

Elisabeth Brandes, Werner Hirsch, Thomas Stolz

Zündtemperaturen in anderen Oxidationsmitteln als Luft

Physikalisch-Technische Bundesanstalt

Explosionsschutz
PTB-Ex-13
Braunschweig, Dezember 2018

Elisabeth Brandes, Werner Hirsch, Thomas Stolz

Zündtemperaturen in anderen Oxidationsmitteln als Luft

Zündtemperaturen in anderen Oxidationsmitteln als Luft

Gemeinsamer Abschlussbericht zu den PTB-Forschungsvorhaben

Zündtemperaturen brennbarer Flüssigkeiten in N₂O+Luft-Gemischen

Laufzeit: 01.09 2015 bis 30.09. 2017

und

Zündtemperaturen brennbarer Flüssigkeiten bei erhöhtem Sauerstoffanteil im O₂+N₂-Gemisch

Laufzeit: 01.09 2015 bis 30.09, 2017

Autoren: Dr. Elisabeth Brandes, Dr. Werner Hirsch, Thomas Stolz

PTB-Braunschweig

Fachbereich 3.7: Grundlagen des Explosionsschutzes
Februar 2018

Forschungsbegleitkreis:

Gesa Gosda COVESTRO AG, Leverkusen

Dr. Ute Hesener COVESTRO AG, Leverkusen

(ehemals DEKRA EXAM GmbH, Bochum)

Dr. Michael Beyer PTB, Braunschweig

Dr. Wolfgang Borchers BAYER AG, Leverkusen

Dr. Hans-Georg Burckhardt BGRCI, Heidelberg

Dr. Jürgen Franke Consilab Ges. für Anlagensicherheit mbH, Frankfurt

Dr. Markus Gödde BASF SE, Ludwigshafen

Dr. Martin Gosewinkel Inburex Consulting GmbH, Hamm

Dr. Joachim Herrmann DGUV, Berlin

Dr. Lothar Neumeister BGETEM, Nürnberg

Björn Poga BGRCI, Heidelberg

Dr. Volkmar Schröder BAM, Berlin

Dr. Klaus-Werner Stahmer DGUV (IFA), St. Augustin

Dr. Thomas Zimmermann Merck KGaA, Darmstadt

Die Verfasser danken der BGRCI für die finanzielle Unterstützung und den Mitgliedern des Forschungsbeirates für die fachliche Beratung und Begleitung.

Inhaltsverzeichnis

1		Einleitu	ng	1
2		Experim	entelles	2
	2.1	Versu	ıchsaufbau	2
3		Zündten	nperaturen brennbarer Flüssigkeiten in N₂O + Luft -Oxidatorgemisch	ոen . 4
	3.1	Distic	kstoffmonoxid (N₂O)	4
	3.2	Unter	suchte Substanzen	4
	3.3	Ergel	onisse	5
		3.3.1	Zündtemperaturen in reinem Distickstoffmonoxid	5
		3.3.2	Zündversuche in Distickstoffmonoxid+Luft-Gemischen	5
		3.3.2.1	Zündtemperaturen der untersuchten Kohlenwasserstoffe	6
		3.3.2.2	Zündtemperaturen der untersuchten Aldehyde	7
		3.3.2.3	Zündtemperaturen der untersuchten Ketone und Ester	8
		3.3.2.4	Zündtemperatur von 1,4-Dioxan	8
	3.4	Disku	ssion	9
4		Zündten	nperaturen brennbarer Flüssigkeiten in N_2+O_2 -Oxidatorgemischen	12
	4.1	Unter	suchte Substanzen	12
	4.2	Ergel	onisse	13
	4.3	Disku	ssion	13
5		Zusamn	nenfassung	18
	5.1	Zünd	temperaturen in N ₂ O+Luft-Oxidatorgemischen	18
	5.2	Zünd	temperaturen in N ₂ +O ₂ -Oxidatorgemischen	18
6		Literatu	rverzeichnis	20

1 Einleitung

Viele chemische Verfahren, technische Prozesse oder Reinigungsvorgänge erfordern für ihre Durchführung erhöhte Temperaturen. Sind dabei explosionsfähige Gemische vorhanden oder können solche zumindest bei Betriebsstörungen entstehen, stellen vor allem heiße Oberflächen potentielle Zündquellen dar. Unter Normalbedingungen ist die Zündquelle 'heiße Oberfläche' charakterisiert durch die Zündtemperatur, bestimmt nach DIN 51794 [1], IEC 60079-20-1 [2], EN 14522 [3] und im außereuropäischen Raum bestimmt nach ASTM E 659 [4]. Die so bestimmte Zündtemperatur ist Grundlage für die Einteilung der brennbaren Gase und Flüssigkeiten und der explosionsgeschützten Geräte in Temperaturklassen.

Die auf diese Weise bestimmte Zündtemperatur gilt nur, wenn Luft das Oxydationsmittel ist. In der chemischen Industrie treten jedoch oft Gemische brennbarer Dämpfe mit anderen Oxydationsmitteln auf, die wesentlich andere Zündtemperaturen haben können.

Für reinen Sauerstoff als Oxydationsmittel existieren bereits umfangreiche Daten [5, 6, 7, 8, 16]. Bei den in reinem Sauerstoff bestimmten Zündtemperaturen zeigt sich, je nach Stoff, ein sehr unterschiedlicher Effekt: Bei einigen Stoffen nimmt die Zündtemperatur nur geringfügig ab, bei vielen anderen sinkt sie um mehr als 100 K (in Einzelfällen um mehr als 200 K). Von einigen in Luft nicht entzündbaren Substanzen (vor allem stark halogenierte Substanzen wie Chloroform oder einige Anästhetika) kann in reinem Sauerstoff eine Zündtemperatur bestimmt werden.

In anderen Oxydationsmitteln als Luft oder Sauerstoff einschließlich N_2+O_2 -Gemischen mit O_2 -Volumenanteilen zwischen 0,21 und 1, sind bislang nur wenige Zündtemperaturen bestimmt worden. So in Chlor von Gustin [7] und Dokter [8]. Für einige Substanzen wurden Zündtemperaturen in NO_2 von Furno u.a. [17] bestimmt, dagegen gibt es in der Literatur trotz seiner industriellen Bedeutung keine Werte für Zündtemperaturen in Distickstoffmonoxid (Lachgas, N_2O).

Ziel dieses Projektes war es daher

- zum Einen für brennbare Flüssigkeiten aus unterschiedlichen Substanzklassen die Zündtemperaturen in O_2+N_2 -Gemischen mit Sauerstoffanteilen φ_{02} zwischen 21 Vol% und 100 Vol% zu ermitteln und sofern möglich ein Abschätzverfahren für die zu erwartende Zündtemperatur abzuleiten.

und

 zum Anderen, eine Datenbasis zur Beurteilung der Zündgefahren von Brennstoff/Distickstoffmonoxid- bzw. Brennstoff/Distickstoffmonoxid/Luft-Gemischen durch heiße Oberflächen zu erhalten.

