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Zusammenfassung

Diese Dissertation behandelt die Analyse von Messungen der Lichtstreuung an roten
Blutzellen (RBZs) und künstlichen Mikropartikeln um ihre optischen und geometri-
schen Eigenschaften zu bestimmen. Die Lichtstreueigenschaften von Partikeln und
Zellen werden durch deren Form und komplexen Brechungsindex (BI) bestimmt.
RBZs haben minimale innere Struktur und sind ein beliebter Gegenstand der Grund-
lagenforschung, sie werden aber auch routinemäßig mit optischen Methoden in der
Laboratoriumsmedizin untersucht. Literaturwerte für den Realteil des BI („reel-
ler BI“) von RBZs und des sauerstofftransportierenden Blutfarbstoffes Hämoglobin
(Hb) streuen stark, was eine quantitative Analyse von Lichtstreudaten behindert.

Hier werden zwei komplementäre Ansätze zur Bestimmung des reellen BI von
RBZs und Hb-Lösungen präsentiert: Zuerst wird der reelle BI im nahen Ultraviolett
(UV), Sichtbaren und nahen Infrarot aus dem bekannten Absorptionsspektrum von
Hb-Lösungen mittels Kramers-Kronig-Beziehungen (KK) bestimmt. Dazu wird das
Absorptionsspektrum im tiefen UV mit einem Modell für das Peptid-Rückgrat des
Metalloproteins Hb ergänzt. Man erhält so eine genaue Beschreibung der Dispersi-
onsmerkmale, aber zur Festlegung der absoluten Skala werden zusätzliche Daten für
den reellen BI benötigt, z. B. aus der Literatur. Der zweite Ansatz besteht in einer
indirekten, gleichzeitigen Bestimmung von Größe und BI von intakten aufgekugel-
ten RBZs in Suspension aus Messungen ihrer Extinktionsspektren. Diese Spektren
beschreiben, wie viel Licht eine Partikel- oder Zellsuspension aus einem einfallenden
Strahl durch Streuung und Absorption entfernt. Sie werden durch die Lösung eines
inversen Problems analysiert, wobei das direkte Problem darin besteht, den mitt-
leren Extinktionssquerschnitt eines Zellensembles mit bekannter Größenverteilung
und optischen Eigenschaften mittels der Mie-Lösung für die Streuung an einer Kugel
zu berechnen. Das inverse Problem wird durch eine geeignete Darstellung des reellen
BI mit wenigen Parametern und nichtlinearer Optimierung gelöst. Nach Demons-
tration der Methode mit synthetischen Polystyrol-Mikrokugeln wird das konzentra-
tionsspezifische Inkrement des reellen BI von oxygenierten aufgekugelten RBZs für
Wellenlängen zwischen 290 nm und 1100 nm bestimmt. Der BI anderer Hb-Varianten
kann nun in Kombination mit den o. g. KK-Beziehungen genau bestimmt werden.

Die so erhaltenen BI-Daten werde verwendet um die Zusammensetzung von
künstlichen Hämoglobin-Mikropartikeln (HbMP) zu beurteilen, die möglicherwei-
se RBZ-Konzentrate in der Transfusionsmedizin ersetzen könnten. Die Zulassung zu
klinischen Studien erfordert eine Charakterisierung des Gehalts an verschiedenen
Hb-Varianten, insbesondere von oxygeniertem Hb, desoxygeniertem Hb und nicht-
funktionalem Methämoglobin. Dies wird durch Vergleich zwischen gemessenen und
berechneten Extinktionsspektren für variable Zusammensetzung erreicht.

Abschließend wird ein Lichtstreuproblem für RBZs in der optischen Durchfluss-
zytometrie behandelt. Zur Interpretation gemessener ein- und zweidimensionaler Hi-
stogramme des Vorwärtsstreuquerschnitts (VSQ) von einzelnen nativen RBZs wird
die Lichtstreuung mittels diskreter Dipolapproximation numerisch simuliert. Ein ein-
faches, gedehntes RBZ-Formmodell wird aufgestellt und durch Vergleich mit Mess-
daten wird demonstriert, dass bimodale VSQ-Histogramme aufgrund einer Kombi-
nation von zufälliger Orientierung der RBZs zum Laser und Deformation durch die
starken Geschwindigkeitsgradienten im Hüllstrom des Zytometers auftreten.



Abstract

This thesis deals with the analysis of measurements of the scattering of light by red
blood cells (RBCs) and artificial microparticles in order to determine their optical
and geometrical properties. The light scattering properties of a particle or cell are
determined by its shape and its complex refractive index (RI). RBCs have minimal
internal structure and are a popular subject of fundamental research, but are also
routinely examined with optical methods in laboratory medicine. Literature values
for the real part of the RI (“real RI”) of RBCs and the oxygen-transport blood
pigment hemoglobin (Hb) scatter widely, which hampers the quantitative analysis
of light scattering data.

In this thesis, two complementary approaches are presented to determine the
real RI of RBCs and Hb solutions: Firstly, the real RI in the near ultraviolet (UV),
visible and near infrared region is determined from the well-known absorption spec-
trum of Hb solutions by Kramers-Kronig (KK) relations. To this end, the absorption
spectrum is supplemented by a deep UV model for the peptide backbone of the met-
alloprotein Hb. This yields an accurate description of the dispersion features, but
requires additional data for the real RI, e. g., from literature, to set the absolute
scale. The second approach consists in an indirect, simultaneous determination of
the size and RI of intact sphered RBCs in suspension from measurements of extinc-
tion spectra. These spectra describe how much light a particle or cell suspension
removes from an incident beam due to scattering and absorption. They are ana-
lyzed by solving an inverse problem, where the direct problem consists in computing
the average extinction cross section of a cell ensemble with known size distribution
and optical properties using the Mie solution for light scattering by a sphere. The
inverse problem is solved by a suitable few-parameter representation of the real RI
and nonlinear optimization. After a demonstration of the method with synthetic
polystyrene microbeads, it is applied to determine the Hb-concentration-specific in-
crement of the real RI of oxygenated sphered RBCs for wavelengths between 290 nm
and 1100 nm. The RI of other Hb variants can then be accurately determined in
combination with the above-mentioned KK relations.

The RI data thus obtained are employed to assess the composition of artifi-
cial hemoglobin microparticles (HbMP), which might replace RBC concentrates in
transfusion medicine. For the approval of clinical studies, characterization of their
content of different Hb variants is required, in particular of oxygenated Hb, deoxy-
genated Hb and non-functional methemoglobin. This is achieved by a comparison
between measured and computed extinction spectra for variable composition

Lastly, a light scattering problem for RBCs in optical flow cytometry is consid-
ered. To interpret measured one- and two-dimensional histograms of the forward
scattering cross section (FSC) of single native RBCs, the light scattering processes
is numerically simulated with the discrete dipole approximation. A simple elon-
gated RBC shape model is proposed and by comparison with measurement data, it
is demonstrated that bimodal histograms FSC occur because of a combination of
random orientation of the RBCs to the laser and deformation due to strong velocity
gradients of the sheath flow in the flow cytometer.
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Chapter 1

Introduction

Optical methods for the examination of biological cells and tissues play a major
role in both, fundamental research and medical diagnostics. These methods in-
clude various microscopy techniques, optical flow cytometry [1,2] and spectroscopic
measurements [3] but also techniques for single cell manipulation like optical trap-
ping and stretching [4]. Many modern optical measurement and imaging methods,
including super-resolution microscopy [5, 6] and many applications of optical flow
cytometry [2], rely on fluorescence for a biomolecular analysis of cells, which in
most cases requires genetic encoding of fluorescent proteins in organisms or labeling
of cells with fluorescent dyes [5,6]. On the other hand, label-free methods are being
developed which aim to eliminate the need for such manipulations of the cells or tis-
sues at least for some applications in research and diagnostics by using the physical
properties of the cells for contrast instead. These include Raman spectroscopy [3,7],
holographic microscopy [8, 9] quantitative phase microscopy [10–12] and optical to-
mography [13–15] as well as label-free flow cytometry based on light scattering [1,2].
Of these optical measurement methods, many fall within the framework of linear
optics and elastic light scattering, in which case they rely on the complex refrac-
tive index (RI) of the cells and tissues as their source of contrast. This thesis is
concerned with the light scattering properties of red blood cells (RBCs), which
are among the simplest of animal cells with regard to their structure [16]. These
oxygen-transporting cells make up the majority of blood cells in mammals, includ-
ing humans [16], and are thus relatively easily available for fundamental research
in biophysics. But they are also very important for medical diagnostics and are
routinely examined as part of the complete blood count in laboratory medicine [17].
This thesis deals with the determination of the spectral RI of RBCs and the analysis
of measurements of light scattering by RBCs as well as artificial microparticles.

1.1 Blood and red blood cells
Blood is composed of cells suspended in a liquid. In humans, the cellular con-
stituents typically make up about 45% of the blood volume and the liquid, called
blood plasma makes up the remaining 55%. The cellular portion of the blood is
composed of erythrocytes or red blood cells (RBCs), leukocytes or white blood cells
(WBCs) and thrombocytes or platelets. To give an impression, Fig. 1.1 (a) shows
a scanning electron microscope (SEM) image of three different blood cells. WBCs
can be further differentiated into monocytes, lymphocytes and different types of
granulocytes. RBCs are the most numerous type of blood cell, 100 to 200 times as
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(a) (b)

Figure 1.1: (a) SEM image of a RBC (left), a platelet (middle) and a WBC (right).†
(b) Structure of a mature RBC.
† https://commons.wikimedia.org/wiki/File:Red_White_Blood_cells.jpg
By Electron Microscopy Facility at The National Cancer Institute at Frederick (NCI-Frederick)
[Public domain], via Wikimedia Commons.

numerous as platelets and 500 to 1000 times as numerous as WBCs. [16]
Compared to other animal cells, mammalian RBCs have a particularly simple

structure: They consist of a thin elastic membrane enclosing a liquid cytoplasm
as illustrated in Fig. 1.1 (b). The membrane is composed of a lipid bilayer (outer
membrane) with a thickness of the order of 10 nm [18], which on its inside is con-
nected to a network of spectrin filaments forming the inner membrane [19]. In
total, the membrane is not thicker than 100 nm [20]. In contrast to most other
cells, mature erythrocytes have no cytoplasmic structures or organelles, i. e., they
have neither a nucleus nor mitochondria [16,17]. Their cytoplasm consists solely of
a highly concentrated solution of the oxygen-transport metalloprotein hemoglobin
(Hb) which dominates their optical properties because it amounts to about 98% of
the RBCs’ solids [21]. Typical mean intracellular Hb concentrations for healthy per-
sons are 320 g L−1 to 360 g L−1 [17]. In the absence of external forces, RBCs have a
biconcave-disc-like shape (discocytes) with 7 µm–8 µm diameter [17] and 2.5 µm typ-
ical thickness [16]. Typical mean volumes of RBCs range between 80 fL and 100 fL
(1 fL = 1 µm3) [17]. Like their Hb content, the unique shape of RBCs and their
high deformability are related to their function of transporting oxygen to tissues by
passing through small capillaries. [17]

1.2 Blood cell analysis and flow cytometry
Analysis of blood samples for medical diagnostics includes the determination of
the parameters of the so called complete blood count (CBC), one of the most fre-
quently performed measurements in laboratory medicine. Besides the concentrations
of RBCs, WBCs and platelets, clinical parameters of the CBC include the mean cor-
puscular Hb concentration (MCHC), mean corpuscular volume (MCV) and the red
cell distribution width (RDW) of a blood sample, that is, the coefficient of variation
(relative standard deviation) of the volume of RBCs. Today, the method routinely
used for automated analysis of blood cells and determination of CBCs is flow cy-
tometry [17]. In a flow cytometer, cells or particles pass through the measuring
apparatus in a fluid stream. Most modern devices make use of hydrodynamic focus-
ing by means of a sheath flow to confine the sample fluid containing the cells near

https://commons.wikimedia.org/wiki/File:Red_White_Blood_cells.jpg


1.3. COMPLEX REFRACTIVE INDEX 3

the centerline of a laminarly flowing stream of cell-free sheath fluid. Thus cells or
particles move downstream in a single file, where they are measured one by one [2].
Commonly used measurement principles include optical flow cytometry, based on
light scattering and fluorescence emissions of (chemically stained) cells as well as
impedance-based flow cytometers where cell sizes are determined based on changes
of the electrical impedance as single cells pass a narrow orifice between two elec-
trodes. Compared to the analysis of cells under a light microscope, flow cytometers
allow for much higher throughput in the range of 1000 events per second. Their
use is by far not restricted to hematology for the analysis of blood cells, but also
widespread in other fields like immunology, cancer research, marine biology or even
food science [2].

In automated hematology analyzers, light scattering by single RBCs is used to
determine their volume and hemoglobin content. To allow for a relatively simple
data analysis, the RBCs are isovolumetrically sphered by means of a special sheath
fluid containing a chemical reagent– a method that was established more than three
decades ago [22,23]. Of course, a detailed knowledge of the optical properties of the
cells is required to analyze such measurements.

1.3 Complex refractive index
As discussed above, optical measurement techniques for biological cells and tissues
besides optical flow cytometry include microscopy and spectroscopic techniques. In
most label-free measurement methods, such as holographic microscopy [8, 9] quan-
titative phase microscopy [10–12], optical tomography [13–15] or absorption spec-
troscopy [3] the contrast is provided by the complex RI of the cells, which describes
their interaction with light. The complex RI of a cell depends on the concentrations
and spatial distribution of a variety of intracellular molecules, correlated to the
corresponding biological function. For RBCs, precise knowledge of the dependence
between RI and intracellular Hb concentration is required for simulations [24–26]
and analysis [22, 27–29] of light scattering by single RBCs. Furthermore it is re-
quired to determine the intracellular Hb concentration from phase and holographic
microscopy [8, 30, 31], to understand the interaction of light with whole blood or
blood-perfused tissues for purposes of clinical diagnostics [32, 33], or to visualize
the appearance of tissues in computer graphics [34]. In this section, we will briefly
outline the concept of a complex RI and its significance for light scattering problems.

Consider a homogeneous medium with complex refractive index (RI)

n = n+ iκ. (1.1)

Throughout this thesis, we will use the term “real RI” equivalent to “real part of the
RI” to refer to n, and likewise the term “imaginary RI” to refer to the imaginary
part κ. A plane electromagnetic wave with an angular frequency ω propagating
along the z direction through this medium is given by

E(z, t) = E0 eiknz−iωt = E0 ei 2π
λ
nz−iωt e− 2π

λ
κz, (1.2)

where t is the time and E is the amplitude of the electric field. E0 is the amplitude
for t = 0 at z = 0, k = ω/c0 is the vacuum wavevector and λ = 2πc0/ω the vacuum
wavelength with c0 the speed of light in vacuum. I. e., the real RI n describes
the change of phase velocity of the wave compared to vacuum. For sufficiently
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transparent media, for which κ ≪ n, the real RI is thus the cause of refraction of
light waves at macroscopic interfaces. For example, if a plane wave propagating
from medium 1 with RI n1 into medium 2 with RI n2 through a plane interface at
an angle ϑ1, the wave is refracted and exits the interface at an angle ϑ2, where the
relation between the two is given by the well-known Snell’s law

n1 sinϑ1 = n2 sinϑ2. (1.3)

As is evident from Eq. (1.2), the imaginary part of the RI κ describes an expo-
nential decay of a plane wave propagating through a homogeneous medium. Instead
of the electric field E, this attenuation can be expressed in terms of the intensity of
light I ∝ |E|2 as

I(z) = I0 e−µa z (1.4)
with µa being the absorption coefficient and I0 the intensity at z = 0. For a solution
of an absorbing solute of molar concentration cM (mass concentration c) one also
often writes

I(z) = I0 10−εM cM z = I0 10−ε c z, (1.5)
which is the Beer-Lambert law with the molar attenuation coefficient εM (mass
attenuation coefficient ε). Here, one usually thinks of z being the thickness of
a plane-parallel sample (e. g., a cuvette filled with liquid) and I0 is the intensity
transmitted through the sample in the absence of the solute. Hence for a solution
in a non-absorbing solvent, the conversion rule between the quantities is

κ = µa λ

4π = ln 10 εM c λ

4πM , (1.6)

where M is the molar mass of the solute.
As outlined above, the complex RI determines the behavior of light at macro-

scopic interfaces between any two materials as well as its propagation in bulk media.
Consequently, a variety of experimental methods exist for measuring the real RI of
a material based on the refraction or reflection of light at a planar interface between
the sample and some other known material, such as air, water or an optical glass.
Transmittance measurements are used for the determination of the imaginary RI.
Such approaches are feasible for materials that can exhibit macroscopically large
defined interfaces, such as bulk liquids, homogeneous solids or thin films and permit
RI measurements with high accuracy. For example, RI data for optical glasses are
routinely specified to five decimal places [35]. Obviously such measurement tech-
niques cannot be applied to biological cells or microparticles that have a size of just
a couple of wavelengths (of visible light). One may even wonder, whether the con-
cept of refractive index makes sense for such small particles at all. For RBCs, this
question is particularly easy to answer, as each individual cell can be described by a
single complex RI: The thickness of its membrane, at least for the lipid bilayer part,
is very small compared to the vacuum wavelength of visible light (400 nm–800 nm)
and the optical contrast of the membrane’s material is moderate if the RBC is sus-
pended in an aqueous solution. Thus one can usually neglect the membrane entirely
in optical modeling. Even large biomolecules, such as Hb or other proteins, have
sizes that are rather small (around 5 nm for a Hb molecule) on the scale of the light
wavelength. Hence the liquid cytoplasm of RBCs, consisting mainly of a Hb solution
can be assumed to be optically homogeneous and the RBC can be described as a
dielectric particle defined by its shape and complex RI. The interaction with light
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(or scattering thereof) of such a homogeneous microparticle with complex RI ns,
embedded in a host medium with RI nm is governed by the Helmholtz equation for
the electric field E

∆E(r) + n2(r) k2E(r) = 0 (1.7)

with a piecewise constant RI

n(r) =
⎧⎨⎩ns for r inside the particle,
nm outside

(1.8)

and appropriate boundary conditions on the particle surface. For a scattering prob-
lem, the total electric field is the sum of the incident beam Ei and the scattered field
Es. In combination with physically motivated radiation conditions for the asymp-
totic behavior of Es(r) at |r| → ∞, this defines the scattering problem. For more
complex cells, which exhibit internal structure, a spatial distribution of the complex
RI n(r) has to be considered that corresponds to the different constituents of the
cell. In any case, the electromagnetic field scattered off a cell or microparticle carries
information about it and can thus be used for inferring some of its properties, i. e.,
for measurements such as microscopy or flow cytometry.

The complex RI of any material depends on the frequency or, equivalently, the
vacuum wavelength of the light. Hence one is dealing with a function n(λ) =
n(λ) + iκ(λ). This dependence on the wavelength, especially for the real part n(λ)
is usually called “dispersion”. For example, if the (real) RI decays monotonically
with wavelength λ, this is referred to as normal dispersion, otherwise as anomalous
dispersion. In the context of microparticles, this terminology is somewhat ambigu-
ous, because the term “dispersion” is also used in colloidal and polymer science to
describe the (non-)uniformity of an ensemble of particles. For example, a suspen-
sion of microspheres with identical sizes is called monodisperse and one with a size
distribution of finite width is called polydisperse. In this thesis, we will encounter
dispersion in both senses and use standard terminology, but it should always be
clear which one is meant.

1.4 Refractive index of RBCs and Hb
Refractive index determination of RBCs and Hb solutions has been carried out
already for many decades. Homogeneous solutions of Hb can be obtained from
RBCs by breaking open the cell membranes (hemolysis) and it is known that their
complex RI depends on the hemoglobin concentration cHb according to [36–38]

n(λ, cHb) = nH2O(λ) + cHb[α(λ) + i γ(λ)], (1.9)

where α(λ) is the increment of the real part of the RI or real RI increment and
γ(λ) is the increment of the imaginary part of the RI or imaginary RI increment.
As discussed above, the latter quantity is directly related to the molar attenuation
coefficient εM , which is well known in the visible, near infrared (IR) and in the
near ultraviolet (UV) [37, 39] as is the RI of water nH2O(λ) [40, 41]. On the other
hand measurements of α(λ), even for a homogeneous bulk liquid are challenging
with problems arising from the strong absorbance in this spectral range and from
sample preparation at physiological concentrations exceeding cHb = 300 g L−1, due
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to high viscosity or incomplete dissolution of Hb [36]. As a result the values reported
for α(λ) by various researchers differ by more than 30%. In the 1950s Barer and
Joseph [36, 42] compiled and reported values of α ≈ 0.19 mL g−1 for Hb solutions
in the visible range, without resolving the wavelength dependence. These values
have been widely used in simulation and analysis of light scattering and microscopic
data [8, 10, 22, 43]. Some more recent experiments confirmed these values in the
visible an near IR [44], whereas deviating results were obtained by other authors.
Two recent studies [45, 46] found values of α ≈ 0.15 mL g−1 in the visible range. In
contrast, significantly higher values of α ≈ 0.26 mL g−1 were reported by Friebel and
Meinke [37,38] in a wider spectral range from 250 nm to 1100 nm. These values have
been widely used in application-oriented investigations [13, 29, 30, 32, 47]. Recent
studies employing microscopic techniques on Hb solutions in the visible [48] and
single RBCs in the UV [49] reported values of α ≈ 0.23 mL g−1.

For practical applications, such as light scattering techniques and microscopy, the
optical properties of interest are those of intact RBCs and usually not those of arti-
ficially produced Hb solutions. The two need not necessarily coincide quantitatively,
even if similar features have been found for their wavelength dependence [15, 49].
As discussed above, the membrane of RBCs can be neglected in optical modeling,
hence Eq. (1.9) is believed to provide a suitable model for the RI of intact RBCs,
too. In addition to the intrinsic complexity of measuring the optical properties of
single microscopic cells compared to bulk liquids, the task is further complicated by
the fact that the intracellular concentration cHb is a priori unknown, since it varies
by about 6–8% [22, 50] between the cells of a healthy individual. In studies where
the RI of single intact RBCs was measured, data analysis either required a priori
knowledge about α(λ) [8, 30, 31, 48, 50] or the concentration was eliminated by con-
sidering relative RI changes [15]. A very recent study presented spectral microscopic
measurements of the complex RI of single cells [49], thus enabling the determination
of α using the known γ.

1.5 Outline of this thesis
This thesis is concerned with the quantitative modeling of light scattering by RBCs
for the analysis of optical measurements. As outlined above, this comprises two sub-
problems: (1) An adequate description of the shapes of RBCs and (2) a knowledge
of the complex RI of the cells. Because of the strong discrepancies in the literature
values for the real part of the RI increment of RBCs and Hb solutions, much of
this thesis is devoted to an accurate determination of this quantity. In combination
with light scattering simulations, the results are then used for the interpretation of
measurement data from extinction spectroscopy as well as flow cytometry.

The structure of this thesis is as follows: In chapter 2, we briefly discuss some
theoretical background of light scattering problems. Chapters 3 and 4 deal with the
determination of the (real part of) the RI increment of Hb solutions and RBCs with
two complementary approaches. Chapters 5 and 6 present applications of the results
of the previous two chapters and finally, the results of this thesis are summarized.
Where required, appendices at the end of the respective chapters present additional
technical information.

Chapter 2 discusses the governing equations for light scattering problems, derived
from the Maxwell equations. A separation of variables for the Helmholtz equation
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in spherical coordinates is outlined, which forms the foundation for the (numerical)
T -matrix method as well as for the analytical solution of the scattering problem
for a sphere (Mie scattering). Furthermore, the basic principles of the discrete
dipole approximation (DDA) are discussed, which is a numerical solution method
for scatterers with more general shapes.

Chapter 3 presents a theoretical approach that makes use of literature absorption
spectra of Hb solutions in order to determine their real RI using Kramers-Kronig
(KK) relations. These relations express the relation of the real and imaginary RI
as functions of frequency. However, for their practical application, the existing data
need to be supplemented in the deep UV by an absorption model that accounts
for the peptide backbone of the protein complex Hb. The method is dependent on
real RI data for fitting the free parameters of the deep UV model and two different
options are discussed for this. As a consequence, the KK approach does not resolve
the discrepancies between the existing measurement data for the real RI increment
of Hb and RBCs with respect to their absolute value. It does, however, serve to
smooth and interpolate or extrapolate (noisy) real RI data and as a consistency
check. In addition, KK relations are used in this chapter to compute the RI of three
different variants of Hb from their respective spectra, namely besides oxygenated Hb
(oxyHb) also deoxygenated Hb (deoxyHb) and the non-functional methemoglobin
(metHb) variant.

Chapter 4 discusses the analysis of extinction spectra of intact but sphered RBCs
in order to determine their RI by solving an inverse problem. This approach is com-
plementary to the analysis of chapter 3 in that it yields the absolute value of the
real RI increment of intact RBCs, but only for the oxygenated case. Similar to the
attenuation coefficient of a homogeneous solution, the ensemble-averaged extinction
cross section of a dilute cell suspension describes the portion of a beam of light
transmitted in the forward direction. It is determined by the cellular concentration
in the suspension and by the properties of the cells (size and RI) via a scattering
problem. Spectral extinction cross sections are mathematically modeled using the
Mie solution for scattering by a homogeneous sphere and the sensitivity to the model
parameters is discussed. For analysis of experimentally measured spectra, numerical
optimization is employed in combination with a low-dimensional representation of
the wavelength-dependence of the real RI. The method is evaluated using suspen-
sions of microscopic synthetic polystyrene (PS) beads that are, e. g., commonly used
as a calibration material in flow cytometry. Besides the determination of the size
distribution and RI of the suspended particles in a known host medium (water),
we discuss the determination of the RI of the suspending fluid using particles with
known properties as a probe. Lastly, the method is applied to isovolumetrically
sphered RBCs and the results are compared with the KK approach and literature
data.

Chapter 5 is about the analysis of extinction spectra of artificially made hemo-
globin microparticles (HbMP) [51–53] with respect to their composition of different
Hb variants. These particles might serve as a replacement for RBC concentrates in
transfusion medicine, but first, their function and safety has to be evaluated. We
discuss the influence of the non-spherical “peanut shape” of these HbMP on their
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spectral extinction cross sections by means of a spheroidal model and T -matrix com-
putations. Simulations using variable Hb composition are compared to experimental
spectra in order to assess the content of oxyHb, deoxyHb and metHb.

Chapter 6 deals with the light scattering by native RBCs in an optical flow
cytometer and the interpretation of the corresponding measurement data. The
hydrodynamic forces experienced by RBCs in the cytometer due to velocity gradients
in the sheath flow are estimated and compared to RBC shapes reported in the
literature for different flow conditions. Based on this, an elongated shape model
is introduced that accounts for the deformation in flow. The scattering problem is
solved numerically using the DDA for undeformed biconcave RBC shapes as well as
for the elongated shape model. Measurements at different wavelengths are simulated
using the RI dispersion determined in the previous chapters. The effects of random
orientation of the RBCs in the flow channel and of their frequency distributions of
volume and intracellular Hb concentration are taken into account by Monte Carlo
sampling. This allows for a comparison with experimentally determined histograms
of the forward scattering cross sections of sphered RBCs and native RBCs and thus
to interpret the data regarding the orientation of the RBCs and their deformation
in flow.



Chapter 2

Theoretical background: Light
scattering problems

In this chapter, we will outline the theoretical background of light scattering prob-
lems for small particles. The governing equations of light scattering problems will
be given as well the analytical solution for a homogeneous sphere – Mie scattering.
Furthermore, the basic principles of the T -matrix method, which can be seen as a
generalization of Mie scattering and the discrete dipole approximation (DDA) are
discussed, which are used in chapters 5 and 6 to solve the light scattering problem
for artificial hemoglobin microparticles and for native RBCs in a flow cytometer,
respectively.

2.1 Maxwell’s equations
As we are dealing with problems of classical electrodynamics, the fundamental equa-
tions to consider are the Maxwell equations. In their general form, they read

∇ · B = 0, (2.1)
∇ × E + Ḃ = 0, (2.2)

∇ · D = ρ, (2.3)
∇ × H − Ḋ = j, (2.4)

where B is the magnetic flux density, E is the electric field, D is the displacement
field, H is the magnetic field and j is the current density. All of these are vector-
valued functions of space and time. The charge density ρ is scalar. In linear media
and in the absence of external charges and currents, as is the case for the problems
considered here, we have

B = µH, (2.5)
D = εE , (2.6)
ρ = 0, (2.7)
j = σ E . (2.8)

Generally, the magnetic permeability µ := µr µ0, the electric permittivity ε := εr ε0
and the electric conductivity σ are tensors. Here we assume isotropic media (e. g.,
the liquid cytoplasm of a RBC), such that µ, ε and σ are scalar quantities. For time

9
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harmonic fields of the form

E(r, t) = ℜ
{
E(r) e−iω t

}
, (2.9)

H(r, t) = ℜ
{
H(r) e−iω t

}
(2.10)

we find the reduced Maxwell equations

∇ ×E − iω µH = 0, (2.11)
∇ ×H + iω ε̂E = 0 (2.12)

with the complex permittivity ε̂ := ε+ iσ/ω. Note that in contrast to E and H, the
amplitudes E and H are complex-valued. In physics textbooks, one then usually
applies the curl (∇×) operator once more to the equations and inserts them into
each other. This yields expressions like

−∇ × ∇ ×E + n2 ω
2

c2
0
E =

− 1
µ

(∇µ) × (∇ ×E) (2.13)

where c0 = 1/√ε0 µ0 is the speed of light in vacuo and n = n+ iκ := c0
√
ε̂ µ is the

(complex) RI. One can further use the identity

∇ × (∇ ×E) = −∆E + ∇ (∇ ·E) (2.14)

and exploit the divergence equations in the form ∇ ·H = 0 = ∇ · E, in order to
obtain homogeneous wave equations. This works, however, only for cases where the
medium is (piecewise) homogeneous, i. e., ε, σ and µ are (piecewise) constant, or
where the gradients of the material properties can be neglected. Otherwise, with
∇ · (µH) = 0 = ∇ · (εE) one finds

∆E + n2 ω
2

c2
0
E = −∇

[1
ε

(∇ε) ·E
]

− 1
µ

(∇µ) × (∇ ×E), (2.15)

∆H + n2 ω
2

c2
0
H = −∇

[
1
µ

(∇µ) ·H
]

− 1
ε̂

(∇ε̂) × (∇ ×H). (2.16)

While it is possible, also in this general case to decouple the equations for E and
H , it is evident from this, that only for the special case of ∇ε = ∇σ = ∇µ = 0,
they reduce to the Helmholtz equations

∆E + n2 k2E = 0, (2.17)
∆H + n2 k2H = 0 (2.18)

with the wavevector (in vacuo) k = ω/c0. In the optical frequency range, one can
safely assume that in this high-frequency limit µr ≡ 1, such that ∇µ = ∇µ0 = 0, i. e.,
optical magnetism is assumed not to exist in any material. This simplifies equations
(2.13), (2.15) and (2.16) somewhat. But, even with this reasonable assumption,
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Eq. (2.15) becomes Eq. (2.17) only in the limiting case of |∇ε|/ε small compared to
the wavenumber k.

