple, in particular with regard to its short-term  

ty and its thermoelectric inhomogeneity. The long-term stability of the thermocouple is 

luded. 
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