2 Experimentelles

2.1 Versuchsaufbau

Der Versuchsaufbau (Abb. 1) erfolgte in Anlehnung an die in EN 14522 [3] bzw. IEC 60079-20- 1 [2] beschriebene Apparatur.

Die Normapparatur wurde erweitert um

- ein fast bis zum Boden des Erlenmeyerkolbens reichendes Rohr ($\emptyset = 3$ mm) um den Erlenmeyerkolben mit dem jeweiligen Oxidator effektiv zu spülen;
- einen konischen Aufsatz, der den Durchmesser der Halsöffnung auf 10 mm verengte, um den Austausch des jeweiligen Oxidators im Erlenmeyerkolben mit der Umgebungsluft zu minimieren,
- ein zusätzliches Thermoelement im Innern des Kolbens, um Informationen über deutliche Temperaturanstiege aufgrund von Reaktionen ohne Lichtemission zu erhalten.

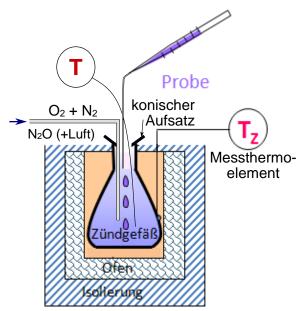


Abb. 1: Modifizierte Normapparatur

Der Oxidator (O₂+N₂, N₂O bzw. N₂O+Luft) wurden mittels kalibrierter Massendurchflussregler (Messunsicherheit: 0,5 %) dosiert bzw. auf die gewünschte Zusammensetzung eingestellt und dosiert. Die in dieser Arbeit angegebenen "O₂-Konzentrationen" stellen stets den Sauerstoffanteil im Oxidatorgemisch O₂+N₂ dar (nicht den Sauerstoffanteil im Brennstoff/ Oxidator-Gemisch).

Das Oxidatorgemisch wurde jeweils über das bis zum Boden des Erlenmeyerkolbens reichende Rohr in das Zündgefäß geleitet. Die Strömungsgeschwindigkeit betrug dabei 2,3 l/min - 3 l/min.

Zu Beginn jedes Versuches wurde der Kolben zunächst mindestens mit dem 7-fachen seines Volumens mit dem gewünschten Oxidator gespült. Nachdem sich die Temperatur im Kolben wieder stabilisiert hatte (nach ca. 20 s) wurde die Flüssigkeit mittels

einer (durch eine Kanüle verlängerten) Pipette in den Erlenmeyerkolben dosiert. Die Temperaturanzeige des Messthermoelements unmittelbar vor Beginn der Probenzugabe wurde als Versuchstemperatur gewertet. Temperatur und dosierte Menge wurden solange verändert, bis die niedrigste Temperatur gefunden war, bei der eine Zündung (mit sichtbarer Flamme) beobachtet wurde.

Eine sichtbare Flamme galt in allen Versuchsreihen als Zündung.

Bei den Versuchsreihen mit N₂O+Luft-Gemischen als Oxidator waren die Zündungen stets heftig und besonders bei höheren Distickstoffmonoxid-Anteilen von einem oft sehr lauten Knall begleitet. (Dadurch erübrigte sich eine Beobachtung des Kolbeninnern über einen Spiegel). Bei Nichtzündung durchlief die durch das Thermoelement im Kolbeninnern angezeigte Temperatur gewöhnlich ein flaches Maximum, danach konnte der Versuch beendet werden.

Bei den Versuchsreihen mit N₂+O₂-Oxidatorgemischen konnten unterhalb der Zündtemperatur häufig durch das im Kolben befindliche Thermoelement Temperaturanstiege beobachtet werden, die nicht mit einer im Hellen sichtbaren Lichterscheinung verbunden waren. Es handelt sich hierbei um kalte Flammen, ein Indiz für starke (Oxidations-)Reaktionen. Es wurden jedoch keine ausführlichen Versuchs-reihen unternommen, um die Kaltflammentemperaturen zu bestimmen.

3 Zündtemperaturen brennbarer Flüssigkeiten in N₂O + Luft - Oxidatorgemischen

3.1 Distickstoffmonoxid (N₂O)

Bei Distickstoffmonoxid ist bei Raumtemperatur ein farbloses Gas, das sowohl endotherm (ΔH_f = +82,1 kJ/mol) als auch endergonisch ist und daher unter starker Wärmeentwicklung in N₂ und O₂ zerfallen kann. Da bei diesem Zerfall Sauerstoff freigesetzt wird, handelt es sich gleichzeitig um ein starkes Oxidationsmittel. Dies wird in verschiedenen sicherheitstechnischen Kenngrößen reflektiert: So sind gegenüber Luft die Explosionsbereiche stark aufgeweitet [9, 10], der Umschlag in eine Detonation erfolgt leichter [18], maximale Explosionsdrücke sowie Druckanstiegsgeschwindigkeiten sind höher [21] und die Grenzspaltweiten sind deutlich niedriger [11]. Andererseits ist die Oxydationsmittelgrenzkonzentration für N₂O bei Stickstoff als Inertgas höher als für Sauerstoff [11]. Der "Sauerstoffäquivalenzkoeffizient" beträgt 0,42 (gegenüber 0,209 für Luft) [12].

N₂O ist jedoch im Vergleich zu anderen Stickoxiden wenig reaktiv. Unter Umgebungsbedingungen kann auch in Anwesenheit starker Zündquellen der Selbstzerfall nicht eingeleitet werden [18]. Erst oberhalb von 575°C [13] setzt die Dissoziation zu N₂ und O₂ ein, die dann auch explosionsartig verlaufen kann. Es ist somit nicht selbstverständlich, dass bei niedrigeren Temperaturen der enthaltene Sauerstoff für die Selbstzündung eines Brennstoff/N₂O -Gemisches zur Verfügung steht. Für die Versuche wurde N₂O mit einer Reinheit von 99,5 % verwendet.

3.2 Untersuchte Substanzen

Es wurden Vertreter der Substanzklassen Kohlenwasserstoffe, Aldehyde, Ether, Ester und Ketone untersucht.

Aufgrund der Neigung des N₂O zum Selbstzerfall (T_{zer} . ca. 575°C [13]) wurden sie nach folgenden Kriterien ausgewählt:

- Substanzen mit hohen Zündtemperaturen (T_{zer} T_z < 200 K): Aceton (Tz: 530°C), o-Xylen (Tz: 530°C), 2,4,4-Trimethylpenten-1 (T_z : 415°C);
- 2 Substanzen mit niedriger Zündtemperatur ($T_{zer} T_z > 300 \text{ K}$): n-Pentanal (T_z : 205°C), n-Hexanal (T_z : 195°C), n-Octanal (T_z : 200°C), n-Decanal (T_z : 195°C), n-Heptan (T_z : 220°C), Octen-1 (T_z : 240°C;)
- Substanzen mit großer Differenz (≥ 80 K) zwischen der Normzündtemperatur und der Kaltflammentemperatur bestimmt in der Normapparatur: n-Butylacetat (*Tz*: 390°C, *TKF*: 290°C), Heptanon-2 (*Tz*: 305°C, *TKF*: 223°C), 1,4-Dioxan (*Tz*: 375°C, *TKF*: 232°C).
- 4 Möglichkeit zu systematischen Messreihen, wenn auch nur in geringem Umfang.