As already discussed in chapter 1, RBCs can be modeled as homogeneous di-
electric particles, because of their liquid interior and the negligible thickness of their
membrane. Hence, the Helmholtz equations (2.17), (2.18) for divergence-free fields
provide a suitable framework to describe their interaction with light. However, some
recent reports of the RI distribution inside individual RBCs, measured with optical
tomographic methods suggest an inhomogeneous RI distribution with considerable
gradients [14, 30, 50, 54, 55]. However, these findings may well be artifacts of the
mathematical evaluation of the measurement data in such tomographic techniques.
Instead of using the full Maxwell equations or equations derived from them for the
general case of time-harmonic fields, like Eq. (2.13), the algorithms used in these
tomographies rely either on effective equations for intensities instead of field vec-
tors [30] or on approximations to the scalar Helmholtz equations (2.17), (2.18) for
the Cartesian field components of E and H [14, 50, 54, 55], such as the Born ap-
proximation and Rytov approximation. However, the results thus obtained, i. e., a
non-vanishing gradient for the complex RI n and hence the permittivity ε is outside
the range of validity of the scalar Helmholtz equations, let alone approximations
thereof. Hence, throughout this thesis, we will model RBCs as optically homoge-
neous scatterers, which are described by a piecewise-constant RI distribution.

For the case of piecewise-constant material properties, e. g., material 1 in domain
Ω (the scatterer) and material 2 outside Ω (the surrounding medium), the boundary
conditions

[ν ×E] = 0 and [ν ×H ] = 0 on ∂Ω (2.19)

need to be satisfied. Here, [f ] denotes the jump of function f , i. e., the difference
between the limit values coming from inside and outside at a given point on the
boundary ∂Ω of Ω and ν is the outer normal to ∂Ω. In words: The tangential
components of vector fields E and H are continuous across the interface between
two homogeneous media.

2.2 Light scattering
Equations (2.17) and (2.18), or in the more general case (2.15) and (2.16) describe
the propagation of a time-harmonic field in a source-free medium in the general case.
In microscopy, optical tomography, optical cytometry and many other applications,
the setting for the electromagnetic waves is as follows: The sample (e. g., cell or par-
ticle), characterized by a complex RI distribution n(r) is illuminated by an incident
electromagnetic field, described by Ei(r) and H i(r). Often times the incident field
can be described as a plane wave or a Gaussian beam. In the absence of the sample
(e. g., in plain air or water), the incident field would be a solution to the Maxwell
equations. In the presence of the sample, one seeks solutions in the form

E(r) = Ei(r) +Es(r), (2.20)

where Es is the scattered field, and analogously for the magnetic field H = H i+Hs.
For a finite scatterer, the RI contrast n(r)−nm has compact support, i. e., is nonzero
only on a finite domain Ω. Here nm denotes the RI of the surrounding medium (e. g.,
water). In this case the scattered fields Es and Hs must decay with distance from
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the scatterer in a spherical-wave-like fashion. This is usually expressed in Silver-
Müller radiation conditions

lim
r→∞

{√
ε̂Es × r + √

µ rHs
}

= 0,

lim
r→∞

{√
µHs × r −

√
ε̂ rEs

}
= 0.

(2.21)

2.2.1 Scattering problems in spherical coordinates:
Mie scattering and the T -matrix method

Analytical solutions of the electromagnetic scattering problem exist for certain spe-
cial cases, where the boundary of the (homogeneous) scatterer coincides with a co-
ordinate iso-surface in coordinates where the Helmholtz operator is separable. This
includes infinitely long cylinders and spheroids [56,57]. However, probably the most
well-known and widely used analytical solution is the one for homogeneous spheres,
which is often referred to as “Mie theory”, “Mie scattering” or the “Mie solution”,
named after Gustav Mie, who presented it in his famous 1908 paper on “the optics
of turbid media, especially colloidal metal solutions”, Ref. [58]. The term “Lorenz-
Mie theory” is also widely used, giving credit to Ludvig Lorenz, who reported on
the topic in his 1890 paper, Ref. [59]. Of course, derivations of this solution and
a detailed discussion of its historical background can be found in textbooks and
review articles on light scattering [60–63]. Nevertheless, the basic steps in deriving
the Mie solution are outlined in this section. As an excursus, we briefly discuss the
T -matrix method for homogeneous scatterers of general shape, which can be seen
as a generalization of Mie scattering in so far as both are based on expansions of
the electromagnetic fields in vector spherical wavefunctions.

Vector spherical wavefunctions

As discussed above, the scattering by a homogeneous particle, represented by a
piecewise-constant RI distribution is described by the Helmholtz equations for E and
H . It suffices to consider the Helmholtz equation for the electric field [Eq. (2.17)],
because the magnetic field follows according to Eq. (2.11), i. e., ∇×E = iω µ0µrH .
Furthermore the electric field has to be divergence-free, i. e., ∇ · E = 0. Let us,
however, first consider the scalar Helmholtz equation for some function ψ:

∆ψ + n2 k2 ψ = 0. (2.22)

To simplify notation, we will set n = 1 for the time being. The complex RI can
be added back in later, simply by replacing k → n k. With the expression for the
Laplace operator in spherical coordinates, the Helmholtz equation becomes

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1
r2 sinϑ

∂

∂ϑ

(
sinϑ ∂ψ

∂ϑ

)
+ 1
r2 sin(ϑ)2

∂2ψ

∂φ2 + k2 ψ = 0, (2.23)

which can be solved by separation of variables, i. e., by the ansatz ψ(r, ϑ, φ) =
R(r) Θ(ϑ) Φ(φ). If this ansatz is put into the Helmholtz equation, the left hand side
can be rearranged as the sum of three terms, each of which depends only on one
variable. Because the equation holds for all r, ϑ and φ, each of the terms must be
constant individually and one obtains ordinary differential equations for R,Θ and
Φ. Because of the boundary conditions for the angle-dependent parts Θ and Φ, the
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separation constants are integers and the solutions to the scalar Helmholtz equation
read

ψ(ι)
µν(k r, ϑ, φ) = z(ι)

ν (k r)P µ
ν (cosϑ) eiµφ, (2.24)

where ν ∈ N and µ = −ν,−ν + 1, . . . , ν. The functions P µ
ν are associated Legendre

polynomials and the four possible solutions for the radial component are

z(ι)
n (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
jν(x) for ι = 1
yν(x) for ι = 2
h(1)
ν (x) = jν(x) + iyν(x) for ι = 3
h(2)
ν (x) = jν(x) − iyν(x) for ι = 4

. (2.25)

Here jν and yν are the spherical Bessel functions of the first and second kind, re-
spectively. The functions h(1)

ν and h(2)
ν are the spherical Hankel functions of the

first and second kind, respectively. Obviously, the two latter functions are just a
linear combination of the former two and thus not independent solutions. However,
Eq. (2.25) provides two particularly handy solutions of the Helmholtz equation to
use in a scattering problem: jν(k r) is regular at the origin (r → 0), where all the
other solutions have a singularity and h(1)

ν (k r) decays like an outgoing spherical
wave at r → ∞. From these scalar spherical wavefunctions, we can now construct
vector spherical wavefunctions (VSWFs) according to

M (ι)
µν (k r, ϑ, φ) := ∇ ×

(
r ψ(ι)

µν(k r, ϑ, φ)
)
, (2.26)

N (ι)
µν (k r, ϑ, φ) := 1

k
∇ ×M (ι)

µν (k r, ϑ, φ) (2.27)

for ι = 1, . . . , 4. Due to the curl operator (∇×), these are divergence-free. Us-
ing some vector-identities, it is relatively easy to show that functions generated in
this way are solutions to the vector Helmholtz equations Eq. (2.17), (2.18) if the
generating functions ψ(ι)

µν are solutions to the scalar Helmholtz equation [62, 63].
Because for a divergence-free field that solves the Helmholtz equation, one has
∇ × ∇M = −∆M = k2M , these functions furthermore satisfy

M (ι)
µν (k r, ϑ, φ) = 1

k
∇ ×N (ι)

µν (k r, ϑ, φ). (2.28)

Excursus: T -matrix method

The VSWFs defined above can now be used to express any solution to the vector
Helmholtz equation in a medium with constant RI and hence for homogeneous
scatterers of arbitrary shape. Let us, for the moment assume a general scatterer
with RI ns ∈ C in a medium of RI nm ∈ R, defined by the domain Ω. Hence, the
incident field, which is regular at the origin, can be formally expanded as

Ei(r) =
∞∑
ν=1

ν∑
µ=−ν

AµνM
(1)
µν (km r) + BµνN

(1)
µν (km r), (2.29)

where km := nm k is the wavevector in the surrounding medium. Because the inci-
dent field is a solution in the absence of the scatterer (i. e., the RI is nm everywhere),
this expansion holds for all r ∈ R3. In the presence of the scatterer, one has to dis-
tinguish between the inside and outside of the scatterer. The scattered field outside
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the particle is expanded in irregular VSWFs which fulfill the radiation conditions
Eq. (2.21)

Es(r) =
∞∑
ν=1

ν∑
µ=−ν

PµνM
(3)
µν (km r) +QµνN

(3)
µν (km r), for r /∈ Ω. (2.30)

The total electric field inside the scatterer is expressed in regular VSWFs,

Eint(r) =
∞∑
ν=1

ν∑
µ=−ν

CµνM
(1)
µν (ks r) +DµνN

(1)
µν (ks r), for r ∈ Ω. (2.31)

where ks := k ns is the (complex) wavevector inside the scatterer. Formally, the
solution approach is as follows: (1) determine the expansion coefficients Aµν and Bµν

of the (known) incident wave in VSWFs, (2) determine the expansion coefficients
Cµν and Dµν of the internal field as well as Pµν and Qµν of the scattered field from
matching at the boundary according to the boundary conditions Eq. (2.19), i. e.,

lim
ϵ↘R

ν ×
[
Ei(r + ϵν) +Es(r + ϵν) −Eint(r − ϵν)

] != 0 and (2.32)

lim
ϵ↘R

ν ×
[
H i(r + ϵν) +Hs(r + ϵν) −H int(r − ϵν)

] != 0 ∀ r ∈ ∂Ω, (2.33)

where the series expansions of the H field is obtained using ∇×E = iωµ0 µrH and
the curl of the series expansions is easily taken using Eqs. (2.27), (2.28). Formally,
this leads to (infinite-dimensional) systems of equations like(

P
Q

)
= T

(
A
B

)
(2.34)

with A being a vector containing the expansion coefficients Aµν arranged in series
and likewise for B,P and Q. I. e., the coefficient vector of the scattered field
can be computed from that of the incident field by means of a matrix T, whose
entries depend on the shape of the boundary of the scatterer. Likewise on finds
a matrix that maps (AT ,BT )T to the coefficients of the internal field (CT ,DT )T .
This formalism is known as the T -matrix method. Of course, for scatterers with
a general shape, computing the T -matrix is no trivial task and usually requires
approximate numerical methods. A detailed description of this method is given
in the book of Mishchenko [63]. We will use a numerical implementation of this
method for spheroids to compute the scattering properties of artificial hemoglobin
microparticles in chapter 5.

Mie scattering

After these general considerations let us return to the scattering of a plane wave
by a homogeneous sphere. Without loss of generality, we can assume the spherical
scatterer of radius R to be located at the origin of a spherical coordinate system
r, φ, ϑ, i. e., defined by the RI distribution

n(r) =
⎧⎨⎩ns ∈ C for r < R,

nm ∈ R otherwise.
. (2.35)

Due to symmetry of the scatterer, we can assume the incident plane wave Ei to
propagate in the z direction and be x-polarized, i. e.,

Ei(r) = E0exei km r cosϑ. (2.36)
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The expansion of this field in VSWFs can be found by “a lengthy, although straight-
forward procedure” [61] and reads

Ei(r) =
∞∑
ν=1

Eν
(
M

(1)
o1ν(km r) − iN (1)

e1ν(km r)
)
, (2.37)

with Eν = E0 iν 2ν + 1
ν(ν + 1) , (2.38)

whereM (ι)
oµν andN (ι)

oµν are the VSWFs generated according to Eq. (2.26), (2.27) from
the scalar spherical wave functions

ψ(ι)
eµν(k r, ϑ, φ) = z(ι)

ν (k r)P µ
ν (cosϑ) cos(µφ), (2.39)

ψ(ι)
oµν(k r, ϑ, φ) = z(ι)

ν (k r)P µ
ν (cosϑ) sin(µφ) for ι = 1, . . . , 4. (2.40)

I. e., for plane wave incidence, the symmetry of the problem causes all coefficients
with µ ̸= ±1 to be zero. In this particular case, the internal and scattered fields are
represented by [61]

Eint(r) =
∞∑
ν=1

Eν
(
cνM

(1)
o1ν(ks r) − idνN (1)

e1ν(ks r)
)
, (2.41)

Es(r) =
∞∑
ν=1

Eν
(
−bνM (3)

o1ν(km r) + iaνN (3)
e1ν(km r)

)
. (2.42)

As evident, for each index ν, there are four coefficients to be determined. Four
equations are defined from the boundary conditions at r = R for the tangential
components of (ϑ- and φ-components) of E and H . After some more lengthy
calculus, this yields (assuming a relative permeability µr ≡ 1) [61]

aν = m2jν(mX)[X jν(X)]′ − jν(X)[mX jn(mX)]′

m2jν(mX)[X h
(1)
ν (X)]′ − h

(1)
ν (X)[mX jn(mX)]′

, (2.43)

bν = jν(mX)[X jν(X)]′ − jν(X)[mX jn(mX)]′

jν(mX)[X h
(1)
ν (X)]′ − h

(1)
ν (X)[mX jn(mX)]′

, (2.44)

for the coefficients of the scattered field, where X is the dimensionless size parameter
and m is the relative refractive index :

X = km R = 2π nm R

λ
, m = ks

km
= ns

nm
. (2.45)

For the coefficients of the internal field one obtains

cν = jν(X)[X h(1)
ν (X)]′ − h(1)(X)[X jn(X)]′

jν(mX)[X h
(1)
ν (X)]′ − h

(1)
ν (X)[mX jn(mX)]′

, (2.46)

dν = m jν(X)[X h(1)
ν (X)]′ − mh(1)(X)[X jn(X)]′

m2 jν(mX)[X h
(1)
ν (X)]′ − h

(1)
ν (X)[mX jn(mX)]′

. (2.47)

These coefficients define the electric field everywhere and the magnetic field fol-
lows using ∇ ×E = iωµ0 µrH . In particular, the coefficients aν and bν contain all
the information about the far field, i. e., the asymptotic behavior at r → ∞. For
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example, the relation between the scattered field amplitudes and the incident field
is given by (

Es
∥

Es
⊥

)
= eikm(r−z)

−ikmr

(
S2 0
0 S1

)
  

=S

(
E i

∥
E i

⊥

)
. (2.48)

Here E∥ and E⊥ denote the component of E parallel and perpendicular to the
scattering plane, respectively. The scattering plane is spanned by the direction of
incidence, i. e., the z-axis and the direction of observation defined by the unit vector
er(ϑ, φ) = r/r. For Mie scattering, the elements of the amplitude scattering matrix
S are given by

S1(ϑ) =
∞∑
ν=1

2ν + 1
ν(ν + 1) [aνπν(ϑ) + bν τ(ϑ)] ,

S2(ϑ) =
∞∑
ν=1

2ν + 1
ν(ν + 1) [aντν(ϑ) + bν π(ϑ)]

(2.49)

with angle-dependent functions

πν(ϑ) = P 1
ν (cosϑ)
sinϑ , τν(ϑ) = dP 1

ν (cosϑ)
dϑ . (2.50)

Obviously, a variety of quantities can be derived from this solution, such as the
scattered intensity distribution in the far field or the various optical cross sections
of the particle. Most importantly for this thesis, we will make use of the extinction
cross section in chapters 4 and 5, which describes how much light a scatterer removes
from the incident beam due to scattering and absorption.

For computations, one has to truncate the series at some νmax, which can be
quite large (in the thousands) depending on the values of m and X and the desired
accuracy. Hence, an efficient evaluation is required of the special functions defining
the coefficients aν and bν and the angle-dependent functions πν and τν . For both
cases, computation with downward recurrence schemes is possible [61] and has been
implemented in various programming languages over the last decades [64].

2.2.2 Discrete dipole approximation
As evident from the discussion of Mie scattering above, obtaining an analytical solu-
tion for electromagnetic scattering problems is difficult enough even in the simplest
cases. For general shapes, or inhomogeneous scatterers one usually has to use nu-
merical methods. The numerical method that will be used to solve the scattering
problem for native RBCs in chapter 6 of this thesis is the discrete dipole approxi-
mation (DDA). While the Mie solution and the T -matrix method are based on the
separation of variables for the Helmholtz equation, the DDA is based on the use of
the Green’s function of the corresponding differential operator.

Let us, again, consider the Helmholtz equations Eq. (2.17) and (2.18). As long
as we are using Cartesian coordinates, instead of E or H we can consider a scalar
field ψ, corresponding, e. g., to one of the Cartesian components of the vector fields.
We can then re-write the Helmholtz equation for ψ as

∆ψ + k2
m ψ = −k2

m (m2 − 1)ψ, (2.51)
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where, as before, km = k nm and m = n/nm. The contrast or object function

f := m2 − 1 (2.52)

then has compact support, i. e., it is zero outside the scatterer. Note that we do
not restrict the RI distribution n to be piecewise constant, but only require n(r) =
nm ∀r /∈ Ω. We also note that there exists a Green’s function G for the outgoing
wave propagation from a source g, i. e., the inhomogeneous equation

∆ψ(r) + k2
m ψ(r) = −δ(r − r′) (2.53)

is solved by
ψ(r) = G(r, r′). (2.54)

Equivalently, the equation

∆ψ(r) + k2
m ψ(r) = −g(r) (2.55)

is solved by
ψ(r) =

∫
R3
G(r, r′) g(r′) dr′, (2.56)

for all (appropriately defined) source functions g. The Green’s function of the three-
dimensional (scalar) Helmholtz operator is

G(r, r′) = 1
4π

eikm |r−r′|

|r − r′|
. (2.57)

Note that this function describes radiating solutions caused by some source term g
which is nonzero only on a finite domain. I. e., for scattering problems, it does not
describe the incident field, which can be thought of as being caused by sources at
infinity. Hence, if we formally solve Eq. (2.51), the result is

ψ(r) = ψi(r) + k2
m

∫
Ω
G(r, r′) f(r′)ψ(r′) dr′. (2.58)

Because the unknown ψ field appears on both sides of the equation, this does not
solve the scattering problem, but is a volume-integral formulation thereof. Note that
the integration domain is the volume of the scatterer Ω because f is equal to zero
outside.

In the derivation of ∆E + n2 k2E = 0, which is a scalar wave equation for the
Cartesian components of E, we had to assume a piecewise constant permittivity,
i. e., ∇ε(r) = 0 almost everywhere or at least require that the gradients ∇ε are
sufficiently small. For the volume-integral formulation one can, however, drop this
restriction without adding much complexity to the problem. If we instead consider
Eq. (2.13) with the only assumption that µr ≡ 1 (no materials exhibiting optical
magnetism have been found yet), we have

−∇ × ∇ ×E + n2 k2E = 0, (2.59)

which is also known as the vector Helmholtz equation [62] or vector wave equation
[63]. Like before for the (scalar) Helmholtz equation, it suffices to consider E,
because H follows from ∇ ×E = iω µ0H . As before, this vector equation can be
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re-written with constant coefficients on the left hand side and a source term on the
right hand side:

−∇ × ∇ ×E + k2
mE = −k2

m(m2 − 1)E (2.60)
⇐⇒

(
∇ × ∇ × 1 − k2

m

)
E = iω µ0 J , (2.61)

where 1 denotes the 3 × 3 identity matrix and the current density J is defined as

J(r) := −iωε0n
2
m

(
m2(r) − 1

)
E. (2.62)

Like the object function f before, this current density has compact support, i. e.,
J(r) = 0 ∀ r /∈ Ω. The (tensor-valued) Green’s function for the vector Helmholtz
operator (∇ × ∇ × 1 − k2

m) reads [62, 63]

G(r, r′) =
(
1 + 1

k2
m

∇ ⊗ ∇
)

1
4π

eikm |r−r′|

|r − r′|
, (2.63)

which is known as the free-space dyadic Green’s function. Here a ⊗ b denote the
dyadic product of two vectors with (a ⊗ b)mn = am bn. Hence, by integrating
Eq. (2.61) using the Green’s function, one finds a formal expression for the total
electric field

E(r) = Ei(r) + iω µ0

∫
Ω

G(r, r′)J(r′) dr′. (2.64)

The idea of the DDA is to use a volume discretization, i. e., a partitioning of
the scatterer into a finite number of subvolumes such that – by approximating the
integrand inside each grid cell by a constant – the above integral equation becomes
a system of linear equations. This is, however, not a straightforward task due to
the singularity of the Greens function, which becomes more clear when Eq. (2.63)
is written out [65]

G(r, r′) = 1
4π

eikm R

R

[
1 − R⊗R

R2 − 1 − ikmR

k2
m R

2

(
1 − 3 R⊗R

R2

)]
(2.65)

with R := r − r′ and R = |R|. I. e., for R → 0, the Green’s function behaves like
1/R3. This singularity makes is necessary to perform the integration with utmost
care when r ∈ Ω in Eq. (2.64), i. e., when the field inside the scatterer is to be
computed.

If we divide the volume of the scatterer into N disjoint subvolumes, i. e., Ω =⋃N
i=1 Vi and Vi ∩ Vj = ∅ for i ̸= j, then the volume integral equation can be written

as

E(r) − iω µ0

∫
Vi

G(r, r′)J(r′) dr′ = Ei(r) + iω µ0

N∑
j=1
j ̸=i

∫
Vj

G(r, r′)J(r′) dr′, (2.66)

where we are thinking of Vi being the subvolume containing r. In this case, the
integrals on the right hand side are regular and if the subvolumes Vj are sufficiently
small, they can be approximated by assuming a constant current density

J(r′) ≈ J(rj) ∀ r′ ∈ Vj, (2.67)

where rj is a fixed point inside Vj for each j = 1, . . . , N . This constant term can be
taken in front of the integral. The remaining integral

∫
Vj

G(r, r′) dr′ then depends
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only on the shape of the subvolume Vj and on the position vector r relative to it.
Usually one further approximates [65]∫

Vj

G(ri, r′) dr′ ≈ |Vj|G(ri, rj) for i ̸= j. (2.68)

For the integral in the left hand size of Eq. (2.66), the singularity of the Green’s
function can be formally separated out [62] using∫

Vi

G(r, r′)J(r′) dr′ =
∫
Vi

[
G(r, r′)J(r′) − Gsta(r, r′)J(r)

]
dr′

+ 1
k2

m

∮
∂Vi

[
− r′ − r

4π|r′ − r|3
J(r)

]
ν(r′) dS(r′),

(2.69)

where ν denotes the outer normal of Vi and

Gsta(r, r′) = 1
k2

m
∇ ⊗ ∇ 1

4π|r′ − r|
= − 1

4π k2
m R

3

(
1 − 3R⊗R

R2

)
(2.70)

is the static limit of the free space dyadic Green’s function, i. e., the limit for km → 0.
The term Gsta(r, r′)J(r) was formally subtracted and added back in in Eq. (2.69).
The surface integral in Eq. (2.69) results from application of the divergence theorem.
Again using the approximation that for sufficiently small subvolumes the current
density is constant, i. e., J(r′) ≈ J(ri) for all r′ ∈ Vi, one obtains

∫
Vi

G(ri, r′)J(r′) dr′ ≈
[
Mi − 1

k2
m

Li
]
J(ri) (2.71)

with Mi :=
∫
Vi

[
G(ri, r′) − Gsta(ri, r′)

]
dr′ (2.72)

and Li :=
∮
∂Vi

[
ν(r′) ⊗ (r′ − ri)

4π|r′ − ri|3

]
dS(r′). (2.73)

Note that the integrals in Mi and Li are regular and that they only depend on the
geometry of the subvolume Vi.

With the volume of the scatterer discretized and the singularity of the Green’s
function explicitly treated, one now obtains for Eq. (2.66)

E(ri) − iω µ0

[
Mi − 1

k2
m

Li
]
J(ri) ≈ Ei(ri) + iω µ0

N∑
j=1
j ̸=i

|Vj| G(ri, rj)J(rj), (2.74)

which is a set of algebraic equations for the electric field E and the current density
J at the fixed inner points ri of the grid cells Vi. Instead of the total field E, this
is the usually re-written [62] in terms of the exciting field Eexc as

Eexc
i = Ei

i + iω µ0

N∑
j=1
j ̸=i

|Vj| Gij Jj (2.75)

where Ei := E(ri) etc. and the exciting field is defined as

Eexc
i := Ei − iω µ0

[
Mi − 1

k2
m

Li
]
Ji. (2.76)
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By substituting the definition of the current density [Eq. (2.62)] back in, one has

Eexc
i = Ei −

(
k2

mMi − Li
) (

m2
i − 1

)
Ei =

[
1 −

(
k2

mMi − Li
) (

m2
i − 1

)]
  

=:Aii

Ei, (2.77)

Ji = −iωε0n
2
m

(
m2
i − 1

)
A−1
ii E

exc
i . (2.78)

This leads to the 3N × 3N linear system of equations

Eexc
i = Ei

i + k2
m

N∑
j=1
j ̸=i

|Vj| Gij (m2
j − 1) A−1

jj E
exc
j (2.79)

which can be solved numerically for all inner grid cells (“dipoles”) ri, i = 1, . . . , N of
the scatterer for a known incident field Ei and thus forms the basis of the DDA [62].
The result of this procedure, i. e., the exciting field Eexc

i (or the total field Ei) inside
the scatterer can then be used to compute all kinds of resulting quantities. For
example the far field, i. e., the |r| → ∞ limit of Es(r) is easily computed using the
far-field limit of the Green’s function [63]

G(r, r′) ∼ 1
4π

eikm r

r
e−ikmer·r′

[
1 − er ⊗ er

r2

]
at r → ∞ with r′ finite, (2.80)

where er = r/r. One finds

Es(r) ∼ ei kmr

−ikmr
F (er) at r → ∞ (2.81)

with F (er) ≈ −ik3
m

4π

[
1 − er ⊗ er

r2

] N∑
j=1

|Vj| (m2
j − 1) A−1

jj E
exc
j e−ikmer·rj . (2.82)

Other far field properties of the scatterer, such as the scattering cross section can
be computed from the scattering amplitude F in a straightforward manner.

So far, we have not specified the shape of the subvolumes Vj, j = 1, . . . , N used
for discretization. Typically one uses a cubic grid, which is also the case for the
ADDA 1.2 implementation [66] used in the computations presented in this thesis.
The coefficient matrix defining the system of equations (2.79) can be quite large: If,
for example, a scatterer with 100 fL volume (e. g., a typical RBC) is to be discretized
with 50 nm cubes (about one tenth the vacuum wavelength of visible light), one has

N = 100 fL
50 nm3 = 8 × 105 (2.83)

grid cells. Hence systems of more than a million equations (3N) are easily en-
countered and suitable methods of numerical linear algebra that exploit the special
structure of the matrices occurring in this particular problem have to be used for
efficiently solving light scattering problems in the DDA framework [62,65]. The im-
plementation of the DDA employed in this thesis (chapter 6) is the ADDA 1.2 code.
More details on the ADDA code are found in Ref. [66]. A more detailed discussion
of the theoretical aspects of the DDA and its different formulations (which, e. g., use
different degrees of approximation) can be found in Refs. [62, 65].



Chapter 3

Calculation of optical properties of
hemoglobin solutions with
Kramers-Kronig relations∗

3.1 Introduction
As discussed in chapter 1, the absorption spectra of hemoglobin (Hb) solutions
have been measured with high accuracy over a wide range of wavelengths and are
known since several decades. In contrast, measurements of their refractive index
(RI), or rather, the real part thereof, especially at physiologically relevant high
concentrations, are challenging and have only been presented as late as 2005 for
a wide spectral range [37]. However, these data have much larger measurement
uncertainties than the corresponding absorption spectra, such that the real part of
the complex refractive index is less accurately known than its imaginary part, the
absorbance.

As it turns out, the real and imaginary part of the complex RI as a function
of frequency or vacuum wavelength are not independent, but they are connected
through integral transformations, the Kramers-Kronig (KK) relations. Knowledge
of the wavelength dependence of either the real or imaginary part of the RI allows for
computing the respective other quantity. First described in 1926 by Ralph Kronig
and in 1927 by Hendrik Anthony Kramers for specific models of an atomic gas (see,
e. g., Ref. 67) these relations state that the real part of the RI can be computed
from an integral transform of the absorption coefficient in the frequency domain
(Kronig, Kramers) and vice versa (Kramers). It was later shown, that these rela-
tions are a general property of certain linear response functions, which stems from
the fact that a physical system is subject to the causality principle: No response
can occur before the excitation. If this simple restriction in the time domain is
taken to the frequency domain (or wavelength domain), KK relations arise for any
linear response function of a physical system, such as the electric permittivity or
magnetic permeability of a material, relating its real and imaginary part by integral
transforms. Consequently such relations also hold for the complex RI, which is an
analytical function of permittivity and permeability. This has motivated researchers

∗ This chapter is based on
J. Gienger, H. Groß, J. Neukammer, and M. Bär. Determining the refractive index of human
hemoglobin solutions by Kramers–Kronig relations with an improved absorption model. Appl.
Opt., 55(31):8951–8961, 2016.
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to use KK relations to obtain the real part of the RI of different materials directly
from accurate measurements of absorption spectra, i. e., the imaginary part of the
RI as a function of wavelength. In particular, this has been applied to aqueous Hb
solutions, with the aim to describe the optcial properties of RBCs [68,69].