Aufgrund der Auswahlkriterien unterscheiden sich diese Substanzen von denen die in den Messreihen mit N₂+O₂-Oxidatorgemischen untersucht wurden.

3.3 Ergebnisse

3.3.1 Zündtemperaturen in reinem Distickstoffmonoxid

Für alle untersuchten Substanzen konnte bei Temperaturen bis 590°C **in keinem Fall** eine Zündung beobachtet werden. Brennstoff/N₂O-Gemische sind offenbar unterhalb der Zersetzungstemperatur von N₂O nicht selbstentzündungsfähig. Daher wurden bei den weiteren Versuchen N₂O+Luft-Gemische unterschiedlicher quantitativer Zusammensetzung als Oxidator eingesetzt.

3.3.2 Zündversuche in Distickstoffmonoxid+Luft-Gemischen

In Gemischen aus Luft und Distickstoffmonoxid konnten bei allen untersuchten Brennstoffen Zündungen beobachtet werden. Die erhaltenen Zündtemperaturen $T_{z,\phi NO2}$ sind in Tab. 1 zusammengefasst. Die Messunsicherheit ist nicht berücksichtigt, da diese nur für Messungen in Luft gilt. Die Versuchsreihen waren dabei auf Temperaturen unterhalb von ca. 600°C beschränkt, um Verfälschungen durch einen eventuellen Selbstzerfall des N₂O zu vermeiden. (Aus eigenen Versuchsreihen war bekannt, dass reines N₂O im Erlenmeyerkolben bei 600°C noch nicht zum Selbstzerfall angeregt wird).

Tab. 1: $T_{z,\phi NO2}$ in $N_2O+Luft$ -Gemischen unterschiedlicher Zusammensetzung

N ₂ O-Anteil im Oxidator Vol%	0	10	20	25	30	40	50	60	70	80
Substanz						_Ф NO2 С				
n-Heptan	220	260	326	418	430	462	500	530		
2,4,4,- Trimethylpenten-1	415	400			460		520	559		
Octen-1	240	264	267		310	384	448	489	534	
o-Xylen		499		516	529		571			
1,4-Dioxan	375	359		387	406	400	423	439	466	511
n-Pentanal	205	215		218	244		299		492	
n-Hexanal	195	213	219		331	394	475	515	558	
n-Octanal	200	215	218		238	336	471	526	559	
n-Decanal	195	207	364		379	409	450	490	526	556
Aceton	530	563	571							
Pentanon-2		467	485			535	534	556	583	
Heptanon-2	305	427	464		489	546				
Octanon-2		344			433		486	514	547	574
n-Butylacetat	390	413			455		495		557	578

Die Zündtemperaturen lagen mit einer Ausnahme (1,4-Dioxan bei 10% N₂O-Anteil im Oxidatorgemisch) immer höher als die Zündtemperatur der betreffenden Substanz in Luft und stiegen mit zunehmendem N₂O-Anteil im N₂O+Luft-Gemisch monoton an.

Mit zunehmendem N_2O -Anteil (und entsprechend dann niedrigen Anteilen an Luft) verringerte sich gleichzeitig die für eine Zündung notwendige Menge des Brennstoffs. Laut Norm [1, 2, 3] ist der Brennstoff in diskreten Portionen von ca. 25 μ l zuzugeben. Diese Mindestmenge von 25 μ l erwies sich bei hohen N_2O -Anteilen als zu groß. Folglich wurden die brennbaren Komponenten als Tropfen von ca. 10 μ l dosiert. Häufig wurde die Zündung bei der niedrigsten Temperatur bei Zugabe von nur einem Tropfen erzielt.

Die Zündungen waren stets heftiger als Zündungen in Luft unter sonst gleichen Bedingungen, wie das folgende Beispiel zeigt, und mit einem lauten Knall verbunden. Bei Distickstoffmonoxidanteilen über 50 Vol.-% wurde häufig der konische Aufsatz des Erlenmeyerkolbens weggeschleudert

Tab. 2: Vergleich der Heftigkeit der Zündung von Octen-1 bei 479° in Luft und N₂O+Luft

Dosierte Menge Octen-1	maximale Temperaturanstiegs- geschwindigkeit K/s
50 μl Octen-1 bei 479°C in Luft	76
50 μl Octen-1 bei 479°C in Luft+ N ₂ O (1+1)	110

3.3.2.1 Zündtemperaturen der untersuchten Kohlenwasserstoffe

In *Abb. 2* ist die Abhängigkeit der Zündtemperatur der untersuchten Kohlenwasserstoffe vom Distickstoffmonoxidanteil im N₂O+Luft-Gemisch dargestellt.



Abb. 2: Abhängigkeit der Zündtemperatur $T_{z,\varphi N2O}$ der untersuchten Kohlenwasserstoffe vom N_2O -Anteil im Oxidatorgemisch N_2O +Luft

Bei niedrigen N₂O-Anteilen ist der Anstieg der Zündtemperatur bei Substanzen mit niedriger Normzündtemperatur (z.B. n-Heptan) stärker als bei Substanzen, die bereits eine hohe Normzündtemperatur aufweisen (z.B. o-Xylen). Sobald die Zündtemperatur über ca. 400°C liegt, steigt sie jedoch bei allen untersuchten Substanzen in ähnlichem Maße an (nahezu parallele Kurvenabschnitte, die näherungsweise linear verlaufen). Daher konnten für Substanzen mit niedriger Normzündtemperatur noch bei höheren N₂O-Anteilen im N₂O+Luft-Gemisch Zündtemperaturen bestimmt werden verglichen mit Substanzen mit hoher Normzündtemperatur.

3.3.2.2 Zündtemperaturen der untersuchten Aldehyde

Wegen ihrer niedrigen Normzündtemperaturen wurde die Substanzgruppe der Aldehyde systematischer untersucht. Die Ergebnisse sind in Abb. 3 grafisch dargestellt.