In this chapter, first a short introduction is given to the physical and mathemati-
cal origin of the KK relations along with some examples of the dispersion properties
of the RI they imply. We discuss why it is a non-trivial task to extract any meaning-
ful wavelength-dependence of the real RI from absorption spectra, due to the finite
wavelength range of the measured spectra and the global, long-ranged character
of the KK relations. The KK relations are then applied to Hb solutions, making
up the interior of RBCs. As mentioned above, this is not a new idea. However,
previous theoretical studies of these solutions have missed important contributions
of the real RI because they ignored the effects of the absorbance of water [68] or
Hb itself [68,69] outside the spectral range under consideration. To overcome these
issues, the contribution of water can be separated in the equations as was presented
by Sydoruk et al. [69]. Additionally an absorption model for proteins at low wave-
lengths can be constructed based on the scarce reports of deep UV protein spectra
in the literature, which is presented in this chapter. A limitation of all KK analyses
is the following: The dispersion features of the real RI can be accurately deter-
mined from the absorption spectra, whereas the wavelength-independent (or weakly
wavelength-dependent) background to which these features are added is not acces-
sible. Hence, any KK computation of the real RI from the imaginary RI has to be
substituted by measurements of the real RI for at least one wavelength. For the
approach presented here, this means that the free parameters of the deep UV model
have to be determined by comparing to experimental data, which is achieved by
non-local fitting. As discussed in chapter 1, literature data for the real RI (incre-
ment) of Hb solution scatter widely, hence the result of the KK analysis depends on
the dataset used. Here, the model parameters will be fitted to the measurements of
the real RI increment of oxygenated Hb (oxyHb) solutions presented by Friebel and
Meinke [38], which were the best data available by the time the work described in
this chapter was originally done. This case is published in the author’s own article
Ref. 47. More recent measurements on intact RBCs that are presented in chapter 4
of this thesis suggest that these literature data may have been off by 20% due to
concentration errors of the Hb solutions. Hence the KK analysis is repeated with
these data and the results are compared.

The result of the KK analyis is a curve for the real RI increment of oxyHb
solutions, which may be smoothed significantly compared to the noisy literature
data the model was fitted to [38]. We compare it to the results of previous studies
that missed significant contributions of deep UV absorption [68, 69]. The main
advantage of the KK analysis, however, is that besides oxyHb the real RI increment
is easily computed for other Hb variants for which no measurement data exist, since
the absorption spectra are known for a variety of Hb variants [39] and the deep
UV absorbance is not expected to differ between them. This is demonstrated for
deoxygenated Hb (deoxyHb) and the non-functional methemoglobin (metHb).
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3.2 Introduction to Kramers-Kronig relations

3.2.1 Simple derivation of Kramers-Kronig relations
If a system is subject to a time-dependent perturbation v(t) to which it reacts
linearly, the time-dependent response u(t) is given by convolution

u(t) =
∫ ∞

−∞
f(τ) v(t− τ) dτ = (f ∗ v)(t), (3.1)

where f(t) is the response function of the system. All three functions f, u and v
are real-valued. A physical example for such a system would be an electric field
E =̂ v causing a polarization P =̂ u in a material. If the above equation is Fourier-
transformed to the frequency domain, one obtains by the convolution theorem:

U(ω) := F [u](ω) = 1√
2π

∫ ∞

−∞
u(t) e−iω tdt =

√
2πF (ω)V (ω), (3.2)

with the Fourier transforms of the individual functions F (ω) := F [f ](ω) and V (ω) :=
F [v](ω). In the case of an electrically polarized material, one typically writes

P (ω) = ε0 χ(ω)E(ω) (3.3)
D(ω) = ε0 [1 + χ(ω)]E(ω), (3.4)

where D(ω) := P (ω) + ε0E(ω) is the displacement field, χ(ω) is the electric sus-
ceptibility of the material and ε0 = 8.854 . . . × 10−12 F m−1 is the vacuum per-
mittivity. The relative permittivity is then defined as εr := 1 + χ(ω). Hence
F (ω) =̂ ε0 χ(ω)/

√
2π.

If the system exhibits causality, this requires that no response occurs before the
system is excited. Hence the response function f(t) in Eq. (3.1) can only be non-zero
for positive times, i. e.,

f(t) = 0 ∀ t < 0. (3.5)
Decomposing the function into an even and an odd part, this can also be written as

f(t) = fodd(t) + feven(t) = fodd(t) + sgn(t)fodd(t), (3.6)
where fodd(−t) = −fodd(t) and feven(−t) = feven(t) and sgn(t) denotes the sign of t.
If this is transformed to the frequency domain, the product in the last term becomes
a convolution

F (ω) = F [fodd](ω)  
=:Fodd(ω)

+ F [feven](ω)  
=:Feven(ω)

= Fodd(ω) + 1√
2π

(Fodd ∗ SGN) (ω), (3.7)

where the Fourier transform of the sign function is

SGN(ω) = 1√
2π

∫ ∞

−∞
sgn(t) e−iω tdt = − 1√

2π
2i
ω
. (3.8)

From the properties of the Fourier transform, it follows that the Fodd, being the
transform of a real, odd function is an imaginary-valued function, wheres Feven is
real-valued. Or in other words F (ω) = Freal(ω) + iFimag(ω) with

Fodd(ω) = iFimag(ω) and Feven(ω) = Freal(ω). (3.9)
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Hence, according to Eq. (3.7)

Freal(ω) = 1√
2π

(iFimag ∗ SGN) (ω) = 1
π

−
∫ ∞

−∞
Fimag(Ω) 1

Ω − ω
dΩ. (3.10)

The sign −
∫

denotes the Cauchy principal value integral. It has to be used since the
kernel is singular at ω = Ω. For a function x ↦→ f(x) that has a singularity at
x0 ∈ [a, b], the principal value integral is defined as

−
∫ b

a
f(x) dx := lim

ε↘0

[∫ x0−ε

a
f(x) dx+

∫ b

x0+ε
f(x) dx

]
(3.11)

and likewise for multiple singularities.
Eq. (3.10) is the Kramers-Kronig relation in the most general form. Starting

from a linear response of a system, described by the function real-valued f(t) and
the assumption that causality applies to the system, one finds that the real and
imaginary parts of the Fourier transform F (ω) of the response function are connected
by a Hilbert transform, i. e., a convolution with a 1/ω kernel. One could also have
expressed Eq. (3.6) in terms of feven and obtained the complementary relations to
Eq. (3.10), expressing Fimag as an integral transform of Freal.

The electric susceptibility χ(ω) of a material was given as an example for such
a linear response function. Because the Kramers-Kronig relations are linear, such
relations also hold for the relative permittivity εr(ω) := 1 + χ(ω). Equivalently one
finds these relations for the magnetic susceptibility and the relative permeability
µr(ω). Because the complex refractive index is an analytic function of the two

n(ω) = n(ω) + iκ(ω) =
√
εr(ω)µr(ω), (3.12)

one finds KK relations of the same form [67]. They read

n(ω) − 1 = + 1
π

−
∫ ∞

−∞

1
Ω − ω

κ(Ω) dΩ, (3.13)

κ(ω) = − 1
π

−
∫ ∞

−∞

1
Ω − ω

n(Ω) dΩ. (3.14)

The first relation is written for n(ω) − 1 instead of n(ω) since this function tends
to 0 as ω → ±∞ and the Hilbert transform of a constant is zero for all finite ω.
The real an imaginary parts of the RI fulfill an additional symmetry property: Upon
time reversal (a wave propagating “backwards”), the refraction of an electromagnetic
wave at an interface, described by the real part of the RI n does not change, whereas
the absorption coefficient, proportional to the imaginary part of the RI κ, changes
sign. Since time reversal (t ↔ −t) of the phase factor e±iω t is equivalent to ω ↔ −ω,
one has

n(−ω) = n(ω) and κ(−ω) = −κ(ω). (3.15)

Using this, the KK relations take their most common form

n(ω) − 1 = + 2
π

−
∫ ∞

0

Ω
Ω2 − ω2 κ(Ω) dΩ, (3.16)

κ(ω) = − 2
π

−
∫ ∞

0

ω

Ω2 − ω2 n(Ω) dΩ, (3.17)
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which can be found in many optics textbooks, e. g., Ref. 61. The symmetry prop-
erties implied by these equations have to be borne in mind when modeling the
absorption spectra outside the measured region.

It will also be useful to write the KK relations in terms of vacuum wavelength
λ = 2π c0/ω, c0 = 2.997 924 58 × 108 m s−1. Without implied symmetry, they read

n(λ) − 1 = + 1
π

−
∫ ∞

−∞

( 1
Λ − 1

Λ − λ

)
κ(Λ) dΛ, (3.18)

κ(λ) = − 1
π

−
∫ ∞

−∞

( 1
Λ − 1

Λ − λ

)
n(Λ) dΛ, (3.19)

where n and κ were assumed to be bounded functions, such that the only singularities
are due to the 1/(Ω − ω) or 1/(Λ − λ) terms. In this case, the change of variables
in the principal value integrals works as for any other integral, which is however not
generally the case. With the symmetry implications (n(λ) is even, κ(λ) is odd) they
read

n(λ) − 1 = − 2
π

−
∫ ∞

0

λ

Λ
λ

Λ2 − λ2 κ(Λ) dΛ =: K[κ](λ), (3.20)

κ(λ) = + 2
π

−
∫ ∞

0

λ

Λ2 − λ2 n(Λ) dΛ. (3.21)

3.2.2 Some analytical examples
We will now illustrate the properties of the KK relations using some simple models
for the imaginary RI that can be transformed analytically relatively easily. For this
purpose, the representation in the wavelength domain is chosen, which is also used
later for measurement data. The corresponding curves are shown in Fig. 3.1.

δ-Peak

A δ-function may be used to model spectral lines which are very far away from the
observed wavelength range. The contribution from the δ-peak

κδ(λ) = π

2 aδ λδ δ(λ− λδ) for λ > 0, λδ > 0 (3.22)

with the dimensionless amplitude aδ to the real part of the RI is

K[κδ](λ) = aδ
λ2
δ

(
1
λ2
δ

− 1
λ2

)−1

, (3.23)

which for λ ≫ λδ behaves like

K[κδ](λ) ∼ aδ

(
1 + λ2

δ

λ2

)
(3.24)

and becomes a constant aδ in the limit λδ → 0+, hence for this model

lim
λδ→0+

n(λ) = 1 + aδ. (3.25)

This simplistic model reveals an important consequence of the KK relations for
the RI of basically any material in the visible range. Even if the material is non-
absorbing in the visible spectral range, it usually exhibits strong absorbance at very
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Figure 3.1: Three different absorption peaks (δ, rectangle and Lorentzian) and their
KK transforms.

short wavelengths or high photon energies, such as the deep UV, since the inner
electron shells of the atoms in the material will be excited. Thus, a variety of
overlapping absorption lines is expected for any material at short wavelengths. If
these lines are far away from the spectral region of interest, their contribution to
the real RI reduces to that of a delta function. Hence a wavelength-independent
background contribution of deep UV (or lower wavelength) absorption is a generic
feature of real RIs in the visible spectral range, which are thus higher than 1.

Rectangle peak

A rectangle peak (or box function)

κΠ = aΠ
λΠ

ΓΠ

⎧⎨⎩1 for λ ∈ [λΠ − ΓΠ, λΠ + ΓΠ],
0 otherwise for λ > 0

(3.26)

centered at λΠ with dimensionless amplitude aΠ and half-width ΓΠ > 0 can serve as
a very crude model for a finite-width absorption line. Its KK transform reads

K[κΠ](λ) = aΠ

π

λΠ

ΓΠ

[
2 ln

(
λΠ + ΓΠ

λΠ − ΓΠ

)
+ ln

⏐⏐⏐⏐⏐(λΠ − ΓΠ − λ)(λΠ − ΓΠ + λ)
(λΠ + ΓΠ − λ)(λΠ + ΓΠ + λ)

⏐⏐⏐⏐⏐
]
. (3.27)

I. e., the real part of the RI n(λ) = 1 + K[κΠ](λ) diverges logarithmically at the
edges of the rectangle at λΠ ±ΓΠ (and, for λ < 0, their mirror images at −λΠ ∓ΓΠ).
This behavior indicates that one should preferably not compute n(λ) from data for
κ(λ) on an incomplete spectral range that cuts of any absorption features, because
this effectively means introducing such edges and divergences.

Lorentzian peak

The Lorentzian line
κL(λ) = aL

1
π

ΓL

(λ− λL)2 + Γ2
L

(3.28)
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is a simple model for an absorption feature of finite width. Harmonic oscillator
models for electrons yield this kind of functional dependence for the imaginary part
of the susceptibility ℑ[χ(ω)], i. e., as a function of ω rather than λ. In the case of
sufficiently narrow lines (ΓL ≪ λL) and low amplitude, the expression for ℑ[χ(ω)]
can be approximated to yield the above equation. As written, κL(λ) is neither and
odd nor an even function of the wavelength λ. To model a physically plausible
absorption, a second line with the peak at λ = −λL has to be subtracted to fulfill
κ(−λ) = −κ(λ).1 It is however easier to first transform the individual absorption
lines with the KK relation for functions without defined parity functions [Eq. (3.18)]
and later add/subtract the results. The Hilbert transform

H[κL](λ) := 1
π

−
∫ ∞

−∞

1
Λ − λ

κL(Λ)dΛ (3.29)

can be computed either by complex integration with the residue theorem or by
explicitly performing the real integration. It reads

H[κL](λ) = −aL
1
π

λ− λL

(λ− λL)2 + Γ2
L
. (3.30)

According to Eq. (3.18), the contribution to the real RI due to κL(λ) is

nL(λ) − 1 = H[κL](0) − H[κL](λ) = aL
1
π

[
λL

λ2
L + Γ2

L
+ λ− λL

(λ− λL)2 + Γ2
L

]
(3.31)

and accordingly for the mirrored Lorentzian line with λL ↔ −λL. The first term
in the brackets is constant and the second term describes the shape of a typical
dispersion feature at or around an absorption line, see Fig. 3.1.

Such a Lorentzian line will be used to substitute the literature spectra of Hb
solutions in the deep UV. I. e., for some interval λ ∈ [λa, λb] literature data is
available and will be used to compute the KK transform. For λ < λa a model
function like above will be assumed for κ(λ). When the KK transform of this model
is computed, one needs to integrate only over the deep ultraviolet spectrum and not
λ ∈] − ∞,∞[. The analytical expression for this reads

gL(λ) = 1
π

−
∫ λa

−λa

( 1
Λ − 1

Λ − λ

) [
κL(λ) − κL(λ)

⏐⏐⏐
λL↔−λL

]
dΛ

= aL

π2

{
1
2 ln

(
(λa − λL)2 + Γ2

L
(λa + λL)2 + Γ2

L

)
×
[

ΓL

(λ− λL)2 + Γ2
L

+ ΓL

(λ+ λL)2 + Γ2
L

− 2ΓL

λ2
L + Γ2

L

]

− ln
(⏐⏐⏐⏐⏐λa − λ

λa + λ

⏐⏐⏐⏐⏐
)

×
[

ΓL

(λ− λL)2 + Γ2
L

− ΓL

(λ+ λL)2 + Γ2
L

]

+
(
π − arctan ΓL

λa − λL
− arctan ΓL

λa + λL

)

×
[

λ− λL

(λ− λL)2 + Γ2
L

− λ+ λL

(λ+ λL)2 + Γ2
L

+ 2λL

λ2
L + Γ2

L

]}
(3.32)

for λ > λa. Even though it looks somewhat involved, Eq. (3.32) is useful to describe
the deep UV part of the absorption spectrum without the need for numerical inte-
gration. For later use, we also define the transformation for unit amplitude g̃L(λ),
such that gL(λ) = aL g̃L(λ).

1 This is also the case for the δ and rectangle peaks. Since they have finite support, this was
taken into account automatically by using the KK relations in the form of Eq. (3.20) rather than
Eq. (3.18).
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Figure 3.2: Complex RI of water. The real part nH2O is from Ref. 41, the imaginary
part κH2O from Ref. 40.

3.3 Application to hemoglobin solutions

3.3.1 General considerations

The KK relations Eq. (3.20) and (3.21) imply that knowledge of either the real
part n(λ) or the imaginary part κ(λ) for all vacuum wavelengths λ ∈ [0,∞[ fully
determines the respective other function. However, the requirement λ ∈ [0,∞[ can
never be fulfilled in practice. This poses a problem in applying the KK relations to
measurement data and one has to find ways to deal with the missing information
outside the measured spectral domain. The most common application is to compute
the real part n(λ) from the imaginary part κ(λ), where the latter is equivalent to the
absorption spectrum. As already discussed above, basically every material exhibits
strong absorbance at very short wavelengths (i. e., high energies), such as deep UV,
causing a real RI significantly larger than 1 in the visible spectral range, even if the
material is non-absorbing in this region. As an example (Fig. 3.2), water has very
low κ(λ) < 1 × 10−5 for λ ∈ [200, 1100] nm, but has an RI of n(λ) > 1.3. The cause
for this is strong absorbance in the deep UV around λ = 100 nm and somewhat
weaker absorbance in the IR for λ > 1.5 µm. While causing noticeable refraction in
the visible, the wavelength dependence of n(λ) is rather simple and monotonically
decreasing, which is refered to as normal dispersion. This example shows that one
cannot simply use finite-wavelength-range spectra without having at least an idea
of what is happens outside this range. If one were to apply the KK relations to
the spectrum of water restricted to the range [200, 1100] nm (implying κH2O(λ) = 0
outside this interval), the resulting real RI n(λ) would differ from 1 on the 10−5

scale, which is obviously incorrect.
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3.3.2 Formal Kramers-Kronig transform of the spectrum of
hemoglobin solutions and erythrocytes

In the spectral range of λ ∈ [250, 1100] nm the strongest absorption of light by RBCs
and hence of blood is caused by Hb. Water has a fairly low absorption coefficient in
this region (cf. Fig. 3.2) and other RBC components contained in the cytosol (e. g.,
other proteins, sugars, ions) exhibit rather low concentrations. Hence, it is not a
strong simplification to consider a two-component system of water and hemoglobin.

Since the Beer-Lambert law is known to hold for Hb solutions at least up to
physiological concentrations [37], the total imaginary RI of the solution is given by

κ(λ) = ln 10λ
4π

∑
j=Hb,H2O

εMj (λ) cj
Mj

=
∑

j=Hb,H2O
ϕj κj(λ), (3.33)

where εMj is the molar absorptivity, Mj the molar mass and κj is the imaginary RI
of pure species j. The quantity

ϕj := cj
ρj

(3.34)

denotes the fraction between the respective mass concentration and the density of
the pure species j = Hb,H2O. As a side note, the density of the solution is given
by

ρ =
∑

j=Hb,H2O
cj =

∑
j=Hb,H2O

ϕj ρj. (3.35)

The density of Hb solutions is known to increase linearly with mass concentration up
to at least 46% (mass/volume) [70] at a slope that corresponds to the relative density
difference between a Hb crystal (ρHb ≈ 1330 g L−1 are given in [36] for proteins in
general) and water (ρH2O ≈ 1000 g L−1). Under these circumstances, the fraction ϕj
is also equal to the volume fraction of the constituents, i. e.,

ϕj = Vj
Vtotal

(3.36)

and ϕHb + ϕH2O = 1, which is not generally the case for ϕj defined in Eq. (3.34).
Hence, in the following we use ϕHb ≡ ϕ and ϕH2O = 1 − ϕ.

The imaginary RI of the solution is

κ(λ) = ϕκHb(λ) + (1 − ϕ)κH2O(λ), (3.37)

where κH2O(λ) is the absorbance of pure water and κHb(λ) is the absorbance of “pure
hemoglobin in aqueous solution”. It should be noted that κHb is not equal to the
imaginary RI of a crystal of pure hemoglobin as is revealed by comparison with data
for the complex dielectric function of thin Hb films [71]. Eq. (3.37) is similar to the
ansatz in [69], where, however, the authors did not include the prefactor 1 − ϕ for
the water absorbance, which results in a relevant difference: A normal physiological
intra-erythrocyte Hb concentration of 340 g L−1 corresponds to a volume fraction
of ϕ ≈ 0.26 or 26%. The term for the absorbance contribution of Hb, ϕκHb(λ),
becomes

ϕκHb(λ) = cHb
κHb(λ)
ρHb

def. γ(λ)= cHb γ(λ), (3.38)

where γ(λ) is Hb’s concentration-specific increment of the imaginary RI, or the
imaginary RI increment. Since the Hb concentration cHb is measured in g L−1, the
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unit for γ is L g−1. Eq. (3.37) thus becomes

κ(λ) = cHb γ(λ) +
(

1 − cHb

ρHb

)
κH2O(λ). (3.39)

Applying the KK relation Eq. (3.20) formally to the expression for the absorption
of the Hb solution Eq. (3.39) for λ ∈ [0,∞[, we obtain

n(λ) − 1 = cHb g(λ) +
(

1 − cHb

ρHb

)
(nH2O(λ) − 1) , (3.40)

where g(λ) := K[γ](λ) is the transformed spectrum of Hb. This formal transforma-
tion of the absorption results in an equation for the real RI of the Hb solution and
the real RI increment α(λ)

n(λ) = nH2O(λ) + cHb

[
g(λ) − nH2O(λ) − 1

ρHb

]
def. α(λ)= nH2O(λ) + cHb α(λ).

(3.41)

The linear-affine dependence of n(λ) on cHb in Eq. (3.41) is in agreement with
experimental findings [38]. In Eq. (3.39), we have formally split off the water ab-
sorption. After KK transform, this term yields the real RI of water nH2O(λ), which
contributes to the background in the dispersion relations of the Hb solutions [cf.
Eq. (3.41)]. Since the real RI of water – unlike the real RI of Hb – is known to high
accuracy, this provides valuable additional information compared to the application
of the KK-transform only to the measured absorption spectrum of a Hb solution in
the visible and near UV/IR range. The latter approach was presented by Faber et
al. [68] and the results later found to be in disagreement with measurements [37,38].

The idea to separate the water contributions was already presented by Sydoruk
et al. [69]. However, the prefactor 1 − ϕ was missed in Eq. (3.37) and a different
result obtained for α(λ). Compared to Sydoruk et al., we obtain an additional
term (nH2O(λ) − 1)/ρHb for the real RI increment of Hb. We discuss the differences
between the results obtained in [68], [69] and the present result with the improved
model in section 3.4.2. For numerical values of nH2O(λ), we use a four-term Sellmeier
formula that is accurate to at least five decimal places [41].

3.3.3 UV absorption model
So far, we have used the KK relations to formally derive Eq. (3.41) and the fact that
we are dealing with integrals over all wavelengths λ ∈ [0,∞[ and slowly decaying
integral kernels was not a problem. However, Eq. (3.41) still contains the term
g(λ) = K[γ](λ) that is to be evaluated with experimental data for the imaginary
RI increment γ(λ) of Hb. Data are available only for finite wavelength ranges
λ ∈ [λa, λb] = [228, 1100] nm [37, 39, 72]. Although the integral kernel in the KK
relations [Eq. (3.20)] is decaying with increasing distance from the pole at Λ = λ,
it is long-ranged. Hence, one cannot simply restrict the integration to [λa, λb], as
this would be equivalent to claiming γ(λ) ≡ 0 for λ /∈ [λa, λb]. To deal with this, we
can first formally split the absorption spectrum into three parts: (i) the “literature”
range λ ∈ [λa, λb] = [228, 1100] nm where literature data is available, (ii) the deep
UV λ < λa with no quantitative spectra available and (iii) the far IR λ > λb with
no accurate quantitative spectra available.
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Figure 3.3: Imaginary RI increment γ(λ) of human Hb variants in aqueous solu-
tions. ∗ denotes data for oxyHb and deoxyHb from Friebel and Meinke [37] for
λ ∈ [250, 1100] nm. † denotes data for oxyHb and deoxyHb from the book of Zijl-
stra, Buursma and van Assendelft [39] for λ ∈ [450, 800] nm. Both sources were
supplemented at the UV end (λ > 228 nm) with data from Sugita, Nagai and
Yoneyama [72]. Cubic spline interpolation was applied to obtain a step width of
1 nm.
A Lorentzian peak models the deep UV absorbance of the peptide backbone. Pa-
rameter fits to two different datasets of the real RI increment are shown: § is fitted
to measurements of Friebel and Meinke [38], ¶ is fitted to values determined from
extinction spectra of RBCs in chapter 4 of this thesis.

In addition to the known absorption spectrum (Fig. 3.3) with strong absorption
in the vicinity of the Soret band at 420 nm, the metalloprotein Hb has an even
stronger absorption peak in the deep UV. This feature stems from the peptide
bonds forming the backbone of any polypeptide or protein and is characteristic
for this class of substances. The corresponding extinction coefficient curves ε(λ)
are similar among a variety of proteins and the absorbance maximum is typically
located at λ = 187 nm [73, 74]. The similarity of the spectra between different
proteins and peptides may be the reason for the scarcity of quantitative data in the
literature: These deep UV spectra are not particularly helpful for the analysis of
chemical composition or structure.

This peptide-peak must be accounted for to perform a proper KK analysis, but
is, unfortunately, not resolved in the existing experimental Hb spectra. However,
data were reported for human and bovine albumin [74] – a protein found in blood
serum. Albumin is similar to hemoglobin in its molar mass and optical properties
at wavelengths away from the characteristic Hb absorption band at 420 nm. The
absorption maximum for human albumin is reported as ε(187 nm) = 86.0 L g−1 cm−1,
corresponding to a value of γ(187 nm) = 2.95 × 10−4 L g−1, which is more than four
times as high as the peak around 420 nm (Fig. 3.3).

This generic protein absorption is modeled as a Lorentzian curve

γL(λ) = aL
1
π

ΓL

(λ− λL)2 + Γ2
L

− aL
1
π

ΓL

(λ+ λL)2 + Γ2
L
, (3.42)
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compare section 3.2.2 where the partial transform of this model curve, integrated
over the deep UV only, was given. We set the central wavelength of the peak to
λL = 187 nm. For the of the width of the curve, we note that for proteins in general,
Woods and O’Bar report that “the increase in absorbance at 187 nm is threefold over
that at 205 nm and fourfold over that at 210 nm” [74]. This description fits well to a
half width of the curve of ΓL = 11.6 nm. To account for the influence of extreme UV
absorption at lower wavelengths, a constant offset in the real RI increment is added
to the model. This can be interpreted as stemming from a delta-peak of unknown
amplitude located at zero wavelength γδ(λ) = limλδ→0+

π
2 aδ λδ δ(λ− λδ).

The imaginary RI increment of Hb drops to below 10−7 L g−1 for λ > 1100 nm,
and the imaginary RI of a 26.7 g L−1 Hb (oxyHb/deoxyHb) solution does not sig-
nificantly exceed that of water at least up to λ = 2.6 µm2. Hence, no significant
contribution to the real RI increment is expected from λ > λb. The model used for
the imaginary RI increment of Hb solutions is thus

γ(λ) =

⎧⎪⎪⎨⎪⎪⎩
γlit(λ) for λ ∈ [λa, λb]
γL(λ) + γδ(λ) for λ ∈ [0, λa[
0 for λ > λb.

(3.43)

For metHb, the available high-quality spectra [39] end at λb > 800 nm. How-
ever, since the absorbance of metHb, oxyHb and deoxyHb is actually very low
(γ < 10−6 L g−1) already for λ > 700 nm (see Fig. 3.3), the same model, i. e., zero
absorbance above highest wavelength of literature spectra, is also used for metHb.

For the integral transform g(λ) = K[κ](λ), the contribution from the δ-peak γδ(λ)
is gδ(λ) = aδ and hence constant and the contribution gL(λ) = aL g̃L(λ) from the
Lorentzian, integrated only over the deep UV part of the spectrum, can be obtained
analytically (see section 3.2.2). Here g̃L(λ) is the contribution for a Lorentzian of
unit amplitude. Thus, we are left with

g(λ) = glit(λ) + aL g̃L(λ) + aδ, (3.44)

where only the first term glit(λ) := K[γlit](λ) needs to be evaluated numerically.
Numerical evaluation is straightforward. An integration scheme is used, which

evaluates the KK relations as a Riemann sum with Taylor expansion at the singu-
larities of the integrand as described, e. g., in [75]. The scheme used is described in
Appendix 3.A.

3.3.4 Fitting to measurement data
There remain two free parameters in the expression for the real RI increment

α(λ; aL, aδ) = glit(λ) −nH2O(λ) − 1
ρHb  

=:gH2O(λ)

+aL g̃L(λ) + aδ. (3.45)

Neither of the two free parameters, aL and aδ can be computed from literature
absorption spectra a priori with satisfying accuracy. For the peptide absorption
aL, the order of magnitude can be estimated from the semi-quantitative data of

2 An extended wavelength range of the data published in Ref. 37 was kindly provided by M.
Friebel.
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Ref. 74, where the absorbance maximum is given. It is important to keep in mind
that, in the visible, the KK transform of the peptide-peak in the deep UV depends
much stronger on the center position and the area under the peak than on its actual
maximum. Since the peak shape is not quantitatively known, the peak height alone
does not contain enough information to determine aL. Thus we use a linear least
squares approach to optimize the parameter values.

Measurement data for the real RI increment is given at N wavelengths λi, i =
1, . . . , N . The linear model in Eq. (3.45) for the vector with components αi := α(λi)
can be written as

α = glit + gH2O + Ja
=:f(a)

. (3.46)

Here the first two terms are the fixed part resulting from numerical KK transforma-
tion of the Hb spectrum and from the real RI of water, respectively and the N × 2
matrix J contains the contributions from the Lorentzian and δ-peak

glit =

⎛⎜⎜⎝
glit(λ1)

...
glit(λN)

⎞⎟⎟⎠ , gH2O =

⎛⎜⎜⎝
gH2O(λ1)

...
gH2O(λN)

⎞⎟⎟⎠ , J =

⎛⎜⎜⎝
g̃L(λ1) 1

... ...
g̃L(λN) 1

⎞⎟⎟⎠ . (3.47)

The parameter vector is a = (aL, aδ)T . The vector of measurement data of the real
RI increment at the N wavelengths is denoted as αmeas and its difference to the
fixed terms as y := αmeas − glit − gH2O. The linear least squares problem is then
χ2(a) → min with

χ2(a) := [y − f(a)]T W [y − f(a)] , (3.48)

where W = {wij}Ni,j=1 is a weight matrix given by the inverse of the covariance
matrix of the data vector. The conditions for minimal χ2(a) are solved by standard
linear algebra, which yields

â = arg minχ2(a) = (JTWJ)−1JTWy, (3.49)
f̂ = J â = J (JTWJ)−1JTW  

=:F

y (3.50)

for the parameter vector a and the UV model f(a). The resulting amplitude of the
Lorentzian is shown in Fig. 3.3 as generic peptide absorbance. As can be seen, the
results depends on the real-RI-increment data used for fitting.