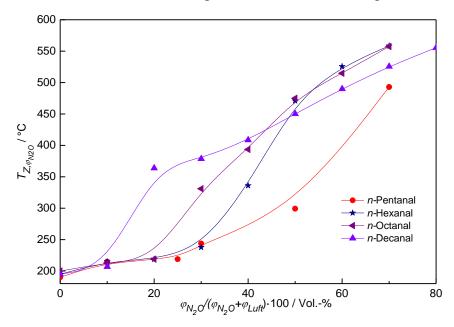


Abb. 4: Abhängigkeit der Zündtemperatur T_{z,oN2O} der untersuchten aliphatischen Aldehyde vom N₂O-Anteil im Oxidatorgemisch N₂O+Luft

Die vier untersuchten Aldehyde besitzen nahezu identische Normzündtemperaturen zwischen 190°C und 200°C, die mit zunehmendem Distickstoffmonoxidanteil im N₂O+Luft-Gemisch zunächst nur langsam ansteigen. Bei höheren N₂O-Anteilen kommt es dann jedoch zu einem stärkeren Anstieg der Zündtemperatur, bevor sie bei sehr hohen N₂O-Anteilen wieder weniger steil ansteigt. Der N₂O-Anteil, bei dem der starke Anstieg einsetzt, ist dabei substanzspezifisch und umso niedriger, je längerkettig der Aldehyd ist: Bei n-Decanal erfolgt der starke Anstieg zwischen 10 Vol.% und 20 Vol.% N₂O im N₂O+Luft-Gemisch, bei n-Pentanal setzt er bei 50 Vol.- % ein und ist bei 70 Vol.-% anscheinend noch nicht ganz abgeschlossen. Dadurch differieren die Zündtemperaturen der vier Substanzen bei 10 Vol.-% N₂O nur um 10 K und bei 70 Vol.-% N₂O um 50 K, im Bereich dazwischen jedoch um teilweise bis zu 170 K.

3.3.2.3 Zündtemperaturen der untersuchten Ketone und Ester

Untersucht wurden n-Butylacetat und drei Ketone mit Normzündtemperaturen zwischen 300°C und 450°C sowie Aceton, das eine hohe Normzündtemperatur aufweist (T_{z,Norm}: 530°C). Aceton konnte deshalb nur bis zu einer N₂O-Konzentration im Oxidator von 20 Vol.-% untersucht werden. Die Ergebnisse sind in Abb. 4 grafisch dargestellt.

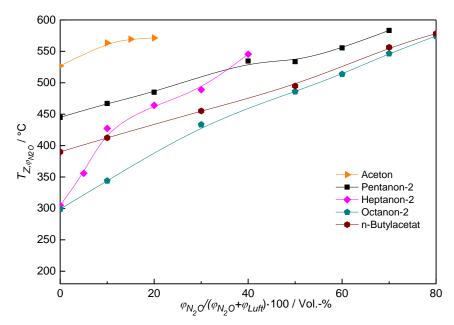


Abb. 5: Abhängigkeit der Zündtemperatur $T_{z,\varphi N20}$ der untersuchten Ketone und Ester vom N_2 O-Anteil im Oxidatorgemisch N_2 O+Luft

Ein Gebiet mit einer besonders starken Distickstoffmonoxidabhängigkeit der Zündtemperatur ist hier nur bei den beiden höhersiedenden Substanzen Heptanon-2 und (andeutungsweise) Octanon-2 zu erkennen. Ansonsten sind die Anstiege nahezu linear.

3.3.2.4 Zündtemperatur von 1,4-Dioxan

Bei 1,4-Dioxan wurde als Besonderheit bei einem N₂O-Anteil von 10 Vol.-% eine geringfügig unter der Normzündtemperatur liegende Zündtemperatur ermittelt. Dies gilt aber nur, wenn man nicht die nach ASTM E 659 [4] gemessene Zündtemperatur heranzieht (Abb. 6). Auch bei höheren Distickstoffmonoxidanteilen ist der Anstieg der Zündtemperatur vergleichsweise gering, so dass bei 80 Vol.-% N₂O im N₂O+Luft-Gemisch die Zündtemperatur erst auf 500°C angestiegen ist.

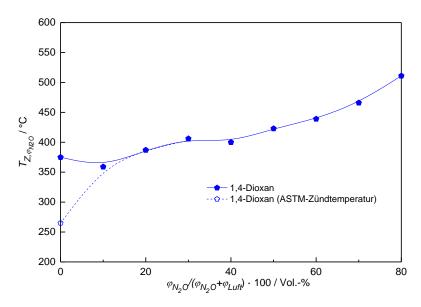


Abb. 6: Abhängigkeit der Zündtemperatur $T_{z,\phi N2O}$ von 1,4–Dioxan vom N_2O -Anteil im Oxidatorgemisch N_2O +Luft

3.4 Diskussion

Das auffälligste Ergebnis der vorliegenden Versuche ist, dass

- in reinem N₂O keine Zündtemperatur unterhalb der Zersetzungstemperatur des N₂O (ca. 575°C) gefunden werden konnte,
- die Zündtemperatur in N₂O+Luft-Gemischen mit zunehmendem Distickstoffmonoxidanteil nicht abnimmt, sondern zunimmt.

Dies steht im Gegensatz zu anderen starken Oxidationsmitteln wie Sauerstoff oder Chlor. Zündtemperaturen in diesen Oxidationsmitteln sind entweder unverändert gegenüber der Normzündtemperatur (in Luft) oder sie liegen - oft erheblich - niedriger.

Der Anstieg der Zündtemperatur mit zunehmendem N₂O-Anteil verläuft jedoch nicht notwendigerweise linear. Bei Substanzen mit niedriger Normzündtemperatur gibt es stets einen Bereich, in dem die Zündtemperatur besonders stark ansteigt, während ihr Anstieg bei höheren oder niedrigeren N₂O-Anteilen geringer ist. Das obere Ende dieses Bereiches ist erreicht, sobald die Zündtemperatur auf ca. 400°C angestiegen ist. Bei weiterer Erhöhung des N₂O-Anteiles steigt die Zündtemperatur nahezu linear mit 2 K bis 4 K pro Vol.-% N₂O im N₂O+Luft-Gemisch. Substanzen, die bereits eine Normzündtemperatur von ca. 400°C oder mehr aufweisen (Aceton, 2,4,4-Trimethylpenten-1, o-Xylen), zeigen über den gesamten untersuchten N₂O-Bereich ein nahezu lineares Verhalten mit nahezu gleicher Temperaturabhängigkeit (*Abb. 7*, Abb. 8).