3.3.5 Hemoglobin variants
While the absorption spectra of different variants of Hb, including oxyHb, deoxyHb
and metHb, are well known [39], measurements of the real RI increment α(λ) exist
only for oxygenated Hb. Nevertheless, the KK analysis allows to derive a result for
the real RI increment of other variants. To this end, we use the same model for
the deep UV absorbance as above, Lorentzian and delta-peak, with the coefficients
âL, âδ found by the least-squares fit for oxyhemoglobin. I. e., the optimal values of
the UV model f̂ are determined from Eq. (3.50) with y = αoxy

meas −goxy
lit −gH2O. This

result is then used for the other Hb variants, too, i. e.

α̂x = gxlit + gH2O + f̂ , x = oxy, deoxy, met. (3.51)
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Figure 3.4: Real RI increment α(λ) of oxyhemoglobin solutions: The upper two
curves are experimental data by Friebel and Meinke [38] and the KK result with
free parameters of the deep UV model fitted to it. The lower two curves are results
of chapter 4 and the corresponding KK results with fitted deep UV model. Shaded
bands indicate ±1 estimated standard uncertainty.

The reason to simply use the same deep UV model function for oxyHb as well as for
other Hb variants is that it describes the absorption of light by the metalloprotein’s
peptide backbone. The different Hb variants differ in the oxidization state of the
iron ions in the prosthetic non-protein heme groups in the Hb molecules and also in
the conformation of the protein chains [76], but not in the chemical structure of the
peptide backbone.

3.4 Results and discussion

3.4.1 Real refractive index increment for oxyHb, deoxyHb
and metHb

Fig. 3.4 shows the result of the presented KK computation for the real refractive
increment α̂(λ) for oxygenated Hb along with the experimental data of Friebel and
Meinke [38] and values determined independently from RBC extinction spectra in
chapter 4 of this thesis. While the overall shape is similar between the measure-
ments of Friebel and Meinke [38] and the corresponding KK fit, deviations occur
around the dispersion feature at 400 nm, exceeding the estimated measurement un-
certainty provided in Ref. 38 combined with the estimated uncertainty of the KK
result. The deviations between this chapter’s result α̂(λ) and the data of Friebel
and Meinke αF&M(λ) can not be attributed to unknown spectral absorptions out-
side the 250 nm–1100 nm range, since features producing such discrepancies would
necessarily be inside this wavelength range. I. e., this is an actual inconsistency in
the data, not a flaw of the theoretical model. Furthermore, we have modeled impor-
tant spectral absorptions at the UV end of the spectrum. Concerning possible IR
absorptions that are not considered in the proposed model, the following should be
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Figure 3.5: Real RI increment of aqueous hemoglobin solutions computed with KK
relations: Result for deoxyHb and metHb obtained with the same model for deep
UV absorbance as for oxyHb (¶ in Fig. 3.3 on 31), obtained by fitting to the results
of chapter 4, compare Fig. 3.4.

noted: The absorption spectra of aqueous hemoglobin solutions in the IR between
1.1 µm and 2.6 µm are dominated by water [37] indicating that the imaginary RI
increment of Hb is very low in this region. Hypothetical absorption lines due to Hb
at even longer wavelengths would contribute to the real RI increment α(λ) in the
form of constants or functions with a gentle negative slope. Any possible influence
of the long-wavelength end of the spectrum of Hb would thus change the agreement
between our result α̂(λ) and the literature data αF&M(λ) for the worse. Thus we
conclude that no important contribution to the absorption spectrum was missed
at the long-wavelength end. The KK relations themselves are valid as long as the
framework within which the data were measured holds, i. e., classical electrodynam-
ics and linear, causal media. This implies that the absorption and refraction data
presented in Refs. 37,38 are not self-consistent within the claimed measurement un-
certainties for the real RI increment. In contrast, the RI increment determined from
the extinction spectra of sphered RBC suspensions (chapter 4) is consistent with
the KK result within the estimated uncertainties. This indicates that the RI incre-
ment data of Friebel and Meinke may be less reliable than the provided uncertainty
estimates suggest.

When the work described in this chapter was first done, the data by Friebel
and Meinke [38] were the best available, and were hence used for fitting in the
corresponding publication, Ref. 47. Other measurements of the real RI increment
of Hb solutions or intact RBCs have since become available. Besides the results of
chapter 4 of this thesis, these are the measurements of Lazareva and Tuchin [44]
performed with an Abbe refractometer for Hb solutions and the measurements of
Ojaghi et al. [49] performed on a single RBC using UV spectral interferometric
microscopy. The data of Lazareva and Tuchin are for eleven discrete wavelengths
and the spectral dispersion is not resolved in detailed. This means that a KK fit
can be performed but does not provide a consistency check as is does with the
other datasets for quasi-continuous spectral ranges. Aside from that, the method
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for obtaining the Hb solutions used by Lazareva and Tuchin [44] was identical to
that of Friebel and Meinke [38], suggesting similar sources of error in both cases.
The data of Ojaghi et al. [49] are consistent with the results of chapter 4, but cover
a narrower wavelength range and exhibit higher noise levels. Hence, the results
of chapter 4 of this thesis were selected for fitting the free parameters of the UV
absorption model to.

The results for the real RI increment α(λ) of deoxyHb and metHb are shown in
Fig. 3.5 in comparison to oxyHb. For λ > 650 nm, where the absorbance of either
Hb variant is low, the real RI increments differ only little. Similarly, the difference
becomes small for λ < 250 nm, where absorbance is strong, but spectra are almost
identical for all Hb variants. Other spectral features such as the shift of the Soret
band near 420 nm between the three variants and the transition of a double peak to
a single peak around 560 nm upon deoxygenation are clearly reflected in the real RI
increment α(λ).

The fact that results for other Hb variants can easily be obtained, too, once a
reliable dataset for the real RI increment of oxyHb or oxygenated RBCs is available
is the major benefit of the KK method. No data for the RI of other variants than
oxyHb exist, but are required to model the interaction of light with blood cells, e. g.,
for deoxygenated venous blood. Another important application is the assessment of
the functionality (i. e., capability to transport oxygen) of artificial Hb microparticles
that are currently developed as a blood substitute and their content of non-functional
metHb. This is discussed in chapter 5 where the KK results for the three Hb variants
are used.

3.4.2 Comparison to previous Kramers-Kronig analyses
We will now briefly review two previous investigations on the refractive index of
hemoglobin and red blood cells, that employed KK relations, namely Refs. 68, 69
and compare the methods. In their 2004 article, Faber et al. [68] started from
Eq. (3.20) and applied it to the Hb absorption spectra in a finite spectral range,
i. e., instead of Eq. (3.39) they assumed

κFaber et al.(λ) = cHb γlit(λ) = cHb

⎧⎨⎩ γ(λ) λ ∈ [λa, λb]
0 else

, (3.52)

where [λa, λb] is the spectral range of available literature data, which in their case
was [λa, λb] = [250, 1000] nm. For a comparison of the methods, we will assume
the spectra in Fig. 3.3 covering a wider spectral range [λa, λb] = [228, 1100] nm
Faber et al. then used a subtractive form of the KK relations, where the difference
n(λ) − n(λ0) is considered which yields

nFaber et al.(λ) = n(λ0) + cHb [glit(λ) − glit(λ0)] (3.53)

with glit(λ) = K[γlit](λ). The free parameter n(λ0) is fixed by a refractometric
measurement at wavelength λ0 = 800 nm. If the non-subtractive KK relations had
been used instead, the result would have been

n(λ) = 1 + cHb glit(λ), (3.54)

which is off the true value by a significant amount, since it yields an RI near 1.
One can remove this discrepancy by replacing the 1 in the above expression by a
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Figure 3.6: Comparison between the real RI of RBCs determined from Cext(λ)
(chapter 4; measurement uncertainty indicated by shaded band) and different KK
analyses. The Hb concentration is cHb = 330 g L−1. All KK methods were applied
to the same spectrum (oxyHb* in Fig. 3.3). Curves calculated according to Faber
et al. [68] and Sydoruk et al. [69] are matched to the blue reference curve at n(λ0 =
800 nm) = 1.3986(7).

free parameter, which can be interpreted as deep UV absorption. Again, this free
parameter can be fixed by a single measurement at λ0. The result is then the same
as in Eq. (3.53). However, the subtractive KK transform K[γ](λ) − K[γ](λ0) can be
re-written into a single integral where the kernel decays faster than in the standard
KK relations, which is numerically favorable and thus given as an argument for the
use of subtractive relations. When applying them, however, one must be certain not
to have missed any important spectral features outside the measured range. E. g.,
a deep UV peak can only be represented by a constant if it is far away from the
region of interest. If the location of the peak becomes important as is the case for
water in the visible (see Fig. 3.2), this model is insufficient.

In their 2012 paper, Sydoruk et al. [69] made the ansatz

κSydoruk et al.(λ) = κH2O(λ) + cHb γlit(λ). (3.55)

for the imaginary RI of the Hb solution. This takes the absorption due to water
into account but neglects the finite volume fraction ϕ taken up by the Hb, i. e., a
prefactor (1−ϕ) is missing in front of κH2O(λ), in contrast to the approach presented
in Eq. (3.39). Apart from this difference, the formal application of the KK relations
in the present work is identical to that in [69]. The result was

nSydoruk et al.(λ) = nH2O(λ) + cHb glit(λ), (3.56)

which also provides a theoretical derivation of the empirical finding n(λ) = nH2O(λ)[1+
cHb β(λ)] reported in Ref. 38. However, the result that β(λ) = glit(λ)/nH2O(λ) or
α(λ) = glit(λ) is incomplete, as we have discussed. Subtractive KK relations were
used as well to match the RI at λ0 = 800 nm.

To compare these two previously presented methods with the method devel-
oped here they are applied to the spectra of oxyhemoglobin presented shown in
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Fig. 3.3. As an example, a concentration of cHb = 330 g L−1 was assumed and
n(λ0 = 800 nm) = 1.3986(7) was taken from the results of chapter 4 of this thesis.
The comparison of the two methods applied by Faber et al. [68] and Sydoruk et
al. [69] with the present method and the measurement results of chapter 4 is shown
in Fig. 3.6. Neglecting the water background as in Ref. 68 yields a dispersion curve
(purple line in Fig. 3.6) which substantially deviates from the measurement (dash-
dotted blue line in Fig. 3.6) everywhere, except at λ0, where it was matched. With
the water absorption and the resulting dispersion background taken into account [69]
(dashed green line in Fig. 3.6) the agreement with the reference RI is already much
better and almost perfect for λ > 500 nm. However, increasing differences occur
with decreasing wavelength, resulting from the influence of the peptide backbone.
In contrast, almost perfect agreement is found for the full spectral range between the
measurement results of chapter 4 and the KK approach presented in this chapter.

3.4.3 Uncertainty analysis
Both, the Kramers-Kronig transformation and the linear least-squares fit to the real
RI data are linear transformations, which can formally be carried out by matrix
multiplication. Hence, it is easy to perform the uncertainty propagation in terms of
mean values and covariance matrices for the result of the KK analysis

α̂x = gxlit + gH2O + f̂ , x = oxy, deoxy, met. [Eq. (3.51)]

However, such an analysis relies on the availability of reliable uncertainty estimates
of all the input quantities. The following is a brief outline of the important aspects
of the uncertainty analysis.

Measurement uncertainties of the following quantities need to be taken into ac-
count:

1. The literature absorption spectra, expressed either in terms of imaginary RI
increment γlit(λ), the molar extinction coefficient εM(λ) [72], or inverse ab-
sorption length µa(λ) [37].

2. The real RI increment αmeas(λ) of oxyHb used for fitting.

3. The hemoglobin density ρHb relating mass concentration cHb and volume frac-
tion ϕ. The uncertainty can be estimated with one digit, i. e., uρHb = 10 g L−1 =
0.75% ρHb.

4. The complex RI of water. Its uncertainty is ≤ 10−5, hence, the influence is
negligible.

Combining the latter two uncertainties results in a relative uncertainty of gH2O(λ)
[see Eq. (3.45)] of 0.75%, which affects the absolute value, but not the wavelength
dependence (uncertain prefactor). Compared to other influences, this effect is only
minor. Points 1 and 2 have more influence. In the analysis process, both quantities,
γlit and αmeas are transformed linearly

γ ↦→ glit = Kγlit, (3.57)
αmeas ↦→ f̂ = Fαmeas − glit − gH2O, (3.58)
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where K is the N × N matrix implementing the numerical KK transform (see ap-
pendix 3.A) and F is the N × N matrix relating the wavelength dependence of
the deep UV model to the input quantities [see Eq. (3.50)]. For the corresponding
covariance matrices [Σ(x)]ij = cov(xi, xj) this means

Σ(glit) = K Σ(γlit) KT , (3.59)
Σ(f̂) = F Σ(αmeas) FT + contributions from glit and gH2O. (3.60)

Both γlit and αmeas are expected to have some contribution from detector noise,
uncorrelated between different wavelengths or at least with correlations decaying
relatively quickly over spectral distance. For these contributions, the covariance
matrices are diagonal, such that their contributions to glit and f̂ are suppressed.
This is because the matrices K and F, representing non-local kernels, implement a
kind of averaging of the elements of vectors glit and f̂ , respectively. On the other
hand, γlit and αmeas are also both affected by uncertainties of the (intracellular)
Hb concentration cHb of the measured solution or RBC sample. Judging from the
strong discrepancies between literature data for α(λ), this seems to be mainly a
problem for RI measurements of highly concentrated solutions, not so much for the
absorption spectra. If we assume a relative concentration error ξ in a measurement
of the real RI increment, this can be expressed as

αmeas = (1 + ξ)αtrue, (3.61)

where ξ has expectation value E(ξ) = 0 and variance var(ξ) = σ2
conc,rel. The corre-

sponding uncertainty contribution to the covariance matrix of αmeas is

Σconc(αmeas) = var(ξ)  
=σ2

conc,rel

αtrueα
T
true ≈ σ2

conc,rel αmeasα
T
meas. (3.62)

In contrast to spectral detector noise, this kind of covariance matrix has full positive
correlation between all components, i. e., between all wavelengths. When propagated
through the linear fit, the tensor-product structure (i. e., xxT with some column
vector x) is conserved

Σconc(f̂) = F Σconc(αmeas) FT = σ2
conc,rel (Fαmeas) (Fαmeas)T , (3.63)

i. e., this contribution to the total uncertainty of f̂ has full correlation between all
wavelengths, too. This means that concentration errors and other systematic in-
fluences are not suppressed in the KK analysis and fitting procedure. Since this
kind of error contributes the most significant source of uncertainty, the conclusion
is: Concerning the absolute value of the real RI increment, the results of this chap-
ter’s analysis cannot be much more accurate than the reference curve αmeas used to
determine the free UV model parameters. Uncorrelated spectral noise in the input
data is, however, suppressed. A detailed quantitative uncertainty analysis of the
KK results α̂x can be performed as outlined above. However, reliable uncertainty
estimates of the literature data for the real RI increment αmeas are mostly unavail-
able. As discussed in chapter 1, literature values for αmeas differ by more than 30%
between various sources, indicating that concentration errors may be in the same
range for some of the reported data, but this is hard to quantify a posteriori. Hence,
a quantitative uncertainty analysis as outlined above would be mainly based on
guesswork.
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3.5 Summary
The complex RI of a Hb solution, which forms the cytoplasm of erythrocytes and
determines their optical properties can be computed as

n(λ) = nH2O(λ) + iκH2O(λ) + cHb[α(λ) + i γ(λ)], (3.64)

where the water absorbance κH2O(λ) is negligibly small for λ ∈ [250, 1100] nm and
physiological hemoglobin concentrations cHb ≥ 300 g L−1. In this chapter, the real
RI increment α(λ) of Hb was computed from literature spectra of the imaginary RI
increment γ(λ) for λ ∈ [228, 1100] nm. We formally separated the solution’s imagi-
nary RI into a water and a hemoglobin part and then applied the Kramers-Kronig
(KK) relations to obtain the real RI and thus an expression for α(λ), Eq. (3.41).
The absorption spectra available in the literature [37, 39, 72] do not resolve the
strong UV absorbance of hemoglobin’s peptide-backbone. Hence, it was modeled by
a Lorentzian line of unknown amplitude, located at 187 nm [74], which introduces
a free parameter aL (the amplitude of the absorption line) into the expression for
α(λ). A second free parameter aδ is introduced as a wavelength-independent term
accounting for extreme UV absorbance, cf. Eq. (3.45). These two free parameters
were determined by a linear least squares fit to an independently measured reference
curve αmeas(λ), the result of the fit is denoted by α̂(λ). We compared the measure-
ments of Friebel and Meinke [38] with the values of αmeas(λ) determined in chapter 4
of this thesis from the extinction spectra of suspensions of sphered red blood cells.
Fitting the parameters of the deep UV model to the real RI increment of Friebel
and Meinke [38] results in significant discrepancies, indicating that these data may
be incorrect. In contrast, the independent measurement results of chapter 4 are
found to be in excellent agreement with the Kramers-Kronig results of this chapter,
indicating that they are more reliable. Hence they were used in the following KK
analysis of different Hb variants.

A comparison was made between the present KK analysis and previous investiga-
tions, that neglected a part [69] or all of the strong absorption features [68] outside
the spectral range for which hemoglobin spectra are available. This comparison
shows that the dispersion background of water is the most important contribution,
but quantitative agreement with measurements can only be obtained if the deep-UV
peptide absorbance is accounted for, too.

In addition to oxyHb, the KK analysis was applied to deoxHb and metHb. For
deoxyHb and metHb, no measurements of the real RI increment exist. Hence, the
KK analysis provides an important tool to make such information available. The
optical properties of different Hb variants are required, e. g., to analyze blood samples
of varying oxygen saturation. Most importantly, the results for oxyHb, deoxyHb
and metHb from this chapter are used in chapter 5 for the validation of the oxygen
transport capability of artificial hemoglobin microparticles, intended for the use as
a blood substitute in transfusion medicine.



Appendix

3.A Numerical integration scheme for Kramers-
Kronig relations

For numerical integration of KK relations, we follow the concept described in Ref. 75:
a Riemann sum with Taylor expansion at the singularities of the integrand. Numer-
ical stability was tested by comparing to the analytical transformations of different
Lorentzian and rectangular profiles.

For computing the transform in Eq. (3.20), we want to numerically evaluate the
expression

π g(λ) = −2−
∫ λb

λa

λ

Λ
λ

Λ2 − λ2 γ(Λ) dΛ

= −
∫ λb

λa

( 2
Λ − 1

Λ + λ
− 1

Λ − λ

)
γ(Λ) dΛ.

(3.65)

The measurement data for κ are given on a uniform wavelength grid, or can be
interpolated to uniform step width

γi := γ(λi), (3.66)

λi := λa + t
(
i− 1

2

)
, i = 1, . . . , N. (3.67)

In the case of oxyHb and deoxyHb spectra, we have λ1 = 228 nm, λN = 1100 nm
and t = 1 nm. Hence N = 873. It suffices to evaluate the integral in Eq. (3.65) at
the grid points gi := g(λi). The third term in the integral has a singularity at λ = Λ.
The first two terms are not singular, hence no principal value integrals have to be
used here. All integrals for non-singular integrands are approximated by Riemann
sums, including the third term for Λ /∈ [λi − t/2, λi + t/2]. The remaining principal
value integral can be re-written by Taylor series expansion of the integrand. Using
only the lowest non-vanishing order yields

π gi ≈
N∑
j=1

(
2
λj

− 1
λj + λi

)
γj t−

N∑
j ̸=i

j=1

1
λj − λi

γj t− t γ′
i. (3.68)

The last term stems from the singular integral over Λ ∈ [λi− t/2, λi+ t/2], the other
terms stem from Rieman sums approximating the regular integrals. Numerically,
we use the nearest-neighbor lattice-derivatives

t γ′
i =

⎧⎪⎪⎨⎪⎪⎩
(γi+1 − γi−1)/2 1 < i < N

γ2 − γ1 i = 1
γN − γN−1 i = N

. (3.69)

Note that Eq. (3.68) can also be written as g = Kγ, where K is a N ×N matrix.
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Chapter 4

Modeling and analysis of
microparticle and red blood cell
extinction spectra∗

4.1 Introduction
This chapter deals with the inference of the optical properties of microparticles
and cells from their extinction spectra. Experimentally, the method is based on
measurements of the collimated transmittance T (λ) of a dilute suspension of cells or
microparticles in dependence on the vacuum wavelength λ. Dilute suspensions are
used, such that only single scattering occurs, i. e., the light scattered by a particle
is most likely not scattered a second time before reaching the detector. From the
transmittance spectrum of the suspension, one can compute the ensemble-averaged
extinction cross section Cext(λ) according to

Cext(λ) = − ln [T (λ)] 1
d c
, (4.1)

where c is the particle concentration (dimension 1/length3) and d is the optical path
length of the sample. The extinction cross section Cext(λ) of a single scatterer de-
scribes how much light is removed from a beam of light by scattering and absorption
processes. The measured quantity Cext(λ) is the ensemble average over all parti-
cle parameters, such as varying size or – in the case of cells – intracellular protein
concentration.

As already discussed in the previous chapters, the complex refractive index (RI)
of the hemoglobin (Hb) solutions making up the interior of red blood cells (RBCs)

∗ This chapter is partly based on
J. Gienger, M. Bär, and J. Neukammer. Extinction spectra of suspensions of microspheres: deter-
mination of the spectral refractive index and particle size distribution with nanometer accuracy.
Appl. Opt., 57(2):344–355, 2018.
and
J. Gienger, K. Smuda, R. Müller, M. Bär, and J. Neukammer. Refractive index of human red blood
cells between 290 nm and 1100 nm determined by optical extinction measurements. Sci. Reports,
9(1):4623, 2019.
The experimental data discussed and analyzed in this chapter were measured by Kathrin Smuda
(Charité/PTB Berlin) with an optical measurement device designed and implemented by Jörg
Neukammer and Ralph Müller (PTB Berlin).
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is given by

n(λ) = n(λ) + iκ(λ) = nH2O(λ) + cHb [α(λ) + iγ(λ)] . (4.2)

The approach to determine the optical properties of RBCs presented in this chap-
ter is as follows: RBCs are isovolumetrically sphered by a reversible process that
reduces their membrane surface area and the extinction spectra Cext(λ) of RBC
suspensions are measured over a wide wavelength range from 290 nm to 1100 nm.
The extinction spectra are analyzed numerically by solving an inverse problem. The
corresponding direct problem consists in computing the extinction spectra for given
ensemble properties, such as complex RI increment α(λ) + iγ(λ), size distribution
and distribution of intracellular Hb concentrations cHb using the Mie solution for
scattering by spheres [58, 61]. From measurements of hemolyzed RBCs (as pre-
sented in the literature [37, 39]), the imaginary RI increment γ(λ) of the RBCs is
well known. The inverse problem is solved as a nonlinear least-squares problem us-
ing a series-expansion representation of the real RI increment α(λ) with a suitable
set of basis function and numerical optimization. The parameter vector of the opti-
mization problem is given by the expansion coefficients of the RI increment together
with the parameters the distributions of cell size and Hb concentration, as well as a
term accounting for the concentration of the cell suspension.

As an intermediate step, the method is applied to suspensions of microscopic
polystyrene (PS) beads. These commercially available microspheres are are widely
used in colloidal and optical research, e. g., as a calibration material for cell mea-
surements in optical and impedance flow cytometry [77] or attached as “handles” to
optically manipulate biological cells [78]. Here, they serve as a test case to validate
the method for measurement and analysis of extinction spectra. The wavelength
dependence of the RI of PS is accurately known, at least for bulk material and
wavelengths between 436 nm and 1052 nm [79]. The imaginary part of the RI is
negligibly small in this spectral range [80]. In contrast to RBC suspensions, the
RI of all particles in a suspension of PS microspheres is identical, which eliminates
some parameters of the inverse problem. Also, the size distribution of the micro-
spheres typically used for calibration is very narrow compared to RBCs and the
mean particle size is accurately specified by the vendor. This allows to validate the
method with respect to determination of the size distribution, too. Inferring the
size distribution and/or RI of spherical or small particles from measurements of the
scattering or extinction of light is not a new idea and many different approaches have
been discussed in the literature [81–90]. These techniques can be divided into those
relying on the angular scattering pattern at a single wavelength [81,83–85], and into
those techniques relying on spectra of extinction or diffuse transmittance [86–91].
Of course, a combination of these techniques is also possible [82]. Since here we
are interested in the wavelength-dependent optical properties of particles and cells,
only the second category is relevant. Of those, the particle sizing techniques [89,91]
typically rely on the RI to be known. Conversely, techniques for the RI determi-
nation usually require a knowledge of the particle size distribution [86, 88–90]. For
a sample of RBCs, both, the RI (distribution) and the size distribution have to be
determined, hence such techniques are not applicable.

In addition to determining the RI and size distribution of PS microspheres sus-
pended in a fluid with known optical properties (e. g., water) from extinction mea-
surements, the RI of the liquid surrounding the particles – the matrix – can be
inferred, too, when the particle RI is known. This is demonstrated with glucose
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solutions of different concentrations, for which the dependence between RI and con-
centration is well known [92] by suspending the same PS beads in them as used
before. The approach is then applied to determine the RI of the chemical reagent
used for sphering of the RBCs. In a second step the optical properties of the RBCs
suspended in this reagent (with now known RI) are determined from their extinction
spectra.

4.2 Theoretical background
Let us give a brief outline of the most important theoretical aspects of extinc-
tion cross sections in electromagnetic scattering. Detailed explanations are given
in textbooks on light scattering. Here, we follow the derivations of Bohren and
Huffman [61].

Let us consider the scattering and absorption of light by cells or particles sus-
pended in a fluid. Firstly we consider a single particle surrounded by a quasi-infinite
host medium (the matrix), which we assume to have refractive index nm ∈ R, i. e.,
to be non-absorbing. Let Ei(r) be the electric field of an incident electromagnetic
time-harmonic wave which is assumed to be a plane wave propagating in the z-
direction. The vacuum wavelength of the incident wave is λ, hence the wavevector
within the matrix is given by km = 2π nm

λ
. The intensity of the incident wave is given

by
Ii = 1

2ε0 c0 nm
⏐⏐⏐Ei

⏐⏐⏐2 , (4.3)

where ε0 is the dielectric constant, c0 is the speed of light in vacuo. Note that
the plane wave has infinite cross sectional area and hence the total power of the
beam (intensity × area) is infinite. In the absence of the particle, Ei(r) would be a
solution to the Maxwell equations, but in the presence of the particle, an additional
scattered field Es(r) occurs. The particle is assumed to be located at the origin
of coordinates and for sufficiently large distances from the particle (kmr ≫ 1) the
scattered field behaves like a spherical wave with direction-dependent amplitude

Es(r) ∼ eikm(r−z)

−ikmr
T (ϑ, φ), (4.4)

where (ϑ, φ) is the angle of observation relative to the incident beam. A particularly
handy quantity is the amplitude scattering matrix, a 2×2 complex matrix depending
on (ϑ, φ). The parallel and perpendicular components (relative to the scattering
plane) of the scattered electric field are then(

Es
∥

Es
⊥

)
= eikm(r−z)

−ikmr
S(ϑ, φ)

(
E i

∥
E i

⊥

)
. (4.5)

The vector scattering amplitude T and consequently the amplitude scattering ma-
trix S describes how much light is scattered in other directions by the particle, and
also how much light is absorbed by it. For example, the rate Wsca at which light
is scattered by the particle can be found by integrating the Poynting vector corre-
sponding to Es over the surface of an imaginary sphere of arbitrary radius. The ratio
of the scattered power (dimension energy/time) to the incident intensity [dimension
energy/(time×length2)]

Csca := Wsca

Ii
=
∫∫

4π

|T (ϑ, φ)|2

k2
m |Ei|2

dΩ(ϑ, φ) (4.6)
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is called the scattering cross section. Similarly, one can define the rate at which
light is absorbed Wabs. Consequently, the rate at which light is removed from the
forward direction by either scattering or absorption is Wext = Wsca +Wabs. For the
corresponding extinction cross section, one finds the non-trivial result

Cext := Wext

Ii
= 4π
k2

m |Ei|2
ℜ{Ei∗ · T (0, φ)}, (4.7)

which is a form the optical theorem, stating that extinction depends only on the
scattering amplitude in the forward direction [61]. The extinction cross section Cext
defined in this way can be measured in a transmittance measurement. If a detector
D (sufficiently far away from the particle) has an area A(D), it receives a power
U0 = Ii A(D) in the absence of the particle and a power

U = Ii [A(D) − Cext] (4.8)

if the particle is interposed between the light source and the detector. I. e., Cext,
corresponds to the “size of the shadow” the particle casts onto the detector. The
above equation, however, only holds if the solid angle Ω(D) covered by the detector
is sufficiently small, because otherwise there will be a power contribution from non-
forward scattered light falling onto the detector, increasing U . In this case the
observed Cext would be smaller than the actual value. This is why detector apertures
in an extinction experiment need to be as small as possible.

For a spherically symmetric scatterer an plane wave incidence (and certain other
cases) the solution of the scattering problem can be obtained analytically, which is
known as Mie theory or Mie scattering [58,61]. Mie scattering yields the full electric
field for the scattering problem as a series expansion in vector spherical harmonics.
An outline is given in section 2.2.1 of chapter 2. For Mie scattering, the amplitude
scattering matrix S is diagonal and the extinction cross section reads

Cext = 4π
k2

m
ℜ [S(0)] (4.9)

with
S(0) := S11(0, φ) = S22(0, φ) = 1

2

∞∑
ν=1

(2ν + 1)(aν + bν), (4.10)

where aν , bν are the expansion coefficients of the scattered field in vector spherical
harmonics. They read

aν = mψν(mX)ψ′
ν(X) − ψν(X)ψ′

ν(mX)
mψν(mX) ξ′

ν(X) − ξν(X)ψ′
ν(mX) , (4.11)

bν = ψν(mX)ψ′
ν(X) − mψν(X)ψ′

ν(mX)
ψν(mX) ξ′

ν(X) − m ξν(X)ψ′
ν(mX) (4.12)

for ν ∈ N with

ψν(x) := x jν(x), ξν(x) := xh(1)
ν (x) ∀ x ∈ C, (4.13)

where jν(x) is a spherical Bessel function of the first kind and h(1)
ν (x) is a spherical

Hankel function of the first kind. Here

X := kmR, (4.14)
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is the size parameter, where R is the radius of the sphere and

m := n

nm
∈ C (4.15)

is the relative refractive index of the scatterer, where n = n+ iκ ∈ C is the complex
RI of the sphere.

Figure 4.1: Extinction of a collimated in-
cident beam (intensity Ii) by a suspen-
sion is the combined effect of scattering in
other directions (yellow arrows) and ab-
sorption by the particles.