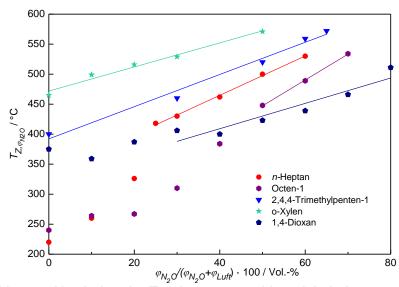


Abb. 7: Lineare Abschnitte der Zündtemperaturabhängigkeit der untersuchten Kohlenwasserstoffe vom №O-Ateil im №O+Luft-Gemisch

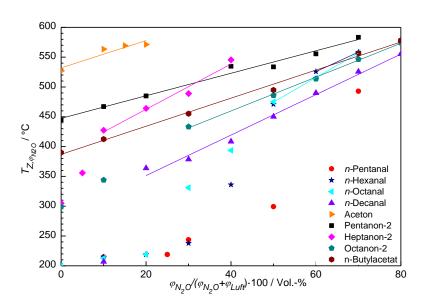


Abb. 8: Lineare Abschnitte der Zündtemperaturabhängigkeit der untersuchten Aldehyde, Ketone und Ester

Brennstoff/Distickstoffmonoxid-Gemische sind in Bezug auf die meisten anderen sicherheitstechnischen Kenngrößen im Vergleich zu Brennstoff/Luft-Gemischen als kritischer einzuschätzen: So sind z. B. die Explosionsbereiche stark aufgeweitet [9, 10] und die Normspaltweite ist deutlich niedriger [11]. In diesen Fällen erfolgt die Zündung des Brennstoff/N₂O-Gemisches jedoch extern durch elektrische Funken, die lokal sowohl den Brennstoff als auch das N₂O unter Radikalbildung zersetzen und damit die für eine Explosion notwendige Kettenverzweigungsreaktion in Gang setzen. Die dabei zusätzlich freiwerdende Bildungswärme des Distickstoffmonoxids begünstigt dann die Flammenfortpflanzung.

Hinsichtlich der Zündtemperatur verhält sich Distickstoffmonoxid im hier untersuchten Temperaturbereich im Gegensatz dazu zunächst wie ein Inertisierungsmittel. Die

Zündung des Gemisches erfolgt ausschließlich aufgrund der Oxidationsreaktion mit dem Sauerstoff der Luft. Bei Temperaturen unter 600° C wird diese durch die Reaktion: $RH + O_2 \rightarrow R^{\bullet} + HO_2^{\bullet}$ [14] eingeleitet. Inertgase wie z. B. Stickstoff erschweren diese Reaktion durch Verdünnung¹. Dies sollte auch für eine Substanz wie N₂O gelten, sofern dieses Molekül nicht in der Lage ist, eine mit Gl. (1) vergleichbare Reaktion einzuleiten. Die erhaltenen Untersuchungsergebnisse legen dies nahe. Wenn jedoch eine Reaktion nach (1) eingeleitet wird, führt offensichtlich die dabei freiwerdende Energie zum Zerfall des N₂O und damit zu einer erhöhten Heftigkeit der Explosion.

Eine notwendige Bedingung für die Selbstzündung in N₂O+Luft-Gemischen ist demzufolge, dass die Sauerstoffgrenzkonzentration (SGK) bei der betreffenden Temperatur nicht unterschritten wird. Eine Überprüfung dieser Annahme ist in Abb. 9 für n- Heptan gezeigt. Aufgrund der Ähnlichkeit der Wärmekapazitäten von CO₂ und N₂O wurde die SGK in Kohlendioxid zum Vergleich herangezogen. Isobutan als Brennstoff wurde gewählt, da hierfür SGKs in Brennstoff/Luft/CO₂-Gemischen bis 400°C bekannt sind [15] und anzunehmen ist, dass die Sauerstoffgrenzkonzentrationen von n-Heptan und Isobutan nicht stark differieren.

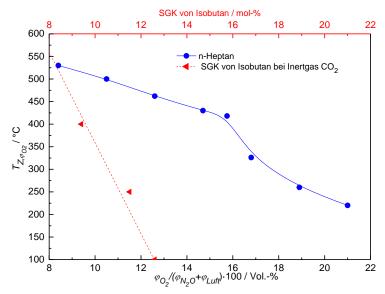


Abb. 9: Vergleich des Sauerstoffanteils in N₂O/Luft-Gemischen bei Selbstzündung von n- Heptan mit der Sauerstoffgrenzkonzentration von Isobutan/Luft für das Inertgas CO₂

Nach dieser Abschätzung findet die Selbstzündung von n-Heptan in N₂O+Luft-Gemischen bei einem Sauerstoffanteil stets oberhalb der Sauerstoffgrenzkonzentration statt. Bei Sauerstoffkonzentrationen unterhalb von 8,4 Vol.-% (N₂O-Anteil mehr als 60 Vol.-%) konnte in Übereinstimmung mit den vorgenannten Überlegungen keine Zündung mehr beobachtet werden.

¹ Über eine Erhöhung der Zündtemperatur durch Inertgaszugabe gibt es bisher kaum Untersuchungen

4 Zündtemperaturen brennbarer Flüssigkeiten in N₂+O₂-Oxidatorgemischen

4.1 Untersuchte Substanzen

Es wurden Vertreter der Substanzgruppen Kohlenwasserstoffe, Aldehyde, Ether, Ester und Ketone untersucht.

Sie wurden nach den folgenden Kriterien ausgewählt:

- 1 Differenz zwischen der Zündtemperatur in Luft und in reinem Sauerstoff < 50 K (n-Heptan, n-Butanal).
- 2 Differenz zwischen der Zündtemperatur in Luft und in reinem Sauerstoff 50 K < ΔTz < 100 K (Ethanol, 1-Propanol, Isobutanol)
- 3 Differenz zwischen der Zündtemperatur in Luft und in reinem Sauerstoff > 100 K (Propylpropionat, Butylbutyrat, Butylacetat, Isopentylacetat, Heptanon-2, Heptanon-3, Heptanon-4, 2,4,4-Trimethylpenten-1).
- 4 Zusätzliches Kriterium zu 2 und 3: vergleichbare Zündtemperatur entweder in Luft (Ethanol, 1-Propanol, Isobutanol, 2,4,4-Trimethylpenten-1) oder in reinem Sauerstoff (Ethanol, Propanol-1, Isobutanol, oder n-Butylbutyrat, n-Butylacetat, Isopentylacetat, n-Propylpropionat sowie Heptanon-2, Heptanon-3, Heptanon-4).

Tab. 3 fasst für die untersuchten Substanzen deren Normzündtemperaturen ($T_{z,Norm}$), die Zündtemperaturen in reinem Sauerstoff ($T_{z,O2}$) und die jeweiligen Differenzen (ΔT_z) zusammen.

Substanz	$T_{z,Norm}$	T _{z,O2}	$\Box T_z$ $(T_{z,Norm} - T_{z,O2})$
n-Heptan	220	213	7
2,4,4-Trimethylpenten-1	415	262	153
n-Butanal	190	179	11
Ethanol	400	323	77
Propanol-1	385	310	75
Isobutanol	430	305	125
n-Butylacetat	390	249	141
Isopentylacetat	380	260	120
n-Propylpropionat	445	254	191
n-Butylbutyrat	395	243	152
Heptanon-2	305	190	115
Heptanon-3	410	195	215
Heptanon-4	420	194	226

Tab. 4: $T_{z,Norm}$ und $T_{z,O2}$ der untersuchten Substanzen

Aufgrund der Auswahlkriterien unterscheiden sich diese Substanzen von denen die in den Messreihen mit N₂O+Luft-Oxidatorgemischen untersucht wurden.

4.2 Ergebnisse

Die Zündtemperatur in reinem Sauerstoff liegt bei allen untersuchten Substanzen unter der Normzündtemperatur in Luft. Insofern ist es nicht überraschend, dass die Zündtemperatur mit zunehmendem Sauerstoffanteil im Oxidator (O₂+N₂-Gemisch) monoton sinkt. In keinen Fall wurden Zündtemperaturen gefunden, die niedriger lagen als die jeweilige Zündtemperatur in reinem Sauerstoff. Bei allen untersuchten Substanzen fiel die Zündtemperatur monoton von der Normzündtemperatur auf die Zündtemperatur in reinem Sauerstoff ab. Die Abnahme der Zündtemperatur verläuft jedoch nicht notwendigerweise linear mit der Zunahme des Sauerstoffvolumenanteiles im Oxidator. Tab. 4 fasst die Ergebnisse zusammen. Zur Berücksichtigung der Meßunsicherheit wurden von den gemessenen Werten in Übereinstimmung mit DIN EN 14522 jeweils 1,5% abgezogen und auf das nächste K gerundet.

Tab. 5: Zündtemperaturen $T_{z,\varphi O2}$ in O_2+N_2 -Gemischen unterschiedlicher Zusammensetzung

Sauerstoffanteil im Oxidator Vol%	20,95	25,0	27,0	30,0	35,0	37,0	40,0	45,0	50,0	60,0	80,0	100
Substanz		T _{z,φO2} °C										
n-Heptan	220								217			213
2,4,4-Trimethylpenten-1	415				337		315		281		268	262
n-Butanal	190								186		180	179
Ethanol	400			392			360		334	327		323
Propanol-1	385			381			363		342	330	313	319
Isobutanol	430	399		374		372	361			322	305	305
n-Butylacetat	390			283	252		248					249
Isopentylacetat	380	318		287	273		264		257			260
Propylpropionat	445			414				333		293		254
n-Butylbutyrat	395	326		248								243
Heptanon-2	305	283	249	218	191				189			190
Heptanon-3	410	379	295	250	205				198			195
Heptanon-4	420	_		333	203		195				_	194

4.3 Diskussion

Die Abbildungen 9, 10 und 11 zeigen die Auswirkung des Sauerstoffanteils im N₂+O₂-Oxidatorgemisch auf die jeweilige Zündtemperatur.

Aufgrund der Abhängigkeit der Zündtemperatur vom O₂-Volumenanteil im Oxidator lassen sich drei Gruppen unterscheiden, die nicht vollständig mit der in 4.1 aufgeführten Einteilung übereinstimmen:

- Für die Substanzen mit ΔT_z < 50 K liegen die experimentell bestimmten Werte über den gesamten untersuchten O₂-Volumenanteil im Oxidatorgemisch auf einer Geraden (Abb. 9).
- Für die Substanzen mit ∆T_z > 50 K liegt deren Zündtemperatur bei O₂-Volumenanteilen zwischen Luft und reinem Sauerstoff deutlich unterhalb der linearen Verbindung zwischen der Normzündtemperatur (20,85 Vol.-% O₂) und der Zündtemperatur in 100 Vol.-% O₂.
 - Bei einigen dieser Substanzen (Ethanol, 1-Propanol, 2-Methyl-1-propanol, Propylpropionat, 2,2,4-Trimethylpenten-1) fällt die Zündtemperatur allmählich und erreicht den Wert in reinem Sauerstoff bei ungefähr 80 Vol.-% O₂ im N₂+O₂-Oxidatorgemisch (Abb. 10).
 - ΔT_z dieser Substanzen beträgt zwischen 70 K und 190 K.
 - Andere Substanzen (n-Butylacetat, n-Butylbutyrat, 3-Methylbutylacetat, Heptanon-2, Heptanon-3, Heptanon-4) –ohne Ausnahme Ester und Ketone– zeigen einen steilen Abfall der Zündtemperatur, wobei die Zündtemperatur in reinem Sauerstoff schon bei 30 Vol.-% bis 40 Vol.-% O₂ in N₂+O₂-Oxidatorgemisch erreicht wird (Abb. 11).

 ΔT_z dieser Substanzen ist immer höher als 140 K.

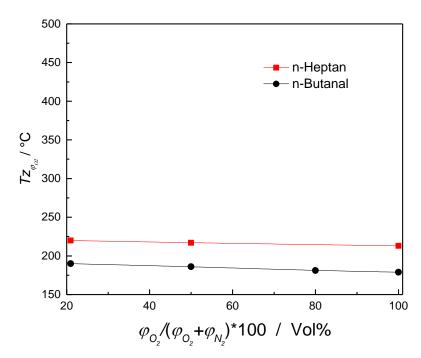
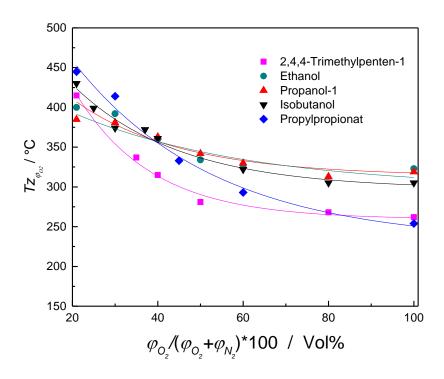
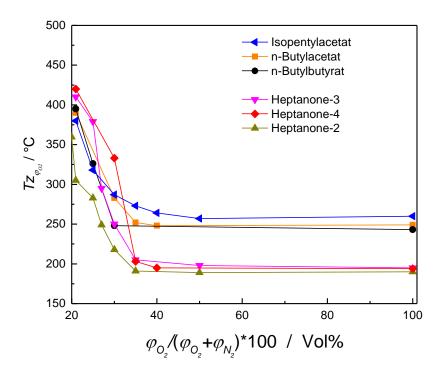




Abb. 9: Substanzen bei denen $T_{z,\varphi O2}$ mit zunehmendem Sauerstoffvolumenanteil bis $\varphi_{O2}=100$ Vol.-% linear abnimmt; $\Delta T_z < 50$ K

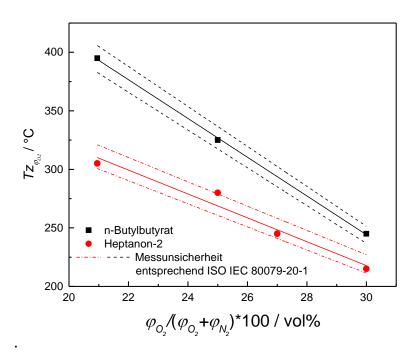

Abb.10: Substanzen bei denen $T_{z,\varphi O2}$ mit zunehmendem Sauerstoffvolumenanteil allmählich abnimmt; 70 K $< \Delta T_z <$ 190 K

Abb. 11: Substanzen bei denen $T_{z,\varphi O2}$ mit zunehmendem φ_{O2} steil abfällt; $\Delta T_z > 140~{\rm K}$

Folglich ist die Differenz der Zündtemperaturen in reinem Sauerstoff und in Luft nicht das alleinige Kriterium um vorherzusagen wie die Zündtemperatur mit zunehmendem Sauerstoffanteil im N_2 +O₂-Oxidatorgemisch sinkt.