The above considerations are for a
single particle. However, in a typical
transmittance measurement like shown
in Fig. 4.1 one does not measure the
extinction of a single particle, but of
a collection of particles that are ran-
domly distributed within the volume of
the sample. If there are N particles in
the total volume V illuminated by the
incident beam, one can write for the to-
tal electric field

E = Ei +
N∑
j=1
Es
j . (4.16)

Under the assumption that the inter-
particle distances are large enough, the
scattered field for each particle j will be
given by Eq. (4.4) with an additional phase factor eiki·Rj accounting for the position
Rj of the individual particles. Under the assumptions that the particle positions are
uncorrelated, that the polarization of the light is not rotated by scattering with the
particles (which is true for Mie scattering) and that summation over the particles
can be replaced by integration over the (homogeneous) particle density, one finds
for the transmitted electric field at some point r sufficiently far away from any of
the particles

E(r) = Ei(r)
{

1 − 2π
k2

m |Ei|2
[
Ei∗ · T (0, φ)

]
c d

}
, (4.17)

where c := N/V is the particle density or number concentration, d is the sample
thickness and

T := 1
N

N∑
j=1
Tj (4.18)

is the ensemble average of the vector scattering amplitude of the collection of parti-
cles. Under the assumption that the absolute value of the second term in the braces
in Eq. (4.17) is small, one can make use of 1−x ≈ e−x and write for the transmitted
intensity I ∝ ∥E∥2

I = Ii exp
(
−d cCext

)
, (4.19)

compare Eq. (4.7), where Cext is the ensemble-averaged extinction cross section.
When written in terms of the transmittance T = I/Ii, this is identical to Eq. (4.1).
As derived this equation strictly only holds for transmittances not much smaller
than 1, or d cCext ≪ 1 in which case the exponential law is identical to a linear
one. If, hypothetically, the particles did not scatter any light and all extinction were
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Figure 4.2: Optical layout to measure extinction spectra.

due to absorption, i. e., Csca = 0 and Cext = Cabs, then the exponential law could
be easily derived in the same way as one usually derives the Beer-Lambert law:
Consider the intensity absorbed by infinitesimally thin slabs, which is proportional
to the incident intensity and the number of particles in the slab. Then integrate over
thickness. If in addition scattering occurs, this derivation does not hold anymore,
because scattered light may be scattered again and get back into the transmitted
beam. As the complications with the derivation of the exponential law stem from
scattering, the condition for the above equation (4.19) can be relaxed to d cCsca ≪ 1,
which is equally restrictive for non-absorbing particles. In any case, the validity of
Eq. (4.19) and thus Eq. (4.1) can be experimentally assessed by varying either the
sample thickness d or concentration c. As we will see, the exponential law is actually
found to hold for experimental data even for non-absorbing particles at relatively
low transmittances.

4.3 Measurement of extinction cross sections
As we have seen above, the extinction cross section of a single scatterer, or the
ensemble-averaged extinction cross section of a collection of scatterers can be mea-
sured by transmission measurements of a collimated beam (mimicking a plane wave)
using a detector sufficiently far away from the scatterer(s) and with sufficiently small
aperture.

Here, we analyze data from a dedicated optical setup for measuring extinction
spectra of suspensions of microparticles and cells, which was developed and built by
Jörg Neukammer and Ralph Müller (PTB Berlin, AG 8.01/8.32). A schematic is
shown in Fig. 4.2. A high-power Xenon light source (HPX-2000, Ocean Optics, Inc.,
USA) emits white light and irradiates the sample in the wavelength range between
185 nm to 2000 nm. For spectral analysis between 200 nm and 1100 nm, a Maya2000
Pro spectrometer was used (Ocean Optics, Inc., USA). With the help of 4 mirrors
M1–M4 the folded light path features a length of approximately 2.5 m between the
light source and the sample cuvette. The lense L1 is used as condenser to obtain an
approximately parallel light beam. The apertures A1–A3 serve to reduce the size
of the beam to a diameter of about 1 mm corresponding to a divergence of 0.2 mrad
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Figure 4.3: Example for measurement data for PS beads in water (top left to bot-
tom right): (1) raw spectra [counts are ∝ I(λ)] with and without samples, (2) cor-
responding transmittance T (λ), (3) corresponding extinction cross section Cext(λ)
(with inset zooming in on the ripple structure) and (4) the estimated uncertainty
due to spectral noise. The PS beads used here have a specified mean diameter
of mean(D) = 2.539 µm ± 0.038 µm and a specified size distribution width (stan-
dard deviation) of std(D) = 0.035 µm. Cgeometric = π

4 mean(D)2 is the geomet-
ric cross section. The stock solution had an estimated particle concentration of
c1 = 22.4 × 103 µL−1. Data for three different dilutions of the stock solution are
shown.

or 0.01◦ (half angle). The samples are filled in a quartz cuvette (Hellma Analytics,
Germany) with d = (10±0.01) mm optical path length. Aperture A4 blocks the light
scattered in the non-forward direction by the sample. The spectrometer is placed
1.5 m from the sample via mirrors M5–M7 and receives light from an observation an-
gle of 0.3 mrad or 0.02◦ (half angle). The long distance of 1.5 m between the cuvette
and the detector serves to effectively suppress light scattered at small angles into
the spectrometer’s aperture. This allows to neglect unwanted contributions to the
directed transmittance when analyzing the measurements. The spectral resolution
of the CCD is approximately 1 pixel = 0.45 nm and one measurement of I(λ) takes
about 10 s.

An example for raw measurement data, i. e., the spectra I(λ) are shown in Fig. 4.3
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along with the transmittance T (λ) and extinction cross section Cext(λ) computed ac-
cording to Eq. (4.1) for PS microspheres. To estimate the measurement uncertainty
each spectrum was recorded m = 5 times and the uncertainty of the transmittance
due to detector noise was computed as

unoise[T (λ)] =
√
m− 1

2
Γ
(
m−1

2

)
Γ
(
m
2

) std[T (λ)]√
m

, (4.20)

where Γ is the gamma function and std[T (λ)] is the sample standard deviation of the
m measurements1, which is made to an unbiased estimator of the standard deviation
by the prefactor in the above equation under the assumption of normally distributed
values. The estimated standard uncertainty of the transmittance unoise[T (λ)] was
propagated accordingly to the extinction cross section to obtain unoise[Cext(λ)], i. e.,
the standard uncertainty due to measurement noise of the extinction cross section.
For further analysis, white noise is assumed for unoise[Cext(λ)], i. e., the noise at differ-
ent wavelengths λi, λj, i ̸= j is assumed to be uncorrelated and the corresponding
covariance matrix Σnoise[Cext(λi)] is assumed to be diagonal. This assumption of
white noise may not be perfectly adequate as the actual spectral resolution of the
MAYA2000 spectrometer with the entrance slit used is specified to about 4 pixels of
the detector, i. e., neighboring pixels of the CCD detector are correlated. To model
this adequately would require to use a band-diagonal covariance matrix.

To assess the validity of the exponential dependence in Eq. (4.1) and Eq. (4.19),
concentration series were recorded for all particles considered. The Cext(λ) curves
computed according to Eq. (4.1) from measurements at different dilutions agree with
each other almost perfectly. The remaining deviations can be explained by errors in
the assumed concentrations c when computing Cext(λ) from the transmittance T (λ).
The curves can be brought into agreement by rescaling, which compensates for the
concentration error. This validates the assumption of single scattering. More details
in the sample measurements for PS beads are given in section 4.5. Measurements of
sphered RBCs are discussed in section 4.6.

4.4 Data analysis

4.4.1 Forward model
Mie scattering

As discussed before, the elastic scattering of an incident electromagnetic time-
harmonic wave Ei(r) by a dielectric sphere is fully characterized by the two dimen-
sionless parameters X (the size parameter) and m (the relative RI). The sphere’s
extinction cross section Cext can be computed according to

Cext = 2π
k2

m

∞∑
ν=1

(2ν + 1)ℜ{aν + bν}, (4.21)

where the expansion coefficients of the scattered field aν , bν , ν ∈ N are rational
functions of spherical Bessel and Hankel functions of the first kind of arguments

1std[T (λ)] as a function of wavelength was smoothed by a Gaussian convolution filter of 15 grid
points (approx. 7 nm) standard deviation.
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X and mX (see Eq. (4.12)). For the problem at hand this means that besides
the known quantities vacuum wavelength λ and RI of the matrix nm(λ), the two
quantities sphere radius R and sphere’s RI n(λ) are the two free parameters of the
system. Using a numerical implementation of the above equation, which truncates
the sum at some ν = νmax and computes the required special functions recursively,
[93,94], accurate values for the extinction cross section of a single particle are easily
obtained for any given parameters n(λ) and R in the relevant range. We denote
these numerically obtained values by the function

C(λ; n, R).

This notation shall indicate that we are considering a wavelength-dependent function
with two parameters, one of which, the RI n(λ), is a function of the wavelength itself.

Polydispersity

The above scattering cross section is for a single sphere. In the experiment a large
number of particles is measured simultaneously. The measured ensemble average
Cext is modeled by integrating C(λ; n, R) over the corresponding distribution of par-
ticle radii and particle refractive indices. In the case of PS spheres, which all have
the same RI, one has

C(λ; n|r) =
∫ ∞

0
C(λ; n, R) r(R) dR, (4.22)

where r(R) is the probability density function (pdf) of the radius R. A normal
distribution

r(R) ∝ exp
{

−1
2

[R/Rt − µR]2
σ2
R

}
(4.23)

is known to describe the size distribution of polystyrene microspheres very well
[95]. This distribution has two parameters: µR is the mean and σR the standard
deviation of the distribution of radii, relative to a typical size Rt (e. g., a rough
guess for the mean particle radius), by which the parameters are rescaled, resulting
in dimensionless quantities of the order of 1. This rescaling is done in order to
improve numerical stability in the optimization presented later in this chapter.

In the case of RBCs (and other cells) the cells’ RI is not constant either, but
depends linearly on the hemoglobin (more generally: protein) concentration within
the cell according to Eq. (4.2). From measurements of the transmittance of a RBC
suspension one obtains an average over both, radius and concentration,

C(λ;α + iγ|p) =
∫ ∞

0

∫ ∞

0
C(λ;nH2O + cHb [α + iγ], R) p(cHb, R) dR dcHb. (4.24)

Measurements on single RBCs suggest that R and cHb are statistically independent
[22,50], thus motivating a factorization of the joint probability density function p

p(cHb, R) = q(cHb) r(R), (4.25)

where q is the pdf of the intracellular Hb concentration cHb. We model the concen-
tration distribution by a normal distribution

q(cHb) ∝ exp
[
−1

2
(cHb/ct − µc)2

σ2
c

]
(4.26)
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and the distribution of cell radii by a log-normal distribution

r(R) ∝ 1
R

exp
{

−1
2

[ln(R/Rt) − µR]2

σ2
R

}
. (4.27)

Here, again, rescaling by a typical concentration ct and RBC radius Rt is done in
order to have dimensionless parameters µc, σc, µR, σR of the order of 1 for the opti-
mization problem. In the case of the normal concentration distribution, the mean
and standard deviation are given by E(cHb) = µc ct and std(cHb) =

√
var(cHb) =√

E(c2
Hb) − E(cHb)2 = σc ct. In physiology, one commonly uses the quantities mean

corpuscular hemoglobin concentration (MCHC) and hemoglobin distribution width
(HDW), i. e., the mean and coefficient of variation of cHb. These are given by

MCHC := E(cHb) = µc ct and HDW := std(cHb)
E(cHb) = σc

µc
. (4.28)

Of course, a normal distribution (which has support ] − ∞,∞[) for a non-negative
quantity, such as the Hb concentration, only makes sense if is sufficiently narrow.
This is the case, since typically HDW < 10%.

The log-normal size distribution has moments

E(Rj) = Rj
t ej µR+ 1

2 j
2 σ2

R for j ∈ N. (4.29)

Consequently the mean and standard deviation of the radius are

E(R) = Rt eµR+ 1
2σ

2
R and std(R) = E(R)

√
eσ2

R − 1. (4.30)

For the mean corpuscular volume (MCV) one finds

MCV := E
(4 π

3 R3
)

= 4 π
3 R3

t e3µR+ 9
2 σ

2
R (4.31)

and for the red cell distribution width (RDW), i. e., the coefficient of variation of
V = 4π

3 R3, one finds

RDW := std(V )
E(V ) =

√ E(R6)
E(R3)2 − 1 =

√
e9σ2

R − 1. (4.32)

Like the MCHC, the MCV and the RDW are parameters measured in the complete
blood count (CBC).

To implement the integrals in the ensemble average numerically, we replace the
integration domain [0,∞[ by a finite interval [a, b] and we use finite sums over
histograms, namely the trapezoidal rule on a uniform grid

∫ b

a
f(x)dx ≈ h

2

I−1∑
i=1

[f(xi+1) + f(xi)] , xi = a+ (i− 1)h, h = b− a

I − 1 . (4.33)

Since the Mie computation is numerically rather cheap, the number of grid points
required for numerical integration is not overly critical. However, it could possibly
be reduced by using a more adapted integration scheme, like the Gauss-Hermite
quadrature for integrals involving normal distributions. Consequently, the normal-
ization factor of the analytical expressions for the pdfs (e. g., 1/

√
2π σ... for a normal
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distribution) is replaced by a normalization prefactor obtained by numerical inte-
gration such as

r(R) = ρ(R)
hR

2
∑IR−1
i=1 [ρ(Ri+1) + ρ(Ri)]

, ρ(R) = exp
{

−1
2

[R/Rt − µR]2

σ2
R

}
(4.34)

for the normal size distribution. The size average for PS spheres is then computed
as

C(λ; n|r) = hR
2

IR−1∑
i=1

[C(λ; n, Ri+1) r(Ri+1) + C(λ; n, Ri) r(Ri)] def. r̃=
IR∑
i=1

C(λ; n, Ri) r̃i

(4.35)
and accordingly the size and concentration average of RBCs is computed as

C(λ;α + iγ|p) =
Ic∑
i=1

IR∑
j=1

C(λ;nH2O + ci [α + iγ], Rj) q̃i r̃j (4.36)

with analogous definitions of the discretized pdfs q̃i and r̃j.
In the inverse problem, grids with Ic = IR = 11 points where used, spanning

±4 standard deviations around the center of the respective distribution. The ap-
proximation error due to this integration scheme was found (by comparison with
Ic = IR = 50) to be well below 0.05% for RBCs with typical properties, which is
less than the experimental measurement uncertainty of > 0.1%. For PS beads grids
with IR = 31 where used, also spanning spanning ±4 standard deviations around
the center of the size distribution.

Concentration error

As evident from Eq. (4.1) on page 43, the spectral extinction cross section Cext(λ)
computed from the transmittance measurement is inversely proportional to both the
sample thickness d, given by the optical path length of the cuvette, and the particle
concentration in the sample c. Hence, using linearized uncertainty propagation, any
relative error of c or d results in a contribution to the relative error of Cext(λ) of the
same amplitude and opposite sign, i. e.,

C
meas
ext (λ) = − ln [T (λ)] 1

(d c)true [1 + ϵrel
d c]

= [1 − ϵrel
d c]C

true
ext (λ) + O

(
ϵrel
d c

2)
, (4.37)

where ϵrel
d c is the relative deviation of the term d c from its true value.

For the 10 mm cuvettes used, the path length d is known to a relative accuracy of
10−3. In contrast, the particle concentration c has higher measurement uncertainty.
For the PS spheres, the concentration of the sample material was estimated from
the specified mass-in-volume concentration using the nominal particle volume and
the density of PS. For the examined RBC samples, the cell concentrations of the
undiluted RBC samples were measured using a hematology analyzer. These flow-
cytometric devices have a relative measurement uncertainty of about 4%. Both, the
PS and RBC samples were further diluted with multiple dilution steps. The volu-
metric dilution by adjustable pipettes contributes to the uncertainty of the concen-
tration c of an estimated 2%–4%, depending on dilution. These effects accumulate
to values of |ϵrel

d c| ≈ 6%. This means that agreement between measured ensemble
averages Cmeas

ext (λ) and simulated values computed according to Eqs. (4.22), (4.24)
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Figure 4.4: Extinction cross sections Cext(λ) of single microspheres computed with
wavelength-independent RIs. Case “RBC” is for diameter D = 2R = 5.47 µm
(volume V = 86 fL) and particle RI ns = 1.413. Case “PS” is for diameter D =
2R = 2.5 µm and particle RI ns = 1.61. The surrounding medium has nm = 1.34 in
both cases.

is only expected up to this uncertain prefactor, even if the correct optical proper-
ties and sizes are fed into the simulation. Similarly, measurements of Cext(λ) from
dilution series only agree up to a scaling factor, see Fig. 4.3. This effect will be
accounted for in the inverse problem in section 4.4.3.

4.4.2 Sensitivity of the forward model
Before approaching the inverse problem, the influence of parameters on the for-
ward model shall be discussed. To demonstrate some generic features and to sep-
arate the effects of RI dispersion and absorption from those of the Mie scattering
formulas on the wavelength-dependence of C(λ; n, R), wavelength-independent and
real-valued RIs were assumed. To mimic PS beads, the particle RI was set to
ns(λ) = 1.61. To mimic RBCs, the RI was set to ns(λ) = 1.413, which corresponds
to ns(λ) = nH2O(λ) + cHb[α(λ) + iγ(λ)] with nH2O(λ) = 1.34, α(λ) = 0.22 mL g−1,
γ(λ) = 0 and cHb = 330 g/L. These over-simplified optical properties are only used
for the demonstrations in this subsection. Throughout the rest of this chapter, dis-
persion and absorption are accounted for. Fig. 4.4 shows the computed extinction
cross section of a single microsphere C(λ; n, R) for two exemplary cases and a wide
wavelength range and demonstrates some generic features of the extinction cross
section. Firstly oscillations, called Mie resonances or interference structure are vis-
ible for both cases. For longer wavelengths, the spacing between these resonances
grows large and eventually the extinction cross section decays asymptotically to
zero for λ → ∞ or size parameter X = 2π nm R/λ → 0. On the other end of the
spectrum, as λ → 0 or X → ∞ the Mie resonances become attenuated and the
extinction cross section approaches the limit of geometrical optics Cext(λ) → 2Cgeo,
where Cgeo = π R2 is the geometrical cross section of the sphere. In addition to the
Mie resonances, a fine ripple structure may appear on top of the long-ranged Mie
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Figure 4.5: Influence of parameters on extinction cross section for 2.5 µm spheres
with wavelength-independent RIs ns(λ) = 1.61 and nm(λ) = 1.34. This corresponds
roughly to PS in water for visible light. A normal size distribution with std(D) =
20 nm was used unless otherwise stated. The left panel shows the influence of the
mean diameter. The inset shows the ripple structure in detail, also for different size
distribution widths. The right panel shows the influence of the particle RI. Arrows
indicate the direction of change with the respective parameter.

resonances. In the examples shown, these are only visible for the particle with higher
relative RI (PS), since these ripples become more pronounced for high relative RI
contrast |m − 1| = |ns/nm − 1| and vanish for m → 1. The influence of the different
parameters on the ensemble-averaged cross sections are discussed in the following.

Polystyrene The influence of size and RI on the ensemble average C(λ; n|r) [see
Eq. (4.22)] is depicted in Fig. 4.5 for spheres of mean particle diameter mean(D) =
2E(R) = 2.5 µm. To demonstrate the effect of particle size, mean(D) is varied by
±40 nm or ±1.6% in the left panel of Fig. 4.5. A larger diameter leads to over-
all higher cross sections and a shift of the Mie resonances (of which three minima
and three maxima are visible in the main plots of Fig. 4.5) to larger wavelengths.
Furthermore, the fine ripple structure (inset in the left panel of Fig. 4.5) reacts
sensitively to changes in size. Consequently, the ripple structure is smoothed out if
the ensemble average is taken for a wider size distribution, which is demonstrated
using three different distribution widths std(D) = 0 nm, 20 nm, 40 nm. In partic-
ular, a distribution width of std(D) = 40 nm = 1.6% mean(D) leaves hardly any
noticeable ripple structure. However, this ripple structure is clearly visible in the
experimental data in Fig. 4.3 on page 49 measured for spheres with a manufacturer-
specified std(D) = 35 nm. This indicates that the size distribution of the examined
PS microbeads is indeed narrower than the specification.

The influence of optical properties is demonstrated in the right panel of Fig. 4.5
by changing the particle RI by ±0.01. Similar to particle size, increasing RI shifts
the resonances to longer wavelengths, too, but in contrast to particle size it hardly
changes the overall cross section. Furthermore the position of the ripples remains
largely unaffected by these changes of the RI (inset in the right panel of Fig. 4.5).
This is an important observation, as it demonstrates that the effects of RI and size
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Figure 4.6: Influence of size distribution on extinction cross section for a simpli-
fied model of sphered RBCs in water, using wavelength-independent RIs: nm(λ) =
nH2O(λ) = 1.34 and α(λ) = 0.22 mL g−1, γ(λ) = 0. Intracellular Hb concentration
is normally distributed with MCHC = mean(cHb) = 330 g/L, std(cHb) = 15 g/L
[HDW = std(cHb)/mean(cHb) = 4.5%]. Size is log-normally distributed with
mean(D) = 5.47 µm, std(D) = 227 nm [MCV = mean(V ) = 86 fL, RDW =
std(V )/mean(V ) = 12.5%], unless otherwise stated. The left panel shows the influ-
ence of mean size, the right panel the influence of size distribution width. Arrows
indicate the direction of change with the respective parameter.

distribution can be told apart, even in the presence of additional degrees of freedom
like the concentration error discussed in the previous section. That is, however, only
for narrow distributions where ripples occur.

Red blood cells The influences of size distribution and optical properties on the
extinction cross section of sphered RBCs are depicted in Figs. 4.6 and 4.7. The log-
normal size distribution has a mean diameter of 5.47 µm and a standard deviation
of 227 nm. Converted to hematological parameters [Eq. (4.31) and (4.32)], this cor-
responds to MCV = mean(V ) = 86 fL, RDW = std(V )/mean(V ) = 12.5%, which
represents a typical RBC size distribution of a healthy person. The mean intracel-
lular hemoglobin concentration was set to MCHC = mean(cHb) = 330 g/L, which
represents a typical physiological value, too. Like for PS particles, larger diameter
shifts the extinction cross section to higher values and the Mie resonances to longer
wavelengths (see left panel of Fig. 4.6). However, since no ripple structure is present
for the RBCs, there is nothing to be smoothed out for wider size distributions.
Consequently, the size distribution width has little effects for moderate values of
RDW ≤ 12.5%. For wider distributions, damping of the Mie resonances themselves
occurs. Fig. 4.7 illustrates the effect of the RBCs’ RI. Like increasing the real RI
for PS spheres, increasing the real RI increment of RBCs shifts the Mie resonances
to the right (top left panel). In this simplified model, the mean Hb concentration
would have the same effect (at fixed HDW), since only the product cHb α(λ) ap-
pears in Eq. (4.2). Note, however, that if, like in reality, absorption is present, i. e.,
γ(λ) ̸= 0, the effects of α(λ) and the MCHC are somewhat different. The effect of
the concentration distribution width std(cHb) (top right panel of Fig. 4.7) is very
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Figure 4.7: Influence of optical properties on extinction cross section for a simplified
model of sphered RBCs in water. Unless otherwise stated, parameters are those used
in Fig. 4.6. Top row: Influence of the real RI increment α (left) and hemoglobin
concentration distribution width (HDW). Arrows indicate the direction of change
with the respective parameter. Bottom row: Influence of the imaginary RI increment
γ(λ) exemplified using different Lorentzian lines.

similar to that of std(D), i. e., to dampen the Mie resonances. This indicates that an
unambiguous simultaneous determination of both parameters from extinction mea-
surements may be difficult. But, again, this simplified model assumes non-absorbing
spheres. The effect of a nonzero imaginary RI increment γ(λ) is demonstrated in the
bottom row of Fig. 4.7 where the right panel shows different curves for γ(λ) and the
left panel show the resulting extinction cross sections. The effect of absorption is to
attenuate the extinction cross section Cext(λ) towards average values, i. e., roughly
in the direction of the limit of geometrical optics 2Cgeo = 47 µm2 (for the mean
diameter).
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4.4.3 Inverse problem
Optical properties for synthetic data

Figure 4.8: RI of water at 20 ◦C and
polystyrene. § Sellmeier curve of Daimon
and Masamura [41], ¶ values of Nikolov
and Ivanov [79]. The one-term Sellmeier
equation (black dashed line) extrapolates
the literature data to the near UV and was
used create synthetic extinction data.

After this discussion of some generic fea-
tures, realistic synthetic datasets need
to be generated for the examination of
some of the aspects of the inverse prob-
lem. This will be exemplified for ex-
tinction spectra of PS beads suspended
in water. The literature values for the
wavelength-dependent RI of bulk PS
and water used for synthetic data are
shown in Fig. 4.8. The data for the
RI of PS by Nikolov and Ivanov [79]
were measured at discrete wavelengths
between 436 nm and 1052 nm and can
be fitted very well using a one-term Sell-
meier equation containing a single ab-
sorption pole.2 This Sellmeier curve was
also used to extrapolate the RI at lower
and higher wavelengths to generate syn-
thetic data for the spectral range [200,
1200] nm like the theoretical curve in
Fig. 4.3. Note however, that it does not
necessarily correspond to the actual RI
of PS in the UV. For the wavelength-

dependent RI of pure water a four-term Sellmeier equation was used with coefficients
determined by Daimon and Masamura [41] from measurements in the wavelength
range 182 nm–1129 nm. The absorbance of water in the wavelength range under
consideration is low (κm < 10−5) and can thus be neglected. This is quantified in
detail in Appendix 4.A. PS is quasi-nonabsorbing (κ < 10−5) for most part of the
considered wavelength range. However, the assumption of a real-valued RI does not
hold in the UV for photon energies above 4.5 eV (i. e., wavelengths below 270 nm),
where absorption bands (κ > 10−2) occur [80]. The RI of PS will be treated as
real-valued nevertheless, since this wavelength range is excluded from the analysis
of any measurement data.

Pointwise reconstruction of the RI

We now approach the inverse problem of inferring the RI of microparticles from
their extinction spectra. For sake of simplicity, let us first consider a monodisperse
system or, equivalently, extinction by a single sphere. A synthetic data set for
2.5 µm PS spheres in water was created using RIs in Fig. 4.8. Measurement data (or
synthetic data) will be denoted by an asterisk. Under the assumption of additive
noise, the components of the measurement data vector are C∗

i = C∗
ext(λi) + ξi,

where λi, i = 1, . . . , N are the discrete wavelengths, C∗
ext(λi) are the underlying true

(generally unknown) values and ξi is measurement noise on the data. For the time

2 The one-term Sellmeier equation reads n(λ)2 = 1 + B λ2

λ2−λ2
res

and fits the literature data for
PS [79] with B = 1.4432 and λres = 142.1 nm.
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Figure 4.9: Graphical solution of the pointwise RI inference problem for monodis-
perse PS spheres of known size (Rtest = Rtarget = 1250 nm) without measurement
noise. The forward model for the Mie extinction cross section C(λ;n,Rtest) is shown
as a curved colored surface in dependence on vacuum wavelength λ and RI n. A
synthetic dataset C∗

i := C(λi;ntarget(λ), Rtarget) (no dependence on n) is shown in
gray and “extruded” into the n direction, hence it is only curved into the λ direc-
tion. The necessary condition C(λi;n,Rtest) != C∗

i is fulfilled where the two surfaces
intersect.

being, we ignore the effects of noise, i. e., ξi = 0. Hence, the synthetic dataset is
given by C∗

i = C(λi;ntarget(λ), Rtarget), where ntarget(λ) is the literature RI of PS [79]
and Rtarget = 1250 nm.

For a suspension with known particle radius Rtest = Rtarget, one could now try
to obtain the RI from the target data by solving the following problem: Find an
N -vector with entries ni such that

C(λi;ni, Rtest) = C∗
i ∀ i = 1, . . . , N, (4.38)

which are N independent nonlinear equations. Hence, this is a pointwise approach
to infer the particle RI and the above set of equations is the necessary condition
for the inference problem. The roots of these equations can be used by standard
numerical techniques like the bisection method or Newton’s method. The graphical
solution of this problem for the noiseless synthetic data of monodisperse PS spheres
is illustrated in Fig. 4.9. Lines of intersection between the two surfaces are the
solutions of the necessary condition. As can be seen from this figure, the solution
is not unique, as there are multiple such intersection lines. An even more serious
problem than this non-uniqueness is illustrated in Fig. 4.10, where the square of the
residuals F (λi, n, Rtest) := C(λi;n,Rtest) − C∗

i is plotted. The necessary condition
Eq. (4.38) is fulfilled where F (λi, n, Rtest) = 0. From the upper panel of Fig. 4.10
one can see the solutions form multiple branches, only one of which corresponds to
the physical solution, i. e., the target RI n(λ) = ntarget(λ). The other branches are
“false solutions” that intersect the true solutions at certain wavelengths. The lower
panel shows the case where the radius assumed for reconstruction Rtest is smaller
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Figure 4.10: Illustration of the dependence of the pointwise RI inference problem
in Fig. 4.9 on the knowledge of the particle radius R. Logarithmic density plot
of the square of the residual F (λi, nj, Rtest) := C(λi;nj, Rtest) − C∗

i for a fine grid
λ ∈ {λ1, . . . , λN}, n ∈ {n1, . . . , nL}. Solutions of the necessary condition (4.38) for
RI reconstruction are visible as dark lines. The target RI is marked by a dashed
line. Upper panel: Rtest = Rtarget = 1.25 µm. Lower panel: Rtest = 1.24 µm.

than the true value by 10 nm, i. e., Rtest = 1.24 µm. To put this in perspective,
this small error is well within the specified uncertainty of the mean particle radius
of the sample material measured in the experiment. Even though the radius is
only changed by 0.8%, the effect on the inference problem is drastic: The solution
branches to Eq. (4.38) form “avoided crossings” leading to non-solvability near the
former crossings. For example, no RI value fulfills the necessary condition near
950 nm. These (avoided) crossing points coincide with the minima and maxima of
the target data C∗

i , because here the two surfaces in Fig. 4.9 intersect tangentially.
If the assumed particle radius Rtest is changed, the model function C(λi;n,Rtest)
shifts to higher values (compare Fig. 4.5), which leads to these avoided crossings.
This means that for certain wavelengths, small errors in Rtest lead to the necessary
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condition Eq. (4.38) not having solutions. Hence, the inference problem is unstable
with respect to the particle radius. A similar problem occurs with the scaling error
due to concentration error, see Eq (4.37).

It follows that besides the particle RI, the particle radius R and the concentra-
tion error have to be reconstructed from the data as well, which makes the pointwise
inference problem underdetermined: One would try to obtain at least N + 2 param-
eters from N measurement data. For polydisperse systems, the parameters of the
size distribution need to the inferred, too. If measurement noise is present in the
data, even more instabilities may arise for the reconstruction. At first glance, this
leaves one with more parameters to be reconstructed than data points. But the
problem can be restated in a non-pointwise sense as a least-squares optimization
problem if the number of parameters used to represent the RI is reduced. This can
be achieved because the spectral resolution of the measurement is higher than the
width of typical features of the RI to be inferred.

Restatement of the inverse problem

Under realistic circumstances, for the kinds of particles and cells discussed above, the
RI cannot be inferred from the measured extinction cross section by wavelength-wise
matching of the model RI to the data. To make the problem solvable, a constraint
is applied on the admissible functions n(λ), namely that they can be expressed as a
finite sum of smooth basis functions, i. e.,

n(λ) =
M∑
j=1

aj gj(λ) (4.39)

for an optically monodisperse ensemble like PS spheres, where aj ∈ R, and the gj
are real valued functions, e. g., gj ∈ C∞(R) ∀j = 1, . . . ,M . I. e., we are working
in the subspace spanned by the M basis functions. M < N has to be chosen and
typically M ≪ N can be achieved. For the Hb solutions making up the interior of
RBCs we have used the same kind of representation for the real RI increment α(λ)

n(λ) = n(λ) + iκ(λ) = nH2O(λ) + cHb [α(λ) + iγ(λ)] ,

where α(λ) =
M∑
j=1

aj gj(λ). (4.40)

By defining the matrix of all basis functions G := {gj(λi)}i,j ∈ RN×M and the
vectors of RI (increments) at all wavelengths n = (n(λ1), . . . , n(λN))T and α =
(α(λ1), . . . , α(λN))T this can also be written as matrix-vector products

polystyrene: n = Ga, RBCs: α = Ga. (4.41)

Choice of basis functions

The representations of RI and RI increment in Eq. (4.39) and Eq. (4.40) are useful
only if a suitable set of basis functions is found that represents typical features of
the functions n(λ) and α(λ) with a rather small number of parameters. Often-used
basis functions like polynomials or trigonometric functions prove unsuitable for this
task, because they do not describe the generic behavior of a RI. One possible choice
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for basis functions is given by the Cauchy equation

n(λ) =
M∑
j=1

bj

( 1
λ2

)j
, (4.42)

which can be used to represent real RI in the regime of normal dispersion with rather
few terms, i. e., M ≤ 3. However this approximate expression is only valid far away
from any absorbing regions in the spectrum. Another widely-used expression for the
real RI in the non-absorbing regime is the Sellmeier equation

n(λ)2 = 1 +
M∑
j=1

bj
λ2

λ2 − Cj
, (4.43)

which describes the RI of water [41], optical glasses [35] and optical plastics [79] well
in the UV, visible and near IR range. While this extended wavelength range is an
advantage over the Cauchy equation, this expression has a mathematical disadvan-
tage: The RI n(λ) (and also its square n(λ)2) depend on the coefficients nonlinearly.
Futhermore, the “basis functions” λ2

λ2−Cj
are formally identical for all j. This may

cause instabilities if this expression is used in a complicated nonlinear optimization
problem, because there is the possibility of two terms becoming identical by having
Cj = Ck for some index pair (j, k), or because this expression has singularities at
wavelengths λ =

√
Cj, j = 1, . . . ,M , i. e., the parameters Cj need to be restricted to

outside [λ2
1, λ

2
N ]. Finally, while better agreement to measurement data is obtained

near absorption bands than with the Cauchy equation, also the Sellmeier equation
is only valid sufficiently far away from these absorption bands. Thus it cannot be
applied to Hb solutions in the spectral range under consideration (near UV, visible
and near IR).

Lorentz-type resonances Hence, we will use a different set of functions to repre-
sent the RI and RI increment. These functions are physically motivated as follows:
A typical absorption spectrum of a material is made up of absorption lines, that can
often be described (at least approximately) by a function like

κ(λ) = ã
γ

(λ− y)2 + γ2 , (4.44)

i. e., the full spectrum is the sum of many such lines with different amplitudes ã,
central wavelengths y and characteristic widths γ. As discussed in chapter 3, real
and imaginary part of the RI are connected through Kramers-Kronig (KK) relations
[see Eq. (3.18) on page 25]. For a single absorption line described above, the KK
relations yield

n(λ) = 1 + ã
y

y2 + γ2  
constant

+ ã
λ− y

(λ− y)2 + γ2  
wavelength-dependent

. (4.45)

Hence, it seems a very natural choice to use functions

f1(λ) = 1,

fj(λ) = λ− yj
(λ− yj)2 + γ2

j

, j = 2, . . . ,M (4.46)
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Figure 4.11: An example for the LTRs used to represent the RI. M = 22 functions
of width γ = 70 nm were distributed on the interval [200, 1100]nm with a spacing
of ∆y = 50 nm. The left panel shows the functions before orthogonalization, but
already normalized. The right panel shows the set of functions after orthonormal-
ization, with only every fourth curve shown for readability.

to describe the wavelength-dependence of n(λ). These functions will be referred to
as Lorentz-type resonances (LTRs) in the following. To avoid the problems discussed
already for the Sellmeier equation above (nonlinear parameter dependence and for-
mal identity of all terms), the width of all functions is chosen constant γj = γ
∀j = 2, . . . ,M and a uniform grid is used for the central wavelengths yj, i. e.,
yj − yj−1 = ∆y ∀j = 3, . . . ,M . In contrast to the Sellmeier equation, the resonance
wavelengths yj of this set of functions are allowed to be within the measured spectral
range. The LTRs fi are linearly independent, but they are not useful for a practical
implementation, since they are far from being orthogonal, i. e., the scalar products
between them (i. e., the integrals over the product of two functions) are not close
to zero, which would lead to problems in the numerics. To avoid this problem,
the set of functions {f1, . . . , fM−1}, or rather the set the values of these functions
at (λ1, . . . , λN), is orthonormalized using the (modified) Gram-Schmidt process, in
which the projections onto all preceding functions k = 1, . . . , j − 1 are subtracted
from fj with subsequent normalization, i. e.,

g1 := f1

∥f1∥
,

gj := g̃j
∥g̃j∥

, where g̃j := fj −
j−1∑
k=1

⟨fj, gk⟩ gk for j = 2, . . . ,M,

(4.47)

where ⟨. , .⟩ denotes the standard inner product in RN . This yields an orthonormal
set {g1, . . . , gM} with

⟨gi, gj⟩ = δij ∀ j = 1, . . . , N. (4.48)

An example is shown in Fig. 4.11. This set of functions can then be used for the RI
representation in Eq. (4.39). To give an example for the number of basis functions
needed, a set of M = 22 LTRs on the interval [200, 1100] nm, (∆y = 50 nm) with
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γ = 70 nm approximate the RI of water [41] with a maximum error of 10−4 and an
RMS error of 2.7 × 10−5. For comparison, the underlying Sellmeier equation of the
water RI has 8 free parameters.

B-splines The functions described in Eq. (4.48) and Eq. (4.46) are able to approx-
imate literature data for the real RI of polystyrene and the real RI increment of Hb
solutions [38] very well, if a suitable width γ and grid spacing ∆y is used. However,
when used in the inverse problem for extinction cross sections there is one disadvan-
tage, which they also share with the Cauchy and Sellmeier equations: The functions
fj, j = 2, . . .M are long-ranged, i. e., they decay like 1/(λ − yj) for λ away from
yj. The result of this nonlocal behavior is that a coefficient aj in Eq. (4.39) affects
the RI non-locally. For the rather simple wavelength dependence of a non-absorbing
substance like PS, this poses no problem, since only few terms are needed. For the
feature rich RI increment of RBCs and Hb solutions, this can lead to oscillatory
behavior of the optimized function α(λ). Orthonormalization (functions gj) does
not improve this behavior in any way. Hence, a set of localized basis functions is
desirable to describe the RI increment of RBCs. Even though the many spectral
features add complexity to the problem, an upside of the behavior of the RI incre-
ment of RBCs compared to the RI of PS is that it has only moderate slopes and
mostly fluctuates around a mean value. Hence, cardinal B-splines provide a suitable
means to represent the optical properties of RBCs.

Cardinal B-splines are piecewise polynomials of finite support, i. e., they are
nonzero only on a finite interval. The cardinal B-spline of zero degree is defined
as [96]

φ0(x) :=
⎧⎨⎩1, x ∈ [0, 1[

0, otherwise
, (4.49)

which is the characteristic function of the interval [0, 1[ and a piecewise polyno-
mial of degree 0. The higher-degree cardinal B-splines are defined recursively by a
convolution [96]

φp(x) := [φp−1 ∗ φ0](x) =
∫
R
φp−1(x− y)φ0(y) dy (4.50)

for p ∈ N. Written explicitly, the lowest-order cardinal B-splines are [97]

φ1(x) =

⎧⎪⎪⎨⎪⎪⎩
x, x ∈ [0, 1[
2 − x, x ∈ [1, 2[
0 otherwise

, (4.51)

φ2(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 x

2, x ∈ [0, 1[
−x2 + 3x− 3

2 , x ∈ [1, 2[
1
2 x

2 − 3x+ 9
2 , x ∈ [2, 3[

0 otherwise

, (4.52)

φ3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6 x

3, x ∈ [0, 1[
−1

2 x
3 + 2x2 − 2x+ 2

3 , x ∈ [1, 2[
1
2 x

3 − 4x2 + 10x− 22
3 , x ∈ [2, 3[

−1
6 x

3 + 2x2 − 8x+ 32
3 , x ∈ [3, 4[

0 otherwise

. (4.53)
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Figure 4.12: An example for the cubic B-splines used to represent the RI increment.
M = 22 function were distributed on the interval [200, 1100]nm, resulting in a spac-
ing of ∆y = 47.4 nm. The left panel shows the functions before orthonormalization.
The right panel after orthonormalization, with only every fourth curve shown for
readability.

As one can see, the support of φp is the interval [0, p+1[ and φp is symmetric about
the center of the interval p+1

2 . To represent the real RI increment on the interval
λ ∈ [λ1, λN ], we use the functions

fj(λ) := φp

(
λ− yj

∆y

)
for j = 1, . . . ,M

with yj = λ1 + (j − p) ∆y and ∆y = λN − λ1

M − p

(4.54)

with the polynomial degree set to p = 3. As before, the set of functions {f1, . . . , fM}
is orthnormalized by the Gram-Schmidt method to yield the set {g1, . . . , gM}. An ex-
ample is shown in Fig. 4.12. In contrast to the fj, which have a finite support of fixed
size ∆y(p+ 1), the support of the gj grows with increasing j, in the Gram-Schmidt
algorithm, the projections onto all preceding functions are subtracted. However, this
does not lead to long-ranged functions {g1, . . . , gM} but to tails that decay expo-
nentially on the length scale of the grid spacing. Hence, the splines keep their local
character, even after orthonormalization. With the same number of basis functions
M , the B-splines and LTRs yield about the same approximation error for literature
values of the RI increment of Hb solutions [38].

Solution of inverse problem by nonlinear optimization

With this representation of the real part of the RI (for PS spheres) or the real RI
increment (for RBCs), we now have a mathematical forward model for the spectral
extinction cross section which reads

M(λ;ψ) := (1 + η) C(λ;a,θ). (4.55)

Here the parameter η corresponds to the (negative) relative concentration error of
the suspension to lowest order, i. e., η = −ϵrel

d c in Eq. (4.37). Including this parameter
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allows the model to compensate for concentration errors. The full parameter vector
that characterizes the particle suspension is given by

ψ :=

⎛⎜⎝aθ
η

⎞⎟⎠ ∈ RL, (4.56)

where a are the expansion coefficients of the RI (increment) in Eq. (4.41). The
vector θ contains the parameters of size and concentration distributions, i. e.,

θ =

⎛⎜⎜⎜⎝
µc
σc
µR
σR

⎞⎟⎟⎟⎠ for RBCs and θ =
(
µR
σR

)
for PS beads, (4.57)

see equations (4.23), (4.26) and (4.27). The expression C(λ;a,θ) is shorthand for
the corresponding ensemble-averaged Mie extinction cross sections [see Eq. (4.22)
and Eq. (4.24)] with the RI (or RI increment) represented by a and the size (and
Hb concentration) distribution characterized by θ. If M basis functions are used to
represent n(λ) or α(λ), the parameter vector has L = M + 3 components for PS
beads and L = M + 5 components for RBCs.

The inverse problem is then solved by minimizing the cost functional consisting
of the summed squared residuals

Fi := M(λi;ψ) − C
∗
i , (4.58)

χ2(ψ) :=
N∑

i,j=1
wijFiFj = F T WF , (4.59)

where W is a symmetric weight matrix and C∗
i are the measurement data. The weight

matrix is set to the inverse covariance matrix of the data, i. e., W = Σnoise(C∗)−1,
which is diagonal for the noise model used. The necessary condition for optimal
parameters that minimize χ2 is then

0 = ∇ψχ
2(ψ) = JT∇Fχ

2(ψ) = 2 JTWF , (4.60)

where we have introduced the Jacobian matrix

J :=
{
∂Fi
∂ψj

}
ij

=
{
∂M(λi;ψ)

∂ψj

}
ij

∈ RN×L. (4.61)

Numerically, the minimization can be done using standard optimization algorithms.
The results in this thesis were obtained using the trust-region algorithm implemented
in the Matlab (Matlab R2018a, The MathWorks Inc.) function lsqnonlin. An
outline of some algorithms commonly used for least-squares problems is given in
Appendix 4.B.1.

When converged, the numerical routine yields an optimal parameter set ψ̂ cor-
responding to a local minimum and χ2 normalized to the degrees of freedom

χ2
dof := χ2(ψ̂)

N − L+ 1 (4.62)

provides a measure for the quality of the fit and should be near 1.
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Using additional information for regularization To invert the extinction
cross sections of PS beads, the optimization problem as stated above is sufficient to
extract the RI of the particles from the measurement data, provided a sufficiently
wide range of initial values is used for the parameter in the iterative, local optimiza-
tion. This is achieved by multiple optimization runs from random initial values.

For the case of RBC suspensions, it is found that unambiguous parameter re-
trieval is not possible with the stated minimization problem. This affects mainly the
average value of α(λ) and the model parameters of polydispersity θ, that correspond
to the hematological parameters MCHC, HDW, MCV and RDW. This unambiguity
arises not because the model M(λi;ψ) is insensitive to these parameters individ-
ually, but because they have similar effects on the measured spectrum, e. g., a too
high MCHC or MCV may compensate for a too low α(λ), as discussed in subsec-
tion 4.4.2 above. On the other hand, complementary information to the extinction
spectrum is available in the form of hematological parameters from the complete
blood counts (CBCs) measured for the individual samples. Hence this complemen-
tary information can be used to regularize the optimization problem. To this end, a
regularization term is added to the cost functional which penalizes deviations from
the CBC measurements

χ2(ψ) = F T WF + [R(θ) − z]T WR [R(θ) − z] . (4.63)

The secondary model R(θ) computes the vector of hematological parameters z =
(MCHC,MCV,RDW)T from θ according to equations (4.28), (4.31) and (4.32).
Weights are set to wR

jj = 1/u(zj)2, where the uncertainties are given by the estimated
accuracy of the hematology analyzer used. The above expression is formally identical
to Eq. (4.59), if the residual vector F is extended by the three components of
R(θ) − z and the weight matrix is adapted accordingly. Hence the same methods
can be applied for minimization.

Sampling of initial values

The local optimization algorithm employed finds minima by starting from an initial
parameter vector and iteratively minimizing χ2(ψ). Hence, a found minimum is local
and not necessarily a global one, because usually χ2(ψ) has a number of minima
for the problem at hand. The quality of the fit thus depends on a reasonable choice
of initial values for ψ. To make sure that the deepest minimum is found, initial
values of the parameter vector were sampled randomly around a given mean with a
sufficiently broad distribution and the local optimization was repeated several times.
The parameter vector with the lowest χ2 was used as the result ψ̂. The details of
this procedure are given in sections 4.5 and 4.6 where the applications to PS beads
and RBCs are discussed, respectively.

Propagation of measurement uncertainties

The contribution to the uncertainty of the found minimum ψ̂ due to measurement
noise is estimated by linearized covariance matrix propagation according to

Σnoise(ψ̂) =
[
JT Σnoise(C∗)−1 J

]−1
=
(
JT W J

)−1
. (4.64)

Similarly, if the regularization term [Eq. (4.63)] is used

Σnoise(ψ̂) =
[
JT W J + JRT WR JR

]−1
, (4.65)
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where
JR
ij = ∂Ri(ψ)

∂ψj
(4.66)

is the Jacobi matrix of the secondary model with respect to the full parameter vector.
I. e., JR

ij = 0 for all components ψj to which no regularization is applied. In case of
the RBCs these are the coefficients of the real RI increment a (j = 1, . . . ,M = L−5)
and the concentration error η (j = L). Note that even if W is diagonal, Σnoise(ψ̂) is
generally not, i. e., parameter uncertainties are correlated.

From the parameter covariance matrix Σnoise(ψ̂) thus estimated we can easily
extract the covariance matrix of the spectral refractive index of PS beads (n = Ga)
or the RI increment of RBCs (α = Ga) as

Σnoise(n) = G Σnoise(â) GT or Σnoise(α) = G Σnoise(â) GT , (4.67)

where Σnoise(â) corresponds to the first M × M entries of Σnoise(ψ̂). Analogously
one can propagate the uncertainty to any other resulting observables (e. g., the mean
particle volume) using the respective Jacobi matrices in place of G.

The corresponding standard uncertainty is computed as the square-root of the
diagonal elements of the covariance matrix, e. g., for the particle RI

unoise[n(λi)] =
√

Σnoise
ii (n). (4.68)

This estimated uncertainty accounts for the effects of noise in the measured spec-
tra (contained in W) and – if regularization is employed – the uncertainty of the
complementary information used for regularization (contained in WR). It does not
account for other sources of error such as model errors or measurement uncertainties
not included in the noise model employed. This is discussed in the next section.

4.5 Application to polystyrene microbeads

4.5.1 Measurement data
Note: The preparation of RBC samples and the extinction measurements were per-
formed by Kathrin Smuda (Charité and PTB Berlin).
The PS beads used are a commercially available “NIST-traceable particle size stan-
dard” (PS-ST-L2552, Microparticles GmbH, Berlin, Germany) with a specified mean
diameter of mean(D) = 2.539 µm ± 0.038 µm and a specified size distribution width
(standard deviation) of std(D) = 0.035 µm. They come in a 2% weight-in vol-
ume (w/v) aqueous particle suspensions, where the fluid contains surfactants and
antimicrobial agents to ensure colloidal stability during storage. For transmission
measurements, they were further diluted with pure water, or the respective fluid in
question (e. g., glucose solution) and the spectral intensity Isample,j(λ) was measured
for 6 different dilutions per sample. Due to this strong dilution, the added surfac-
tants and antimicrobial agents do not cause any noticeable changes of the RI of the
matrix compared to, e. g., water.

The dilutions of the PS suspension were selected such that the transmittance
Tj(λ) = Isample,j(λ)/I0(λ) ranged from roughly 95% down to 25% (see wavelength
average T in Tab. 4.1). I0(λ) is the null measurement where the cuvette is filled
with the fluid (water) only. The offset due to dark counts and read out procedure
of the diode array were subtracted from all spectra.
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Table 4.1: Calculated dilutions of
examined suspension of PS beads
with 2.539 µm nominal diameter
in water made from 2% w/v basic
material and resulting measured
average transmittance T

#j dilution ϕj T j
#1 5600 93%
#2 2850 88%
#3 915 68%
#4 473 48%
#5 277 30%
#6 243 25%

The particle volume fraction in the undiluted
sample material was computed by dividing the
concentration of 2% w/v by the density of PS
of 1.04 g mL−1. From this, the particle concen-
tration is estimated by division with the nomi-
nal particle volume of 8.570 fL of the 2.539 µm
spheres. The concentrations cj of the measured
samples were computed according to the respec-
tive dilution factor ϕj, see Tab. 4.1.

The concentration series were recorded such
that the cuvette was not moved between mea-
surements: Increasing volumes of the particle
suspension were added to the fluid-filled 10 mm
cuvette (starting with 2.2 mL of water) and
mixed by pipetting back and forth and using the magnetic stir bar. Care was
taken not to touch the cuvette walls in the process, as not to change the angle rela-
tive to the incident beam. This minimizes errors from light reflected at the cuvette
and avoids artifacts due to displacement of the transmitted light when tilting the
cuvette.

The ensemble-averaged extinction cross sections were computed according to
Eq. (4.1). Up to a scaling factor, the Cext,j(λ) curves thus computed lie on top
of each other inside the measurement accuracy, hence multiple scattering can be
excluded.

Three spectra of a dilution series of PS beads in water are shown in Fig. 4.3
which correspond to dilutions #3, #4 and #6 in Tab. 4.1. The raw spectra have a
wavelength range of approximately 200 nm to 1120 nm. However, due to low signal-
to-noise ration near the ends of the spectral range and possibly other artifacts the
usable wavelength range was found to be 270 nm to 1100 nm. This wavelength range
also excludes any relevant absorbance of the PS beads.

The experimental setup does not feature a temperature control for the samples.
However, the experiments were conducted in an air-conditioned laboratory and a
thermometer was attached to the cuvette holder (Fig. 4.2) of which a reading was
taken for every measured spectrum. For all the measurements of PS beads shown
in this chapter, the temperature was between 16.8 ◦C and 18.5 ◦C. Since the RI of a
material is in general also a function of temperature, the temperature-dependence of
the water RI (which “sets the scale” for determining the particle RI) was taken into
account by interpolating the Sellmeier coefficients given by Daimon and Masumura
[41] as a function of temperature with second-order polynomials. However, due
to the small temperature changes, the RI of water didn’t change by more than
1.5 × 10−4 during the experiments.

4.5.2 Inverse problem settings
As mentioned before, initial values of the parameter vector ψ = (aT ,θT , η)T were
sampled randomly around a given mean and the local optimization was repeated
several times. For the inference of the RI of 2.5 µm PS particles, the initial val-
ues sampled from the following distributions [N (µ, σ) denotes normally distributed
random numbers of mean µ and standard deviation σ]:

1. The RI was initialized as a piecewise-linear function spanned over the points



70 CHAPTER 4. MICROPARTICLE AND RBC EXTINCTION SPECTRA

n[(225, 300, 575, 1200) nm] = (1.93, 1.69, 1.59, 1.57) (or rather, its projection to
the space of basis function {g1(λ), . . . , gM(λ)}), which is a crude approxima-
tion of the Sellmeier curve (Fig. 4.8). To generate random initial values, a con-
stant const ∈ N (0, 10−2) was added and then additional normally distributed
independent random numbers were added to the coefficients aj individually,
resulting in random dispersion features of 10−2 standard deviation for n(λ). .

2. The mean radius was sampled from mean(R) ∈ N (1269.5 nm, 38 nm) corre-
sponding to the manufacturer-specified mean and twice its specified uncer-
tainty. The distribution width was sampled from std(R) ∈ N (3 nm, 2 nm),
which deviates from the specified value of std(R) = 17.5 nm (no uncertainty
given). This was done because, given the clearly visible ripple structure of the
measurement data, the specified value (possibly defining an upper bound, or
a “tolerance for monodispersity”) is implausible. Once the ripple structure is
smeared out [e. g., by setting a too high std(R) initially], it is very difficult for
the local optimization algorithm to reduce the width of the size distribution
again because in the absence of ripples the sensitivity to the distribution width
is low. Hence, it was found to work best to start from a narrow distribution
and let it become broader during the coarse of optimization.

3. The relative particle concentration error was sampled from η ∈ N (0, 3%).

25 random initial conditions were sampled and the optimization was run for 15
iterations. Afterwards the six parameter vectors with the lowest χ2 were further
optimized until a given tolerance was met, which in most cases didn’t take more
than an additional 10 iterations. The parameter vector with the lowest χ2 was used
as the result ψ̂. Typically several initial conditions ended up in the same minimum,
but other less deep local minima were found as well.

To represent the RI of PS, LTRs [Eq. (4.46)] with a spacing of ∆y = 50 nm and
a width of γ = 80 nm were used. The first (last) grid point was set to be one grid
spacing ∆y smaller (larger) than the lowest (highest) wavelength.

4.5.3 Optimization results and discussion
Synthetic data results

Synthetic datasets for polystyrene particles suspended in pure water were used to
test the analysis method. The mean radius of the spheres was set to mean(R) =
1250 nm and different values were tested for the coefficient of variation CV(R) =
std(R)/mean(R). Additive Gaussian white noise according to the lowest estimated
unoise[Cext(λ)] in Fig. 4.3 on page 49 was added to the synthetic data and the numer-
ical optimization for the inverse problem was performed as described. For each set of
size distribution parameters, three different noise realizations for C∗

i were analyzed.
In all cases χ2

dof of the deepest minimum was near 1, it ranged between 0.95 and
1.10. For CV(R) = 0.5% (std(R) = 6.25 nm), which corresponds to the experimen-
tal data analyzed below, the mean and standard deviation of the radius were found
correctly within the estimated standard uncertainties of unoise[mean(R)] = 0.12 nm
and unoise[std(R)] = 0.10 nm. The estimated standard uncertainty of the particle RI
ranged between 4 × 10−5 and 7 × 10−3, depending on wavelength, and was very sim-
ilar to the result for experimental data shown below in the right panel of Fig. 4.13.
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This estimated standard uncertainty reflected the fluctuations of the inverse prob-
lem results for the particle RI around the true value (Fig. 4.8) well. Similar results
were found for CV(R) = 1.0% (std(R) = 12.5 nm), where the uncertainties of the
size distribution increased to unoise[mean(R)] = 0.34 nm and unoise[std(R)] = 0.19 nm
and also the uncertainty of the RI increased slightly. Beginning at CV(R) = 1.5%
(std(R) = 18.75 nm) the results obtained from different noise realizations started to
diverge. While results for some datasets were on the target within their estimated
uncertainties, deviations occurred for other noise realizations in the form of too high
(too low) RI accompanied by a too small (too large) particle size. At CV(R) = 2.0%
(std(R) = 25.0 nm) these deviations occurred for all noise realizations, where the
deviations amounted to about ±3 × 10−4 for the RI (mostly independent of wave-
length) and ∓15 nm for mean(R). Here, opposite signs (± vs. ∓) denote negative
correlation. At CV(R) = 3.0% (std(R) = 37.5 nm) the deviations amounted to
about ±4 × 10−4 for the RI and ∓20 nm for mean(R). In contrast, the distribution
width std(R) was still within ±1 nm of the true value. Several minima with χ2 close
to each other were found in these cases.

These findings indicate that in the case of narrow size distributions, where the
ripple structure is visible in Cext(λ) and one unique deepest minimum is found, the
linearized uncertainty estimate [Eq. (4.67) and Eq.(4.64)] for both, the RI and the
size distribution is reliable as long as the model for the measurement uncertainty is
appropriate. For wider distributions where the ripple structure is attenuated and
does not exceed the noise level anymore, the inverse problem result may acquire
systematic errors which are not covered by the uncertainty estimate and multiple
minima may occur.

Measurement data results

Results for the inference of the particle RI ns(λ) from the measured extinction
cross sections of 2.5 µm PS beads in water (Fig. 4.3) are shown in Fig. 4.13. The
three curves shown here correspond to the three lowest dilutions (Tab. 4.1) and
hence the lowest estimated measurement noise. The corresponding size distribution
parameters and concentration errors η are shown in Tab. 4.2. A regularization of
the least-squares problem according to Eq. (4.63) was tested using the manufacturer
specification for the size distribution and its uncertainty. The convergence behavior
with and without the regularization term was equally good and the found deepest
minima, which were used as the result, did not show any appreciable difference (i. e.,
the differences were not significant with the estimated uncertainties). This relative
uselessness of the regularization in the present scenario (i. e., determining the RI of
quasi-monodisperse PS particles) is due to the high sensitivity of the model to the
parameters of the size distribution at this particular point in the parameter space
in combination with the rather high uncertainties of the manufacturer specification.

The left panel in Fig. 4.13 shows the results for the RI of PS in comparison
with the curve around which random initial values were sampled (piecewise linear,
projected onto the space of LTR basis function used) and with literature values for
the RI of bulk PS in the range 436 nm to 1052 nm [79]. Also shown is the one-term
Sellmeier curve fitting and interpolating the literature data, which was also used to
generate synthetic datasets earlier in this chapter (see Fig. 4.8 and footnote 2 on page
58). The right panel in Fig. 4.13 shows the estimated uncertainties of the inferred
RI stemming from measurement noise and propagated linearly through the forward
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Figure 4.13: RI of PS retrieved from extinction measurements of 2.5 µm beads in
water. Results from measurements of Cext(λ) at three different dilutions of the stock
solution. The right panel shows the estimated uncertainty due to measurement noise
[Eq. (4.64) and Eq. (4.68)].
¶ values of Nikolov and Ivanov for bulk PS [79]. The black dashed line is the best
fit of a one-term Sellmeier equation to these data and is used as a reference.

model according to Eq. (4.67) and Eq.(4.64). The overall agreement of the inverse
problem result with the literature RI is good and the estimated uncertainties suggest
that their accuracy is between 5 × 10−5 and 8 × 10−4 depending on wavelength and
the dataset analyzed. Thus they would be far more accurate (at least for most
wavelengths) than the literature values for bulk PS featuring uncertainties of 10−3

[79]. However, looking at the difference of the result to the literature values

∆ns(λ) = ns(λ) − nlit(λ) (4.69)

in Fig. 4.14 it becomes evident that the differences ∆ns(λ) cannot be explained
by the combined uncertainties of the literature values and the estimate unoise[ns(λ)]
made here, which would not exceed 1.2 × 10−3. The differences |∆ns(λ)| are high-
est near the extrema of Cext(λ) at 540 nm and 950 nm, which is consistent with
the observations made for synthetic data, see Fig. 4.10. On the other hand, the
deviations between the RI curves #4, #5 and #6 are compatible with the un-
certainty unoise[ns(λ)], which also holds true for the scalar quantities in Tab. 4.2.

Table 4.2: Optimization result for scalar parameters for PS beads in water. The
numbers in parentheses are the estimated standard uncertainties due to noise re-
ferred to the last digits of the respective results.