Bei den Substanzen, deren Zündtemperatur steil abfällt, kann dieser Verlauf durch eine Gerade zwischen 20,95 Vol.-% und 35 Vol.-% O₂ wiedergegeben werden. Der Regressionskoeffizient beträgt mindestens 0,90 und alle experimentellen Daten liegen innerhalb einer Bandbreite die der Messunsicherheit nach ISO IEC 80079-20-1 [19] (3 % rel.) entspricht (Abb. 12 zeigt Beispiele).

Abb.12: Lineare Abschätzung von T_{z,φO2} bei den Substanzen die einen steilen Abfall der Zündtemperatur mit zunehmendem Sauerstoffvolumenanteil im Oxidatorgemisch zeigen (Beispiele)

Dadurch können Zündtemperaturen bei Sauerstoffanteilen im N_2+O_2 -Oxidatorgemisch zwischen 20,85 Vol.-% und 35 Vol.-% mit einer linearen Korrelation abgeschätzt werden, wenn man die Zündtemperatur bei 30 Vol.-% O_2 gleich der Zündtemperatur in reinem Sauerstoff setzt. Die so abgeschätzten $T_{Z,\varphi O2}$ liegen in allen Fällen auf der sicheren Seite, wenn die Messunsicherheit nach ISO IEC 80079-20-1 von 3% [19] berücksichtigt wird (Abb. 14). Für höhere Sauerstoffanteile ist die Zündtemperatur praktisch mit der Zündtemperatur in reinem Sauerstoff identisch.

Eine Extrapolation zu Sauerstoffanteilen niedriger als der der Luft ergibt Werte die deutlich unterhalb der experimentell bestimmten Zündtemperaturen liegen (Beispiel in Tabelle 5).

Tab. 5. Durch lineare Extrapolation abgeschätzte und experimentell bestimmte $T_{z,\varphi O2}$ von Heptanon-2 in N₂+O₂-Oxidatorgemischen mit φ_{O2} < 20.95 vol%.

φ _{O2} (vol%)	$T_{z,\varphi O2}$ experimental (°C)	T _{z,φO2} abgeschätzt (°C)
18	400	349
20	348	321

 $T_{z,\varphi O2}$ der Substanzen, die einen allmählichen Abfall zeigen können abgeschätzt werden mittels eines Polynoms 2. Ordnung dass durch die Normzündtemperatur läuft und als Minimum die Zündtemperatur in reinem Sauerstoff bei 70 Vol.-% O₂ hat. Für Sauerstoffvolumenanteile über 70 Vol.-% ist dann auch hier die Zündtemperatur in reinem Sauerstoff heranzuziehen.

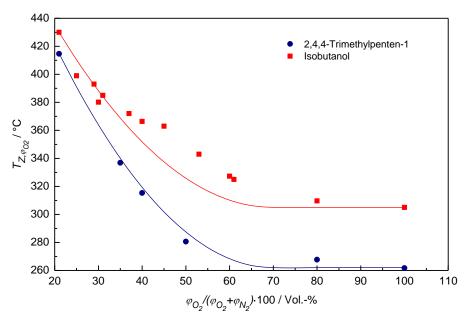


Abb. 13: Abschätzung von $T_{z,\varphi02}$ mit Hilfe eines Polynoms 2. Ordnung bei den Substanzen die einen allmählichen Abfall der Zündtemperatur mit zunehmendem Sauerstoffvolumenanteil im Oxidatorgemisch zeigen (Beispiele)

Die so abgeschätzten Zündtemperaturen liegen in allen Fällen auf der sicheren Seite, wenn die Messunsicherheit nach ISO IEC 80079-20-1 [19] von 3% berücksichtigt wird (Abb. 14).

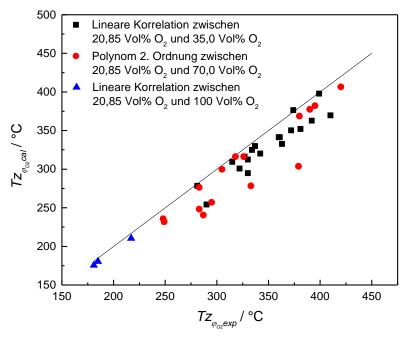


Abb. 14: Vergleich experimentell bestimmter und abgeschätzter Zündtemperaturen Alle untersuchten Substanzen, die den allmählichen Abfall zeigen weisen keine Kohlenstoffketten mit mehr als 2 CH₂-Gruppen auf. Wie bekannt, sinkt die notwendige

Dissoziationsenergie für den ersten Schritt der Oxidationsreaktion – Abstraktion eines H-Radikals – wenn die Möglichkeit zur Bildung sekundärer Alkylradikale steigt [20]. Mit drei zusammenhängenden CH₂-Gruppen ist die Bildung von Hydroperoxid durch intramolekulare Abstraktion eines H-Atoms möglich. Dadurch erhöht sich die Reaktionsgeschwindigkeit aufgrund sterischer Vorteile und als Konsequenz könnte die Zündtemperatur in reinem Sauerstoff bei niedrigeren Sauerstoffanteilen im N₂+O₂-Oxidatorgemisch erreicht werden als bei Substanzen die weniger als drei zusammenhängende CH₂-Gruppen aufweisen.

Es sind jedoch weitere Untersuchungen notwendig um diese Annahme zu untermauern.

5 Zusammenfassung

5.1 Zündtemperaturen in N₂O+Luft-Oxidatorgemischen

In der vorliegenden Arbeit wurde für zehn organische Substanzen ihre jeweilige Zündtemperatur in Distickstoffmonoxid+Luft-Gemischen mit unterschiedlichem N₂O-Volumenanteil bestimmt.

Dabei wurden folgende Ergebnisse erzielt:

- In reinem Distickstoffmonoxid konnten keine Zündungen bis 590°C beobachtet werden.
- Die Zündtemperatur aller untersuchten Substanzen steigt mit zunehmendem N₂O-Volumenanteil an und erreicht spätestens bei einem Distickstoffmonoxidanteil im N₂O+Luft-Gemisch von 80 Vol.-% nahezu 600°C.
- Mit zunehmendem N₂O-Anteil im Oxidator nimmt die Heftigkeit der Zündungen zu.
- Die Beobachtungen k\u00f6nnen erkl\u00e4rt werden durch die Annahme, dass die Initiierung der Z\u00fcndung nur mit dem Sauerstoffanteil des N₂O+Luft-Gemisches erfolgt und das Distickstoffmonoxid erst in Folge dessen zum Selbstzerfall angeregt wird.