χ2
dof mean(R)/nm std(R)/nm η

specification 1267(19) 17.5 –
#4 0.325 1259.17(20) 6.23(18) 12.93(5)%
#5 0.889 1259.16(12) 6.28(11) 12.29(3)%
#6 0.837 1259.09(10) 6.18(09) 11.91(3)%
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Figure 4.14: Difference of the particle RI
found by optimization to the one-term
Sellmeier curve in Fig. 4.13. Dash-dotted
lines indicate ±unoise[ns(λ)] for the respec-
tive curves.

This makes sense, as the uncertainty of
the measurement data that was used
to compute unoise[ns(λ)] was estimated
from repeated measurements in the
same setup. Hence this uncertainty es-
timate does not account for any system-
atic measurement errors that may still
be present in the experimental setup,
even after careful adjustment. In par-
ticular these errors may include artifacts
in the spectra due to the strong atomic
lines of the Xenon lamp, which sig-
nificantly exceed the black-body back-
ground for λ ≥ 800 nm (see upper left
panel of Fig. 4.3 on page 49). With
a suitable error model accounting for
all these sources of measurement un-
certainty, the propagation through the
model according to Eq. (4.64) may yield
reliable uncertainty estimates. Another
way would be a statistical approach with
the measurement of many different sam-
ples (e. g., different particle diameters). However, this would be time-consuming and
since the PS beads examined here merely serve to demonstrate the method in gen-
eral, this was not pursued any further.

Judging from the differences ∆ns(λ), the RI can be determined with an accuracy
of 3 × 10−3 or better for λ ≥ 436 nm. Below 436 nm, literature values exist for the
optical properties of thin PS films [80] and PS microspheres [86]. These data indicate
a monotonous increase of the RI with decreasing wavelength in the UV, just as do the
results found here. These literature values were determined only indirectly and are
less accurate than those for bulk material [79] with which they don’t agree well, such
that no quantitative comparison is attempted here. Unfortunately, in contrast to
the RI no such comparison is possible for the size distribution, as the manufacturer
specification of the microparticles (sold as a particle size standard) is not nearly
accurate enough. In any case, the results found here for the mean particle size are
well within the manufacturer specified uncertainty.

Table 4.3: Sellmeier coefficients
[Eq. (4.70)] for the RI of PS mi-
crobeads determined in this chapter

j Bj Cj/µm2
√
Cj/nm

1 0.2010 0.0479 218.8
2 1.2473 0.0137 117.1

As a final result for later use and
to smooth out most of the wavelength-
dependent errors of the RI curves, they were
fitted with a two-term Sellmeier equation,
i. e.,

n2
s (λ) = 1 + B1

λ2

λ2 − C1
+B2

λ2

λ2 − C2
.

(4.70)
In contrast to the literature data used to generate synthetic data [79] that were
measured between 436 nm and 1052 nm, the results obtained here cover a wider
wavelength range of [270 nm, 1100 nm] and thus require a second term for a good
fit. The nonlinear fit of the four parameters B1, B2, C1, C2 was weighted with the
estimated 1/unoise[ns(λ)]2. The resulting χ2

dof for measurements #4, #5 and #6
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were 26.6, 102 and 89, respectively. Assuming that the Sellmeier equation is a
physically adequate model, this indicates that the uncertainty estimates made for
the particle RI are approximately 5 to 10 times too small (square root of χ2

dof), which
is also consistent with the finding from comparison with literature data (∆ns(λ) in
Fig. 4.14 above). The root-mean-square deviation between inverse problem results
and Sellmeier fits does not exceed 1.5 × 10−3 for the three curves, which can also
serve as a (wavelength-averaged) measure of the accuracy of the RI determination
presented here. The Sellmeier coefficients for the average of the three datasets are
given in Tab. 4.3. The corresponding ns(λ) curve agrees with the one-term Sellmeier
fit to literature data used above as a reference [79] within 6 × 10−4, i. e., within the
uncertainty of the literature data.

4.5.4 Modification: inference of the refractive index of the
host medium

The measurement setup and data analysis discussed in this chapter can not only be
used to determine the RI of microparticles suspended in a known fluid such as water.
Complementarily, the roles of surrounding medium (or “matrix”) and particle RI can
be interchanged in the optimization. In this way, the spectral RI of the matrix, can
be deduced using (quasi-monodisperse) micro-spheres with known optical properties
(and size) as a probe. To demonstrate this, the same datasets used before can be
analyzed with respect to the matrix RI, while keeping the, now known, particle RI
constant. The modifications to the forward model M(λ;ψ) and its derivatives are
quite straight forward. The coefficient vector a now represents the matrix RI in
a set of suitable basis functions instead of the particle RI. The parameters of the
particle size distribution θ and the relative concentration error η have the exact
same meaning as before. Depending in the sensitivity, regularization with previous
results for the particle size distribution may be applied, or certain parameters may
be held fixed at their initial values.

Of course, inverting the same datasets used to determine the RI of the PS mi-
crobeads to now determine the RI of the matrix (i. e., water) using the results for
the PS RI may not be a suitable test scenario. This is because certain errors could
cancel out in this exact configuration, that might otherwise not. One example for
this effect is the following thought experiment: We have seen that certain deviations
occur between the retrieved RI of PS beads and literature values. However, in the
forward model, these retrieved RI curves explain the measured spectral extinction
cross sections optimally, given the accurate RI data for water. Hence, if one tries
to determine the RI of water using these results for the RI of the PS beads, it is
expected that the RI of water is retrieved closely to its true value. On the other
hand, much larger deviations might occur if instead the literature RI data for PS are
used in the forward model, which do not explain the measured extinction spectra
optimally in combination with the literature RI data for water. Similar effects can be
thought of for the other model parameters. To avoid these problems, firstly, instead
of using the exact output of the optimization for the particle RI ns(λ), we use the
two-term Sellmeier fit obtained above. Secondly, in addition to analyzing only pure
water, measurements with PS particles (from the same vial) suspended in solutions
of d-glucose were taken. The RI of glucose solutions in dependence on wavelength
and concentration is known for the wavelength range 320 nm to 1000 nm [92] for con-
centrations up to 50 g L−1. In this range a linear concentration dependence is found.
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For higher concentrations, measurements at single wavelengths [98] indicate that the
concentration dependence does not deviate from a linear relationship by more than
a few percent. Hence, the wavelength-dependent RI is assumed to be known also
at higher concentrations. Because the RI of a highly concentrated glucose solution
may be higher than that of water by 0.05 in the visible, glucose solutions of different
concentrations provide a suitable test case for determining the matrix RI over a
relatively wide RI range.

The roles of matrix and particle RI in Mie scattering are, however, not perfectly
interchangeable. From equations (4.14) and (4.15) on page 46, we see that the par-
ticle RI n only appears in the parameter m, while the matrix RI nm appears in both
parameters, m and X defining the Mie scattering problem. This means that the sen-
sitivity to n (or ns as denoted in the previous section) and nm is generally different.
For the parameters considered here, however, the quality of the reconstruction of
either the particle or matrix RI is relatively similar. When inferring the RI of water
(for which some sources of error are expected to cancel) and with smoothing of the
results for the RI of PS using a Sellmeier curve in order to prevent accumulation
of errors during the two-step inverse problem solution the differences between the
inferred RI of water and the reference curve [41] oscillates on the scale of 3 × 10−3,
similar to the findings for PS (Fig. 4.14). This accuracy of the inferred RI may
not be satisfactory when a low-concentration aqueous solution is examined, where
the quantity of interest is the change in RI caused by the solute which may range
between 10−3 and 10−2. For simple, non-absorbing solutions, the accuracy of the
RI inference can be somewhat improved by using a different set of basis functions
to represent nm(λ) than the Lorentz-type resonances (LTRs) used before for PS.
These LTRs provide a relatively flexible model for the wavelength-dependence of
the real part of the RI, also near or at absorption lines, while at the same time using
relatively many parameters (M = 20 in the results shown for PS above). The real
RI of an aqueous solution can be expressed as

nm(λ) = nH2O(λ) + δn(λ) (4.71)

and sufficiently far away from any strong absorption lines the RI difference δn(λ) has
only a weak wavelength-dependence. Hence, one can express δn(λ) with few basis
functions. Since for glucose solutions, Sobral and Peña-Gomar [92] successfully used
a three-term Cauchy equation

δn(λ) = b1 + b2

λ2 + b3

λ4 (4.72)

to express the RI increment, we will use the same basis functions, i. e.,

f1(λ) = 1, f2(λ) = 1
λ2 , f2(λ) = 1

λ4 , (4.73)

to represent the RI difference δn(λ) with only three parameters and using the known
RI of water [41]. This suppresses the tendency of unphysical oscillations in nm(λ)
that occurs when using LTRs.

The method will also be applied to determine the RI of a commercially available
sphering reagent for RBCs used for the measurements in section 4.6 below, for which
no RI information is available.
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Figure 4.15: Measured extinction cross sections of 2.5 µm beads suspended in water
and different glucose solutions. The curves shown are rescaled according to the
optimization results to eliminate the effect of particle concentration errors [rescaled
by 1/(1 + η), cf. Eq. (4.55)].

Results for d-glucose

The measurements of the spectral extinction were repeated in the same way as be-
fore, but instead of pure water using 5 different glucose solutions with concentrations
c ∈ {10, 20, 100, 200, 300} g L−1 corresponding to {1%, 2%, 10%, 20%, 30%} weight-
in-volume. The resulting extinction cross sections are shown in Fig. 4.15, where the
particle concentration corresponds to dilution #6 in Tab. 4.1, which has the lowest
measurement noise of the concentration series and was thus analyzed. The curve
for c = 10 g L−1 is not shown in Fig. 4.15 for readability, because it would almost
overlap the curves for water and c = 20 g L−1. One can clearly see the shift of the
Mie resonances to lower wavelengths as the matrix RI increases and consequently
the relative RI of the particles decreases. At the same time, the positions of the fine
ripples remain almost unchanged. In this sense, the effect of increasing the matrix
RI is very similar to decreasing the particle RI, see Fig. 4.5 on page 55.

For the inverse problem, the RI was initialized to a piecewise linear function
nm(250 nm, 460 nm, 800 nm, 1200 nm) = (1.38, 1.34, 1.33, 1.32), which is a rough ap-
proximation of the RI of water. For the 10%, 20% and 30% glucose solutions, the
initial RI was increased by 0.015, 0.030 and 0.045, respectively. Apart from that and
the switched roles of matrix RI and particle RI, the parameter vector was initialized
randomly in the same way as discussed before when inferring the RI of PS. For the
30% glucose solution, the minima thus found all corresponded to a size distribution
with mean radius at least 80 nm too big and a much too high distribution width. To
prevent the optimization algorithm from running into these unphysical minima, the
size least-squares problem was regularized [Eq. (4.63)] with the previous findings for
the size distribution, i. e., mean(R) = 1259.09(10) nm and std(R) = 6.18(09) nm.
The measurements from the lower-concentration solutions were analyzed without
regularization.

The RIs of the glucose solutions, inferred with the difference to water δnm(λ)
parametrized by a three-term Cauchy equation, are shown in Fig. 4.16 along with
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Figure 4.16: Inferred RI of water and different glucose solutions from extinction
measurements of 2.5 µm beads suspended in them. The left panel shows the total real
RI. The right panel shows the real RI difference to water δnm(λ) = nm(λ)−nH2O(λ).

Figure 4.17: Difference of inferred water
and glucose RI (see Fig. 4.16) to refer-
ence values [41, 92]

the literature values (also expressed by
Cauchy equations). The results for the
mean particle radius mean(R) ranged be-
tween 1258.9 nm and 1259.2 nm and those
for the distribution width std(R) between
6.1 nm and 6.6 nm, which is highly consis-
tent with the previous findings. The over-
all increase of the RI with glucose concen-
tration is reproduced very well by the in-
verse problem results, and possible devi-
ations from a linear concentration depen-
dence (which is know to hold at least up
to 50 g L−1 [92]) are apparently not too
strong. However, even smaller than be-
fore for the PS RI, the estimated uncer-
tainties unoise[nm(λ)] range from 6 × 10−6

to 1 × 10−4 depending on concentration
and wavelength and do not explain the
deviations from the reference values [41],
even for water or at low glucose concen-
trations cglucose ≤ 50 g L−1, where they are known to be reliable. These differ-
ences ∆nm(λ) are shown in Fig. 4.17 and exceed 5 × 10−4 for low concentrations
(cglucose ≤ 20 g L−1). For higher concentrations, they do exceed 10−3, but this might
in part be attributed to violations of the linear concentration-dependence of the RI
assumed for the reference values.

Results for sphering reagent

The application of the inverse problem for the RI of the matrix surrounding the mi-
croparticles to glucose solutions (for which literature data exists) served as a proof
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Figure 4.18: Measured extinction cross sections of 2.5 µm PS beads suspended in a
sphering reagent for RBCs in comparison to water and glucose solutions. The curves
shown are rescaled according to the optimization results to eliminate the effect of
particle concentration errors [rescaled by 1/(1 + η), cf. Eq. (4.55)].

of concept and to estimate the accuracy of the method. A question of actual impor-
tance for the basic research problem presented in the next section – to determine
the optical properties of RBCs from their extinction spectra – is the application
of the method to a sphering reagent for RBCs. This sphering reagent is a com-
mercially available substance (CELL-DYN diluent/sheath reagent, Abbott GmbH
& Co. KG, Diagnostik, Germany) normally used for the isovolumetric sphering of
RBCs in hematology analyzers. It was used in the experiments discussed in the
next section of this chapter to render RBCs spherical for extinction measurements,
in order to analyze data with Mie theory. The sphering occurs only as long as
the cells are suspended the reagent and is reversed when it is replaced by isotonic
saline. Hence the measurements have to be performed with RBCs suspended in the
sphering reagent rather than a fluid with well-known optical properties like water
or isotonic saline. The basic concept of isovolumetric sphering of RBCs by chemical
treatment of the membrane was published by Kim and Ornstein [99] and Tycko et
al. [22] in the 1980s. The ingredients of their sphering solutions were isotonic saline,
sodium dodecyl sulfate (SDS; a surfactant) and the bovine serum albumin (BSA; a
plasma protein). However, neither are the wavelength-dependent RIs of SDS and
BSA known, nor is the exact composition of the commercial product, which likely
contains additional substances like preservatives. This is unfortunate, as it means
that the RI of the sphering reagent has to be determined before measured RBC
extinction spectra can be analyzed.

In order to quantitatively infer the RI of the sphering reagent, 2.5 µm PS beads
were suspended in it and the extinction measurements were repeated as before. Mea-
surements were taken for the undiluted sphering reagent (as used for the RBCs) and
dilutions of 25% and 50% with pure water. Furthermore, the absorption spectrum
was recorded with the setup in Fig. 4.2. An absorption band was found between
220 nm and 300 nm with a peak in the imaginary part if the RI of 10−5 at 284 nm.
This limits the lowest wavelength in our analysis to 290 nm since the transmittance
in a 10 mm cuvette drops down to about 1.2% compared to water at the absorption
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Figure 4.19: RI difference to water obtained for different fluid matrices (compare to
Fig. 4.18). The black lines represent the respective reference curves for water [41]
and the d-glucose solutions [92]. The errorbar indicates the measurement of the
undiluted sphering reagent with an Abbe refractometer (AR).

peak, which results in a very low signal to noise ratio, i. e., the wavelength range in
the analysis has to be reduced to [290, 1100] nm. From a theoretical point of view,
the spectra could still be analyzed below 290 nm using standard Mie scattering, see
Appendix 4.A. The analysis of the measured spectral extinction cross sections was
performed like for low-concentration glucose solutions. For the 50% dilution, regu-
larization of the size distribution became necessary like for the 30% glucose solution.
The other two dilutions were analyzed without regularization.

The measured extinction cross sections Cext(λ) of PS beads suspended in the
sphering reagent are shown in Fig. 4.18 in comparison to measurements in 1% and
2% d-glucose solutions and water. The differences between the curves are subtle,
but can be seen by comparing the ripple structure (insets in Fig. 4.18). The curve
for the sphering reagent lies in between those of the two glucose solutions. Without
solving any inverse problem, this already allows to conclude that the RI of the
sphering reagent is different from water by a similar figure as the RI of a 1% or 2%
glucose solution. Furthermore, this indicates that the RI of the unknown solution
is in between those of the two glucose solutions.

The RI differences to pure water δnm(λ) found by optimization, with δnm(λ)
expressed by a three-term Cauchy equation are shown in Fig. 4.19 for the three dilu-
tions (25%, 50%, 100%)) of the sphering reagent and the two glucose solutions. Also
shown in this figure is the measurement of the RI of the (undiluted) sphering reagent
with an Abbe refractometer (ORT 1RS, Kern Optics, Germany) at a single wave-
length λ = 590 nm, which resulted in δn = 0.0020(3). This direct measurement and
the respective curve δnm(λ) are not quite in agreement with each other. If one ac-
counts for the fact that at this wavelength the RIs of the glucose solutions are higher
than the respective reference values (black lines in Fig. 4.19) by about 3.2 × 10−4,
and corrects the inverse problem result for the sphering reagent by this number,
one obtains for the sphering reagent δncorr = 0.0021, which is inside the uncertainty
of the refractometer measurement. One can attempt to apply this correction (i. e.,
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subtracting the differences between the glucose results and their reference curves
from the sphering reagent result) to the full wavelength range. This results in a RI
difference for the sphering reagent which is in between 0.0020 ≤ δncorr(λ) ≤ 0.0023
for the wavelength range considered. However, even with this correction attempt,
the wavelength-dependence obtained from the analysis of the extinction spectra is
most likely not reliable for the following reasons:

1. At least for λ ≥ 350 nm, the inverse problem results in Fig. 4.19 all feature
anomalous dispersion (i. e., dδnm/dλ < 0), even though this is known not
to be the case for water (δnm ≡ 0) and glucose. For the sphering reagent,
this remains the case even after a correction attempt (curves not shown).
The anomalous dispersion obtained for the sphering reagent is most likely
exaggerated as it is physically not plausible: There is only a weak absorption
line around 270 nm that causes a dispersion feature, however since κ(λ) ≤ 10−5

for this line, one finds (KK transform, see chapter 3) and amplitude of the real
RI feature of less than 10−5. Also this absorption line would cause normal
dispersion at higher wavelengths, not anomalous dispersion.

2. The anomalous dispersion of the 25% and 50% dilutions of the sphering reagent
are more pronounced than for the undiluted solution. Since the solution has
only low to moderate concentration of any solutes (reflected in a small δn), a
linear relation between RI and concentration should be a reasonable assump-
tion. The inverse problem results for the wavelength dependence violate this
linear relationship, which indicates that the a large part of the wavelength-
dependence consists of artifacts due to measurement and/or model errors.

Given the most-likely not significant wavelength-dependence, the inverse problem
results can only confirm the conclusion drawn from looking at the ripple structure
in the extinction spectra: The RI of the sphering reagent is in between those of a
1% and 2% glucose solution.

4.6 Application to sphered red blood cells
After the demonstration of the size and RI inference method for quasi-monodisperse
PS beads for which accurate RI literature data exists, we will now apply it to sphered
RBCs to obtain their optical properties. For the extinction measurements blood
samples from three different volunteers were used. Unlike for PS beads which are
commercially available in a wide range of sizes, the mean volume of RBCs (MCV)
of most healthy persons falls within the reference range of 80 fL to 100 fL [17]. From
a data analysis point of view this is unfortunate, since we have seen already for
PS beads that the RI inference is most challenging at the minima and maxima of
the Mie resonances in Cext(λ). Since the wavelengths at which these resonances
occur depend on particle size, it is favorable to collect data from blood samples with
significantly different mean RBC volumes, rather than similar ones. In order to
have at least some size variation one of the three healthy volunteers was selected for
his/her MCV of approximately 63 fL, which is significantly outside of the reference
range.

In order to apply the data analysis presented in the previous sections, the RBCs
in suspension were sphered using a chemical treatment that reduces the membranes’
area while leaving them intact and not affecting the inside of the cell [22, 99]. The
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sphering occurs only as long as the cells are suspended in a specific reagent and is
reversed when it is replaced by isotonic saline. Hence the measurements have to be
performed with RBCs suspended in the sphering reagent rather than a fluid with
well-known optical properties like water or isotonic saline. The determination of the
RI of the sphering reagent was discussed in the previous section.

4.6.1 Experiment

Note: The preparation of RBC samples and the extinction measurements were
performed by Kathrin Smuda (Charité and PTB Berlin).
Freshly withdrawn venous blood, anti-coagulated by ethylenediaminetetraacetic acid
(EDTA, 1.8 g L−1), was collected from 3 healthy volunteers (A, B and C) with the
vacutainer system from BD (BD, Heidelberg, Germany) and immediately processed.
Informed consent was obtained from all donors in written form. The blood samples
were withdrawn in accordance with the transfusion law of Germany. The use of
donor blood samples for scientific purposes was approved by the ethics committee
of the Charité – Universitätsmedizin Berlin (# EA1/137/14). For leukocyte and
thrombocyte depletion, 10 mL of whole blood were washed three times (150 g, 5 min)
in 50 mL of phosphate buffered saline (PBS; sigma, Germany). Washed RBCs were
re-suspended in PBS to a final volume of 10 mL. Complete blood counts (CBCs) were
taken using a XS-800i analyzer (Sysmex Europe GmbH, Germany) for whole blood
and an ABX Micros 60 analyzer (Axon Lab AG, Germany) before and after washing
to ensure that leukocyte and thrombocyte concentrations are low and extinction
spectra of RBCs are not distorted. For sphering, washed RBCs were diluted 1:100
in the sphering reagent (CELL-DYN diluent/sheath reagent, Abbott GmbH & Co.
KG, Diagnostik, Germany). This pre-diluted suspension was used as stock solution
for dilution series. For transmission measurements, pre-diluted sphered RBCs were
further diluted with the sphering reagent. The concentration series for the spectral
transmittance were recorded just like for the PS beads described in the previous
section 4.5 with 6–8 dilutions measured per sample and transmittances ranging
from roughly 10% to 95%. Extinction cross sections were computed according to
Eq. (4.1) and examined for effects of multiple scattering, which can be excluded for
the curves analyzed in the following.

Measured spectral extinction cross sections Cext(λ) of sphered RBCs from three
volunteers (A, B, C), recorded at room temperature are shown in Fig. 4.20 (left
panel). Absorption spectra of lysed RBCs were measured for all the samples and
found to agree with literature data for oxyHb [37,39] up to the concentration error
from volumetric dilution. Hence we can use the literature values [37] for γ(λ) in
the analysis (right panel of Fig. 4.20). This also confirms that the RBCs were fully
oxygenated due to contact of the samples with air. Hematological parameters from
the CBCs of the blood samples are shown in Tab. 4.4. In contrast to PS beads, no
ripple structure is visible, which is a result of the lower relative RI of the RBCs.
Due to the different MCVs of the sample the Mie resonances and overall magnitude
of the Cext(λ) are clearly shifted between the curves in Fig. 4.20. At the same time,
the features stemming from the absorption bands of Hb, such as the double peak
around 560 nm and the Soret band near 420 nm are shared between the three curves.
Note that Fig. 4.7 on page 57 illustrates the general effect of the imaginary RI on
Cext(λ).
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Figure 4.20: Measured extinction cross sections of sphered RBCs suspended in spher-
ing reagent (left panel) and imaginary RI increment of oxyHb [38] used in the forward
model (right panel). Samples from three volunteers A, B and C who exhibit signif-
icantly different MCV were investigated. The curves shown are rescaled according
to the optimization results to eliminate the effect of particle concentration errors
[rescaled by 1/(1 + η), cf. Eq. (4.55)].

4.6.2 Inverse problem

The wavelength dependence of the RI of the sphering reagent (in which the RBCs are
suspended during measurement) could not be inferred with sufficient accuracy from
extinction measurements with PS beads (see section 4.5.4) to be used for inverting
the extinction spectra of RBCs. Due to the low absorbance of the solution in the
measured range (κ ≤ 10−5) the presence of strong dispersion features of the real

Table 4.4: Hematological parameters of RBC samples obtained from the CBC of
whole blood (top) and used for regularization in the optimization in comparison
to the optimization results (bottom). cRBC is the RBC concentration in the whole
blood sample and ϕ the dilution factor applied for the extinction measurement. η
is the (negative) relative concentration error found by optimization. The numbers
in parentheses are the estimated standard uncertainties, referred to the last digit.

CBC

volunteer MCHC
g L−1 HDW MCV

fL RDW cRBC
1012 L−1 ϕ

A 329(6) – 86.0(1.0) 12.7(1.0)% 4.6 1700
B 324(10) – 63.0(2.2) 15.7(1.2)% 6.6 7300
C 331(6) – 81.5(1.0) 15.2(1.0)% 4.5 3200

optimization result η

A 324(6) 3.9(5)% 85.7(1.0) 12.7(1.0)% +1.9(8)%
B 332(4) 6.4(3)% 62.3(2.0) 15.7(1.2)% -13.1(1.9)%
C 331(6) 4.6(5)% 81.5(1.1) 15.2(1.0)% +2.4(9)%
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Figure 4.21: Real RI increment of oxygenated human RBCs obtained from the mea-
sured extinction cross sections in Fig. 4.20. Shaded bands indicate ±1 estimated
uncertainties unoise[α(λ)], accounting for noise in the analyzed spectra and uncer-
tainties of CBC parameters.

RI is unlikely. From the comparison between extinction spectra of 2.5 µm PS beads
suspended in 1% and 2% d-glucose solutions and of the same beads suspended in the
sphering reagent, it becomes clear that the RI of the latter solution is somewhere
between the RIs of the former two solutions, at least for the quasi-nonabsorbing
range λ ≥ 290 nm. The RI increment of d-glucose in aqueous solution is known to
have only a very weak wavelength-dependence in the 320 nm to 1000 nm range [92]
(the RI difference to pure water of a 1.5% d-glucose solution changes by less than
3 × 10−4 over this wavelength range). Due to the similarity, we conclude that the
RI difference of the sphering reagent compared to pure water also has negligible
wavelength dependence. Hence, in the forward model for sphered RBCs we assume
nm(λ) = nH2O(λ) + 0.0020(3) for all λ, as this RI difference was measured for the
sphering reagent at 590 nm using a refractometer.

For the set of basis function gj(λ) used to represent the real RI increment α(λ),
we use a set of orthonormalized third-order cardinal splines with a uniform grid
spacing of ∆y = 10 nm on the measured interval [290, 1100] nm. In contrast to most
datasets from PS beads, a regularization term according to Eq. (4.63) was employed
in the analysis of all RBC extinction spectra that penalizes deviations from the CBC
measurements, see Tab. 4.4.

Sampling of initial parameter values

As already mentioned, initial values of the parameter vector were sampled ran-
domly around a given mean and the local optimization was repeated several times.
More specifically, the coefficient vector a of the real RI increment α(λ) was ini-
tialised in a two-step process: (i) α(λ) was set to a random constant const ∈
N (0.235 mL g−1, 0.04 mL g−1) and (ii) additional normally distributed independent
random numbers were added to the coefficients aj, resulting in random dispersion
features of 0.004 mL g−1 standard deviation for α(λ). For the size and concentra-
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tion distribution, the parameters θ were randomly initialized around those values
obtained from the CBC. Standard deviations of the Gaussian random numbers were
set to 30 g L−1 for mean(cHb), 120 nm for mean(R) and 30 nm for std(R). The width
of the Hb concentration distribution and the particle concentration error were sam-
pled from std(cHb) ∈ N (7%MCHC, 10 g L−1) and η ∈ N (0, 3%), respectively.

25 random initial conditions were sampled and the optimization was run for
15 iterations. Afterwards the six parameter vectors with the lowest χ2 were further
optimized for up to 150 iterations or until a given tolerance was met. The parameter
vector with the lowest χ2 was used as the result ψ̂. Like for PS beads, typically
several initial conditions ended up in the same minimum, but other less deep local
minima were found as well.

Optimization results

Figure 4.22: Real RI of oxygenated RBCs
computed with the RI increment deter-
mined in this chapter for three different
Hb concentrations

The real RI increment α(λ) obtained
by nonlinear optimization is shown in
Fig. 4.21. Even though the underlying
Cext(λ) (Fig. 4.20) differ significantly,
the α(λ) have almost the same wave-
length dependence within their respec-
tive estimated uncertainties, except for
a small offset. All three curves lie
around α ≈ 0.22 mL g−1, with differ-
ences between 0.01 mL g−1 at the IR end
and 0.013 mL g−1 at the UV end be-
ing present between the highest curve
(volunteer A) and the lowest (volunteer
B). This agreement is remarkably good,
given that the estimated standard un-
certainties (shaded bands in Fig. 4.21)
account only for effects of noise in the
measured extinction spectra and un-
certainties of the parameters from the
CBC. The observed systematic devia-

tions might be caused by possible scattering effects of residual WBCs or blood
platelets in the washed RBC samples, by different concentrations of proteins other
than Hb in the RBCs of the volunteers or by model errors due to the class of func-
tions assumed for the distributions of size and Hb distribution. Lastly the fact that
these deviations exceed the estimated uncertainties could simply be a result of the
model employed for measurement noise, which was found to be insufficient for un-
certainty propagation for the PS beads. In order to account for these influences at
least to some extent, as a final result for the real RI increment of oxygenated RBCs
the average of the three curves was taken, weighted with the respective uncertainties
(inverse covariance matrices) of the individual curves, which is shown as the blue
curve in Fig. 4.23. The uncertainties of the result are determined from the weighted
sample variance, details are given in Appendix 4.C. The resulting total RI of RBCs
at three different concentration computed with this result is shown in Fig. 4.22.

The optimization results for the hematological parameters are shown in Tab. 4.4.
Because of the described effect of mutually compensating parameters in the forward
model, the found MCHC, MCV and RDW mean values and uncertainties basically
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Ref. [48]
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Ref. [44]
Ref. [45]
Ref. [46]

Figure 4.23: Real RI increment of oxygenated human RBCs. The blue line is the
weighted average of the individual curves in Fig. 4.21. Various literature values for
the RI increment of oxygenated Hb solutions and RBCs are shown for comparison.
Samples for these measurements were: (i) Hb solutions from powder [45,46,48], (ii)
Hb solutions from freshly hemolyzed RBCs [38,44] and (iii) single native RBCs [49].

reflect the input CBC parameters and their respective uncertainties, which were
used for regularization. In addition, the width of the intracellular Hb concentration
distribution HDW = std(cHb)/mean(cHb), which is not part of the standard CBC
was also retrieved. Hence, there is no reference measurement to compare to, but the
HDW values obtained appear at least plausible compared to typical physiological
values [22,50].