5.2 Zündtemperaturen in N₂ +O₂-Oxidatorgemischen

Für 13 Substanzen wurde der Einfluß des Sauerstoffanteils im N₂+O₂-Oxidatorgemisches auf die Zündtemperatur experimentell bestimmt.

Dabei wurden folgende Ergebnisse erzielt:

— In keinem Fall konnte bei O₂-Volumenanteilen im Oxidatorgemisch zwischen Luft und reinem Sauerstoff eine Zündtemperatur bestimmt werden, die niedriger liegt als die Zündtemperatur in reinem Sauerstoff.

- Die Differenz der Zündtemperaturen ist nicht das alleinige Kriterium um vorherzusagen wie die Zündtemperatur mit zunehmendem Sauerstoffanteil im Oxidatorgemisch auf den Wert in reinem Sauerstoff sinkt.
- Nur bei Substanzen, deren Differenz zwischen der Normzündtemperatur und der Zündtemperatur in reinem Sauerstoff gering (< 50K) ist, ist eine lineare Interpolation über den ganzen Sauerstoffbereich (20,85 Vol.-% bis 100 Vol.-%) möglich.
- Für Substanzen deren Differenz zwischen der Normzündtemperatur und der Zündtemperatur in reinem Sauerstoff > 50 K ist, führt eine solche Interpolation zu Ergebnissen die auf der unsicheren Seite liegen.
- Bei einem Teil dieser Substanzen fällt die Zündtemperatur allmählich ab, wobei die Zündtemperatur in reinem Sauerstoff bei einem O₂-Volumenanteil im Oxidatorgemisch von ca. 70 Vol.-% erreicht wird. Beschreibt man diesen Verlauf durch ein Polynom 2. Ordnung mit dem Minimum der Zündtemperatur in reinem Sauerstoff bei 70 Vol.-% O₂ im Oxidatorgemisch erhält man Werte, die auf der sicheren Seite liegen. Solche Substanzen haben weniger als drei zusammenhängenden CH₂-Gruppen.
- Bei dem anderen Teil dieser Substanzen fällt die Zündtemperatur steil ab und erreicht die Zündtemperatur in reinem Sauerstoff bei einem O₂-Volumenanteil im Oxidatorgemisch bei ca. 30 Vol.-%. Der steile Abfall kann durch eine lineare Korrelation beschrieben werden. Solche Substanzen haben wenigstens drei zusammenhängende CH₂-Gruppen.

6 Literaturverzeichnis

- [1] DIN 51794: Prüfung von Mineralölkohlenwasserstoffen Bestimmung der Zündtemperatur, 2003
- [2] IEC 60079: Explosive atmospheres part 20-1: Material Characteristics for Gas and Vapour Classification Test Methods and Data; 2010
- [3] DIN EN 14522: Bestimmung der Zündtemperatur von Gasen und Dämpfen; 2003
- [4] ASTM E 659: Standard Test Method for Autoignition Temperature of Liquid Chemicals; 2005
- [5] BAM-Jahresberichte 1974 1977: Zündtemperaturen in Sauerstoff bei Normaldruck
- [6] P. Rettig: Zündtemperaturen brennbarer Flüssigkeiten in Sauerstoff; Bachelorarbeit, Otto-von-Guericke-Universität Magdeburg 2012
- [7] J.L. Gustin: Safety of Chlorine Production and Chlorination Processes; Chem. Health Safety 12(2005), 5
- [8] T. Dokter: Fire and Explosion Hazards of Chlorine-Containing Systems; J. Haz. Mat. 10(1985), 73
- [9] Y. Koshiba, T. Takigawa, Y. Matsuoka, H. Ohtani: Explosion Characteristics of Flammable Organic Vapors in Nitrous Oxide Atmosphere; J. Haz. Mat. 183(2010), 746
- [10] D. Conrad: Bestimmung der Explosionsgrenzen einiger Gase in Mischung mit Distickstoffoxid; BAM Jahresbericht 1986, 92
- [11] T. Meye, E. Brandes, M. Höding, S. Busse: Safety Characteristics at Non-Atmospheric Conditions Oxidizers other than Air; Proc. 9th Int. Symp. Haz. Prev. Mitigation Ind. Expl., Cracow 2012
- [12] V. Schroeder, B. Machrodt and S. Dietlen: Determination of Oxidizing Ability of Gases and Gas Mixtures; in "Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, 9th Vol.", ASTM STP 1395; T. A: Steinberg, H. D: Beeson and B.E. Newton, eds., American Society for Testing and Materials, West Conshohocken, Pa., 2000
- [13] Linde AG: EG-Sicherheitsdatenblatt Distickstoffmonoxid, SDB Nr. 8330, Version 1.3, 2009
- [14] H. Steen (Hrsg.): Handbuch des Explosionsschutzes, Wiley-VCH 2000, Kap. 3.2
- [15] J. Stickling: Experimentelle und theoretische Bestimmung des Inertgaseinflusses auf die Explosionsgrenzen organischer Verbindungen; Abschlußbericht d. Forschungsvorhabens AiF 10144 d. Arbeitsgemeinschaft industrieller Forschungseinrichtungen, Köln 1997
- [16] Datenbank CHEMSAFE, 2016
- [17] A.L. Furno, A.C. Imhof and J.M. Kuchta: Effect of Pressure and Oxidant Concentration on Autoignition Temperatures of Selected Combustibles in Various Oxygen and Nitrogen Tetroxide Atmospheres, J. Chem. Eng. Data 13(1968), 243
- [18] Michal Gula: Explosionstechnische Charakterisierung chemisch instabiler Gase; Dissertation, TU Berlin 2010, http://dx.doi.org/10.14279/depositonce-2395

- [19] ISO/IEC 80079-20-1, (2017). Explosive atmospheres Part 20-1: Material characteristics for gas and vapour classification Test methods and data. IEC, Genf.
- [20] H. Liang and T. Tanaka: Evaluating the Arrhenius Parameters for the Autooxidation of Organic Compounds, Ind.Eng.Chem.Res. 27(1988), 2237
- [21] D. Razus, M. Mitu, V. Giurcan and D. Oancea: Propagation indices of methane-nitrous oxide flames in the presence of inert additives J. Loss Prev. Proc. Ind. Vol. 49, part B (2017), 418-426

Die Physikalisch-Technische Bundesanstalt, das nationale Metrologieinstitut, ist eine wissenschaftlich-technische Bundesoberbehörde im Geschäftsbereich des Bundesministeriums für Wirtschaft und Energie.

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Nationales Metrologieinstitut

Bundesallee 100 38116 Braunschweig

Presse- und Öffentlichkeitsarbeit

Telefon: (0531) 592-93 21 Fax: (0531) 592-30 08 E-Mail: presse@ptb.de

www.ptb.de

Vertrieb:

Fachverlag NW in der Carl Schünemann Verlag GmbH

Zweite Schlachtpforte 7 28195 Bremen

Telefon: (04 21) 369 03-0 Fax: (04 21) 369 03-63 www.schuenemann-verlag.de