4.6.3 Comparison to literature data
Fig. 4.23 shows the final result obtained here for the real RI increment α(λ) of
oxygenated RBCs along with various literature values of Hb solutions and intact
RBCs. Compared to the widely used values reported by Barer and Joseph [36,
42] of α ≈ 0.19 mL g−1 for Hb in the visible range, the results for RBCs found
in this chapter (blue curve in Fig. 4.23) of α(λ) ≈ 0.22 mL g−1 are significantly
higher. On the other hand, the results found here are in good agreement with values
measured from a single native RBC using hyperspectral microscopy by Ojaghi et
al. [49] for wavelengths λ ∈ [250, 440] nm (red curve in Fig. 4.23) while exhibiting
a less noisy profile with lower uncertainties and covering a wider wavelength range
λ ∈ [290, 1100] nm. Good agreement is also found for values measured for solutions
prepared from Hb powder using spectroscopic phase microscopy by Park et al. [48]
at discrete wavelengths λ ∈ [440 nm, 700 nm] (black error crosses in Fig. 4.23). Note
that Park et al. [48] also reported measurements of the RI increment of bovine serum
albumin (BSA) of αBSA = 0.18 mL g−1, which is lower as their values of αHb and
consistent with those values of Barer and Joseph [36,42]. This makes is plausible that
the RI increments reported for various proteins by Barer and Joseph are generally
correct, but that the RI increment of Hb is too low.

The values obtained here for α(λ) are about 0.05 mL g−1 or 20% lower than
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values measured by Friebel and Meinke for homogenized RBC cytoplasm, obtained
by hemolysis [38] (green dash-dotted curve in Fig. 4.23). At the same time the peak-
peak amplitude ∆ppα = 0.060 mL g−1 of the dispersion feature around λ ≈ 420 nm
is lower by the same percentage. Comparing to the measurements of Lazareva and
Tuchin [44] (purple dotted line in Fig. 4.23) for samples prepared from fresh RBCs in
a similar way as those used by Friebel and Meinke [38], the present results for α(λ)
are about 0.03 mL g−1 higher. As a hypothesis, these deviations in both directions
can be explained by a scaling error of some of the curves, most likely stemming
from the measurement of the Hb concentration. Another possible source for these
discrepancies is the formation of Hb-enriched or depleted layers near interfaces, as
these measurements were performed at solution-air interfaces [38] and solution-glass
interfaces [44], respectively.

Comparing to other results for the RI increment of Hb solutions, the findings of
this chapter are incompatible with the data presented by Zhernovaya et al. [45] and
Wang et al. [46] (cyan circles and yellow line in Fig. 4.23), where values of α(λ) ≈
0.15 mL g−1 for λ ∈ [400 nm, 750 nm] were reported for solutions prepared from
human and bovine Hb in dry form and concentrations determined from the weighed-
in protein mass. The limitations of this method over spectroscopic concentration
determination have been discussed [36] . Furthermore, the solutions created from dry
Hb, being in the form of non-functional methemoglobin (metHb), require conversion
to oxygenated Hb (oxyHb) using sodium bicarbonate. This may, at least in part,
explain the discrepancies.

The overall wavelength-dependence of the presented result for α(λ) obtained
from extinction cross sections of intact RBCs closely resembles the curves computed
using the Kramers-Kronig (KK) transformation of the absorption spectrum of Hb
solutions presented in chapter 3 of this thesis. However, the agreement between the
two hinges on the real RI increment dataset used for fitting the unknown parameters
of the deep UV absorbance model. This is because the parameters of this model,
which contributes the background to α(λ) cannot be determined from the available
absorption spectra alone. Fig. 3.4 on page 34 shows the KK fit to two different
curves: the measurement results of Friebel and Meinke [38] and this chapter’s result.
The former is the case published in the author’s own article Ref. [47], before the
results of this chapter became available. However, only for the latter case does
one find good agreement between the KK result and the curve it was fitted to
within the estimated uncertainties. In particular, the peak-peak amplitude around
λ ≈ 420 nm differs by less than 5% between the KK result and this chapter’s result.
This observation indicates that the RI of RBCs is indeed practically identical to that
of an aqueous Hb solution of equal concentration, for which the KK analysis was
performed. It also justifies the use of imaginary RI increment data obtained from
absorption spectra of bulk Hb solutions in the present analysis of RBC extinction
spectra.

As errors of the Hb concentration pose a serious problem in RI measurements
of RBCs and Hb solutions, and may have affected some of the measurements pre-
sented in the literature, we need to carefully estimate their potential influence on
the present results. To determine the mean intracellular Hb concentration (MCHC)
of the examined RBC samples, a hematology analyzer was employed. These de-
vices are used in laboratory medicine and undergo frequent external controls and
calibration in order to yield reliable values for medical diagnoses. Furthermore the
RBCs remained intact over the course of the experiment. This means that errors
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in the number concentration of the cells can occur during preparation, but are eas-
ily compensated during data analysis. On the other hand changes of the MCHC
are unlikely, as this would require loss off cells of only a certain intracellular Hb
concentration. This is in contrast to measurements employing Hb solutions, where
adherence of the protein to container walls always goes along with Hb concentra-
tion errors. Thus an error of the MCHC (which would directly affect the result for
α) of more than 2% is not expected for our findings, which was accounted for as
uncertainty of the CBC measurements used for regularization in the least-squares
parameter optimization.

4.7 Summary and outlook
In this chapter, we have considered the measurement of the spectral extinction cross
sections of polystyrene microspheres and sphered RBCs suspended in water and
other liquids and developed an inverse-problem method to determine the optical
properties of these particles, cells and liquids from their extinction spectra. The
measurements C∗

ext(λ) represent averages over the size distribution and – in the case
of RBCs – distribution of intracellular Hb concentration of the polydisperse ensem-
ble. The sensitivity of numerically computed (Mie scattering) spectral extinction
cross sections to size and optical properties of the particles and cells was discussed
using simplified models for the RI, such that the effects of different parameters can
be studied independently. The problems inherent to a pointwise (or wavelength-
wise) inference of the particle RI under the assumption of a known size distribution
were demonstrated for PS beads using synthetic data. To overcome these issues and
reduce the number of parameters representing the scatterers, an expression of the
real particle RI n(λ) or the real RI increment of the RBCs α(λ) with a relatively
small set of suitable basis functions was discussed. For the determination of the
RI of PS beads M = 20 functions were found sufficient to analyze spectra contain-
ing roughly N = 1800 data points, using Lorentz-type resonances (LTRs). For the
real RI increment of RBCs, M = 84 third-order cardinal splines were employed. A
forward model M(λ;ψ) for the measured cross sections was developed, in which
the size and concentration distributions are characterized by a mean and standard
deviation, respectively. Additionally the forward model can compensate errors of
the particle or cell concentration in the measured suspensions, that may occur due
to volumetric dilution using adjustable pipettes. For the cases discussed, the pa-
rameter vector ψ of the forward model has dimension L = 23 (for PS) to L = 89
(for RBCs). Applying standard nonlinear least-squares optimization, these L model
parameters were fitted to the measurement data.

The uncertainties of these results were estimated using linearized propagation of
covariance matrices of the measurement data, which in turn were estimated from
repeated spectral measurements of the same sample. For PS beads it was found
that the uncertainties of the RI result thus obtained could not explain the differ-
ences to literature values for the RI of bulk PS. Rather than indicating that PS
microbeads have a RI different from bulk material, this is an indicator of an insuf-
ficient model for the uncertainties of the measured spectra, which does not account
for all sources of error. One likely source of error are artifacts of the spectral lines of
the Xenon lamp in the measured transmittance spectra, which are visible mainly at
the infrared end of the measured range. Besides nonlinearities of the detector of the
spectrometer, these artifacts could be caused to changes in reflectance at the cuvette
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walls, even though the cuvette was not actively moved between measurements. In
this case a remedy could be to place the cuvette in a permanently-mounted con-
tainer filled with immersion oil, as was used in a predecessor of the experimental
setup used here and discussed in [100], which would minimize the reflections at the
cuvette walls. However, the measurements taken with this predecessor setup had
other drawbacks, like a smaller wavelength range, higher detector noise and the ne-
cessity to use an ad-hoc mathematical “compensation curve” in the forward model
that was not motivated physically in order to obtain reasonable inverse problem
results. On the data-analysis side, a remedy for the insufficient error model consists
in analyzing multiple datasets of differently-sized particles or cells with the same
optical properties to be inferred in the hope that the influence of these errors can be
estimated statistically. This approach was taken for the RBCs where samples from
three volunteers with significantly differing mean RBC volume (MCV) were exam-
ined. Of course, a reliable statistical analysis would require more samples, meaning
more time spent on sample preparation and measurements. Model errors might
have an additional effect not analyzed here, e. g., deviations from a spherical shape
or surface roughness. However, for the case of PS beads, even the most intricate
details of the extinction spectra, i. e., their ripple structure, can be fitted with the
model. Hence, it seems unlikely that surface roughness is relevant for these artificial
microspheres. For sphered RBCs on the other hand, which are subject to biological
variation and imperfections and may acquire surface roughness due to the spher-
ing process [99], this could be a more serious problem. The scattering properties
from ensembles of rough spheres have been examined theoretically [101, 102] and
it was found that the deviations between spheres and rough spheres are largest for
side scattering and backscattering amplitudes, whereas forward and near-forward
scattering is least sensitive to irregularities. Due to the optical theorem [61], which
states that the extinction cross section of a particle is directly related the scatter-
ing amplitude in the forward direction, this means that the extinction cross section
Cext is very insensitive to irregularities of the particles’ surfaces. Hence the Mie
scattering formulae may be used even for somewhat irregular particles or cells.

The mean diameter of 2.5 µm PS beads determined from extinction spectra was
well within the uncertainty specified by the manufacturer of the material used.
On the other hand, the width of the size distribution, expressed by the coefficient
of variation of the diameter, was found to be about 0.5%, which is significantly
lower than the specification of 1.4%. It follows that the particles are closer to
monodispersity than declared, presumably since the specified distribution widths
are estimates of the corresponding upper limit during production.

Even though estimating the uncertainties of the determined particle RI by prop-
agation of the estimated spectral measurement noise proved to be insufficient, com-
parison with reference values indicates that the accuracy of the RI inference is not
worse than 3 × 10−3. A very similar figure was found for the case where the par-
ticle RI is assumed to be known and the RI of the fluid matrix surrounding the
microparticles is the quantity determined by optimization, which was demonstrated
using d-glucose solutions as a matrix. Unfortunately this RI accuracy was found to
be insufficient to resolve the (weak) wavelength dependence of the RI increment of
the sphering reagent in which RBCs were suspended during measurement. Hence, a
wavelength-independent value with appropriate uncertainty was used in the follow-
ing analysis.

The real RI increment α(λ) of sphered RBCs (oxygenated, room temperature)
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was determined from blood samples from three different volunteers. The hema-
tological parameters MCHC, MCV and RDW obtained from blood counts with
hematology analyzers were used for regularization of the least-squares optimization
problem, because otherwise an unambiguous determination of these parameters and
the mean RI increment was not possible. The three curves for α(λ) thus obtained
agree relatively well, given that the uncertainties estimated from measurement noise
were found much too small for the case of PS beads, which indicates an insufficient
uncertainty model for the extinction spectra in general. The results presented here
speak in favor of the real RI increment of Hb solutions and RBCs being around
α ≈ 0.22 mL g−1. This is in good agreement with some of the values reported in
the literature (having higher uncertainties) [48,49] and also in very good agreement
with the Kramers-Kronig analysis of chapter 3. However, due to the literature data
ranging from about α ≈ 0.15 mL g−1 to α ≈ 0.27 mL g−1, disagreement is found with
many other sources. Possible explanations for these deviations and the advantages
of the method employed here were discussed.

Perspectively, the measurement technique along with the data analysis method
presented here provide a more precise approach for future determination of the opti-
cal properties of approximately spherical biological entities such as RBCs in different
oxygenation states or chemical environments (e. g., incubated with glucose [103]),
other animal cells [12], phytoplankton [104]. An application to artificial Hb based
blood substitutes [52] is subject of the next chapter. Besides Mie scattering by
homogeneous spheres, efficient numerical light scattering simulation tools exist for
concentric spheres [61] (e. g., a model for lymphocytes) or spheroids [56, 105] (e. g.,
a simplified model for rod-shaped E. coli bacteria, blood platelets or native RBCs).
For more general shapes, T -matrix methods [63] can be used to compute particle
extinction cross sections averaged over orientation. Hence, the data analysis method
presented here is, in principle, applicable to such objects, too. However, the compu-
tational cost is generally much higher for such methods. Hence the analysis might
not be feasible on a desktop PC or notebook computer in a couple of seconds or
minutes anymore. The method presented to infer the RI of the fluid surrounding the
particles might be useful as an alternative to standard refractometry in some appli-
cations, e. g., to determine the wavelength-dependent optical properties of protein
solutions or blood plasma.



Appendix

4.A Effect of absorbing host medium

In this chapter we have made extensive use of the analytical solution for the scat-
tering of a plane electromagnetic wave from a single dielectric sphere of radius R
embedded in an (infinite) dielectric matrix of refractive index nm = nm + iκm. Clas-
sical textbooks on light scattering [60, 61] treat only the case of a non-absorbing
medium surrounding the particles, i. e., nm ∈ R or km = 2π nm/λ ∈ R while the
particle RI n may be complex. This is the Mie solution used in the inverse problem
analysis of the extinction spectra. However, the assumption of a non-absorbing fluid
suspending the particles is only fulfilled to a certain degree. The imaginary RI of
the sphering reagent used for RBCs was measured to peak at κm = 10−5 in the near
UV, see Fig. 4.A.1. However this wavelength range λ < 290 nm was excluded from
the analysis due to high measurement noise. But even the imaginary RI of water
amounts to a few 10−6 in the IR for λ > 900 nm. Hence the question arises, in how
far the presence of a nonzero imaginary part nm affects the measurement and analy-
sis of particle extinction cross sections discussed here. Firstly and most significantly,
κm > 0 means that the incident beam is attenuated while passing through the cu-
vette, even in the absence of any scatterers. For example, for the sphering reagent
with κm(284 nm) ≈ 10−5 this means that only about exp[−4πκm d/λ] ≈ 1.2% of the
light is transmitted at λ = 284 nm through the d = 10 mm cuvettes used compared
to a cuvette filled with water (κm < 10−8). This decreases the measurable signal by
the same factor, and makes the measurement prone to errors. But besides increased
measurement noise this effect does not cause any problems and is corrected for in
the analysis, since all spectra of particle suspensions are normalized to the spectrum
of the matrix used. Furthermore, the signal-to-noise ratio could be reduced by using
a thinner cuvette, e. g., d = 1 mm, which would still transmit 64% but prohibit the
use of a magnetic stir bar for mixing the samples or by increasing the integration
time of the spectrometer, which would saturate the detector at other wavelengths
and thus complicate the measurements. In any case, even though these experimen-
tal issues need to be dealt with, there is no fundamental reason not to be able to
measure extinction spectra of particles suspended in an absorbing matrix.

Hence the actual question is whether the extinction cross section of the particles
itself changes due to the nonzero imaginary part of the matrix RI nm and whether
the use of the Mie scattering formulae for non-absorbing surrounding media is ap-
propriate. There is no debate about the fact that the Mie solution to the scattering
of a plane wave by a sphere can be generalized to an absorbing host medium with
formally identical expressions for the electromagnetic field. Also for a complex RI
of the matrix nm ∈ C, the expansion coefficients aν , bν of the scattered field are still
given by Eq. (4.12) (page 46) and the amplitude scattering matrix in the forward

90
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direction reads

S(0) = 1
2

∞∑
ν=1

(2ν + 1)(aν + bν). (4.74)

The only difference for these expressions is that the wavevector km = k′
m + ik′′

m =
2π nm/λ and consequently the size parameter X = km R now has a nonzero imagi-
nary part and that the relative RI m = n/nm has to be computed with the complex
matrix RI.

Figure 4.A.1: Measured imaginary RI of
the Abbott sphering reagent for RBCs
compared with literature values for wa-
ter [40]. The measurement is not necessar-
ily very accurate below 10−6, because the
cuvette had to be refilled (i. e., was moved)
between sample and reference measure-
ment.

In the case of a non-absorbing ma-
trix (km ∈ R) the optical theorem in the
form

Cnonabs
ext = 4π

k2
m

ℜ [S(0)] for km ∈ R

(4.75)
is used to compute the particle’s ex-
tinction cross section. Over the last
decades, there has been some disagree-
ment between researchers on how to
generalize the observables “extinction
cross section”, and – if possible – “scat-
tering cross section” and “absorption
cross section”. These should be prop-
erties of the particle alone, computed
from the scattered far field, and not of
the measurement setup, e. g., the exact
distance to the detector or the exact fi-
nite (but large) extent of the absorb-
ing matrix. However, this led to some-
what controversial results, partly be-
cause considerations of the energy flux
through the surface of some arbitrary
imaginary sphere around the scatterer
are not as easily interpreted since the energy is not conserved in the absorbing
medium. Some expressions were proposed for the extinction (not extinction cross
section), that still depend on the geometry of the measurement setup by Mundy,
Roux and Smith [106] and by Chýlek [107]. It is rather unclear how to apply their
equations to the measurement setup at hand. A very convincing concept for the gen-
eralization of Cext based on what is measured in an extinction experiment was given
by Bohren and Gilra in 1979 [108] and similarly by Videen and Sun in 2003 [109].
Their generalization of the optical theorem reads

Cext = 4πℜ
[
S(0)
k2

m

]
for km ∈ C (4.76)

as opposed to Eq. (4.75).
However, only as late as 2007, it was pointed out by Mishchenko [110] that the

derivation of Bohren and Gilra [108], and similarly that of Videen and Sun [109]
contained an invalid mathematical step due to km being complex. Hence, according
to Mischenko, the correct formula for a spherically symmetric particle should be
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(notation adapted to that of Bohren, Huffman and Gilra [61,108])

Cext = 4π
k′

m
ℜ
[
S(0)
km

]
for km ∈ C. (4.77)

To the author, this seems to be the correct expression to use for the optical theorem
for a particle in an absorbing surrounding medium.

To quantify the sensitivity of this modified expression for the extinction cross
section to the imaginary RI of the host medium, Mie computations were performed
with both nm ∈ R and nm ∈ C comparing Eqs. (4.75) and (4.77) between 220 nm
and 1100 nm. For the sake of completeness, the values computed according to (the
most likely incorrect) Eq. (4.76) were compared as well. However it was found that
values obtained for Cext with Eq. 4.76 and Eq. 4.77 differ from each other at least
one order of magnitude less than they do from Eq. 4.75 with the parameter values
relevant here. Monodisperse 2.5 µm PS spheres and 86 fL (5.47 µm) sphered RBCs
with 330 g L−1 Hb served as test cases. The real part of the matrix RI was that
of water, the imaginary part was set to a wavelength-independent value which was
varied between 10−6 and 10−2. The results are summarized in Tab. 4.A.1, where
the highest deviation ∆Cmax := Cext(λmax) − Cnonabs

ext (λmax) between the extinction
cross section including absorption [Eq. (4.77)] and without absorption [Eq. (4.75)]
is listed. λmax is the wavelength of the largest deviation. For the RBC test case
this was λmax = 734 nm, except for κm where λmax = 300 nm. For the PS test
case the largest deviation occurred around λmax ≈ 278 nm for all tested κm. Also
shown is the relative deviation ∆Crel = ∆Cmax/C

nonabs
ext (λmax). To put these values in

perspective, the relative measurement uncertainty of Cext(λmax) is at least 1.1 × 10−3

for RBCs and 3.2 × 10−3 for PS beads. This means that for a host medium with an
absorption coefficient of κm ≥ 10−4 the effect would be comparable to or higher than
the detector noise and should be included into the forward model. The imaginary
RIs in the measurements analyzed in this chapter, however, are at least one order
of magnitude below that. Hence, the classical Mie scattering formulae can safely be
used.
Table 4.A.1: Relative and absolute deviation of the extinction cross section Cext
of particles in an absorbing host medium with imaginary RI κm from Cnonabs

ext in a
non-absorbing host medium.

RBC PS
κm ∆Cmax/µm2 ∆Crel ∆Cmax/µm2 ∆Crel

10−6 1.1 × 10−3 1.4 × 10−5 −1.2 × 10−4 −1.2 × 10−5

10−5 1.1 × 10−2 1.4 × 10−4 −1.2 × 10−3 −1.2 × 10−4

10−4 1.1 × 10−1 1.4 × 10−3 −1.2 × 10−2 −1.2 × 10−3

10−3 1.2 1.5 × 10−2 −1.2 × 10−1 −1.1 × 10−2

10−2 1.6 × 101 2.8 × 10−1 −1.1 −1.2 × 10−1

4.B Details of nonlinear least-squares optimiza-
tion

In this section, some more background is presented on the algorithm used to solve
the least-squares problem introduced on page 66 and some details of the numerical
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implementation of the forward model are given.

4.B.1 Brief overview of least-squares algorithms
Local optimization algorithms work iteratively and the most common algorithms
employed for least-squares problems are based on an a low-order Taylor expansion
of the objective function χ2(ψ) = F T WF , or rather, its gradient ∇ψχ

2(ψ). This
Taylor approximation involves the Hessian (i. e., the matrix of second partial deriva-
tives)

Hij := ∂2χ2

∂ψi∂ψj
= 2

[(
JT W J

)
ij

+ F T W ∂2F

∂ψi∂ψj

]
. (4.78)

The necessary condition for a minimizer of χ2 is

0 != ∇ψχ
2(ψ) = 2 JTWF . (4.79)

If this equation is expanded around a point ψk to linear order in ∆ψk := ψ − ψk,
one obtains a linear system of equations

∇ψχ
2(ψ) ≈ 2 JkTWF k + Hk ∆ψk != 0 (4.80)

that can be solved for ∆ψk to iteratively optimize the parameters. Here F k, Jk and
Hk, denote the residuals, Jacobian of the forward model and Hessian of χ2 evaluated
at ψk, respectively. If one uses the full above equation for iteration, i. e., at step
k ∈ N solves

Hk ∆ψk = −2 JkTWF k (4.81)

for ∆ψk and then updates ψk+1 = ψk + ∆ψk , one has Newton’s method or the
Newton-Raphson method for finding the roots of Eq. (4.79). This method is a general
root finding algorithm, not restricted to least-squares problems. If we make use of
the fact that the objective function χ2 is the sum of the squared residuals and neglect
the term in the Hessian containing ∂2F

∂ψi∂ψj
, we can write Eq. (4.79) as

Jk TWJk∆ψk = −Jk TWF k. (4.82)

This system of linear equations is known as normal equations and, when solved for
∆ψk forms the iterations of the Gauß-Newton algorithm. Compared to Newton’s
method, the advantage in numerical cost is that the second derivatives of the forward
model ∂2F

∂ψi∂ψj
do not need to be computed, which would generally have higher com-

plexity than the first derivatives: If no analytical expression is available to compute
∂F
∂ψj

, one can always approximately compute it from evaluations of F (ψ) atψ±∆ψ ej
for j = 1, . . . , L. In total, this takes O(L) evaluations of the full forward model for
the first derivatives. For the second derivatives ∂2F

∂ψi ∂ψj
the complexity is O(L2).

Hence, the Gauß-Newton algorithm is computationally cheaper. On the other hand,
this algorithm may perform poorly if these second derivatives become important.
To tackle this problem, the Marquardt algorithm and Levenberg-Marquardt algorithm
were developed. For the Marquardt algorithm, one solves[

Jk TWJk + Λk diag(Jk TWJk)
]

∆ψk = −Jk TWF k, (4.83)
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where diag(A) denotes the diagonal matrix with the same diagonal elements as A.
Similarly, for the Levenberg-Marquardt algorithm, one solves[

Jk TWJk + Λk 1L
]

∆ψk = −Jk TWF k, (4.84)

where 1L is the unit (or identity) matrix of size L × L. The damping parameter
Λk can be used to change from a pure Gauß-Newton behavior (Λk = 0) to a pure
steepest-descent behavior (Λk → ∞; the step size tends to 0). In these algorithms,
at iteration k an update by the proposed step ∆ψk is only carried out if it results
in a lower objective function, i. e., if χ2(ψk + ∆ψk) < χ2(ψk). If so, the damping
Λk is decreased for the next iteration, otherwise it is increased.

All the above algorithms solve unconstrained subproblems for their iterations.
Depending on the distance to the minimum, i. e., depending on the initial conditions,
this may lead to non-convergence because the proposed step leaves the range of
validity of the underlying Taylor approximation. At least for the problem at hand,
i. e., the fitting of optical extinction cross sections, it was found that a trust-region
method converged from a wider range of initial parameter values than the Marquardt
or Levenberg-Marquardt algorithms as they are implemented in Matlab (Matlab
R2018a, The MathWorks Inc.). The trust region is a neighborhood around the
current parameter vector ψk inside which the Taylor approximation for the objective
function, such as Eq. (4.80) is reasonable. Instead of solving Eq. (4.80), the trust-
region subproblem for a least-squares problem is stated as

min
{

JkTWF k + 1
2Hk ∆ψk such that ∥D ∆ψk∥ ≤ δk

}
, (4.85)

where D is a diagonal scaling matrix and δk is a positive scalar, defining an ellipsoidal
trust region. In analogy to the Gauß-Newton step, the second derivatives ∂2F

∂ψi∂ψj
are

usually dropped from the Hessian H. Like in the Levenberg-Marquardt algorithm, a
trial step is accepted if it reduces χ2, in which case the size of the trust-region δk is
increased. Details of the algorithm used can be found in the Matlab documentation
[111,112].

4.B.2 Expressions for the numerical implementation of the
model

As discussed in the previous subsection, it is advantageous if one provides not only
an implementation of the model function M(λ;ψ) itself to local optimization algo-
rithms but also (at least) the first partial derivatives with respect to the parameter
vector. Due to the structure of the forward model, a more numerically efficient
way to compute derivatives exists than explicit evaluations of M(λ;ψ) at various
combinations of increased or decreased parameters ψ ± ∆ψ ej, j = 1, . . . , L.

As a reminder, the forward model is [Eq. (4.55) on page 65]

M(λ;ψ) = (1 + η) C(λ;a,θ).

For the Jacobian matrix one finds

Jij = ∂Fi
∂ψj

= ∂M(λi;ψ)
∂ψj

=
⎧⎨⎩(1 + η)∂C(λi;a,θ)

∂ψj
, j = 1, . . . , L− 1

C(λi;a,θ), j = L
. (4.86)
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Similarly, the second derivatives read

∂2Fi
∂ψj ∂ψl

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + η)∂2C(λi;a,θ)

∂ψj ∂ψl
, j, l = 1, . . . , L− 1

∂C(λi;a,θ)
∂ψj

, j = 1, . . . , L− 1 and l = L

0, j = l = L

. (4.87)

For PS beads with the ensemble averages approximated by trapezoidal sums [see
Eq. (4.35) on page 53] one has

C(λi;a,θ) =
IR∑
t=1

C(λi;ni(a), Rt) r̃t(θ)

and hence

∂C(λi;a,θ)
∂aj

=
IR∑
t=1

[
∂

∂ni
C(λi;ni, Rt)

]
r̃t
∂ni
∂aj

=
IR∑
t=1

[
∂

∂ni
C(λi;ni, Rt)

]
r̃tGij,

(4.88)

∂C(λi;a,θ)
∂θj

=
IR∑
t=1

C(λi;ni(a), Rt)
∂

∂θj
r̃t(θ). (4.89)

Similarly, for RBCs, where [see Eq. (4.36) on page 53]

C(λi;a,θ) =
Ic∑
s=1

IR∑
t=1

C(λi; ni(cs;a), Rt) q̃s(θ) r̃t(θ)

with ni(cHb;a) = nH2O(λi) + cHb

⎡⎣ M∑
j=1

Gij aj + iγ(λi)
⎤⎦

and hence

∂C(λi;a,θ)
∂aj

=
Ic∑
s=1

IR∑
t=1

[
∂

∂ni
C(λi; ni, Rt)

]
q̃s r̃t csGij, (4.90)

∂C(λi;a,θ)
∂θj

=
Ic∑
s=1

IR∑
t=1

C(λi; ni(cs;a), Rt)
∂

∂θj
[q̃s(θ) r̃t(θ)] . (4.91)

As one can see from the above equations, computing the elements of the Jaco-
bian J requires only the derivatives of the Mie cross section C with respect to the RI
n and the derivatives of the size (and concentration) distributions with respect to
its corresponding parameters θ. The latter are straightforward if the numerical nor-
malization factor of the pdfs is treated correctly. Since evaluating the Mie extinction
cross sections is the computationally most expensive contribution in this problem
we focus on its derivatives. A partial derivative like ∂

∂ni
C(λi; ni, R) can be computed

numerically by finite differences, i. e., by the evaluation of C(λi; ni, R) not only at ni
but also at ni ± δn. This requires 2 − 3× the evaluations of the Mie cross section
as compared to computing only C(λi; ni, R). I. e., computing the Jacobian has the
same computational complexity (scaling behavior with N and L) as evaluating the
forward model. Either the plus or minus sign in ni ± δn are sufficient to compute
the first derivative. If both are evaluated, one can even compute the second partial
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derivative ∂2

∂ni
C(λi; ni, R), which occurs in ∂2F

∂ψi∂ψj
. Hence, we see that one can com-

pute the matrix of second partial derivatives of M with respect to the parameters ψ
with the same complexity as the first derivatives. This actually makes it unnecessary
to drop the ∂2F

∂ψi∂ψj
-term in the Hessian of χ2. Thus, instead of Gauß-Newton-like

steps in the trust-region algorithm one might just as well use steps according to the
Newton algorithm – a fact that could be useful if the numerical methods used for the
solution of the problem is to be improved. However, the available algorithms (not
involving second derivatives) worked satisfactory for research purposes. Hence, this
was not looked into any further. In any case, the above equations (4.86) through
(4.91) were used to explicitly provide the Jacobian J in the numerical optimization.

4.C Uncertainty analysis
The uncertainty estimated according the covariance matrices Σnoise(ψ̂) and Σnoise(â)
[Eq. (4.64) and Eq .(4.65) on page 67] accounts only for the effects of noise in the
measured spectra (quantified from repeated measurements of the same sample) and,
in the case of RBCs, the uncertainty of the hematological parameters from the CBC
used for regularization. It does not account for other sources of error such as model
errors, systematic errors in the measures spectra. To combine the results for the
real RI increment of the P = 3 measurements for RBCs from volunteers A, B and
C, we take the weighted average of the optimization results â(A), â(B), â(C) where
the weight matrices are given by Ω(i) = Σnoise

(
â(i)

)−1
for i = A, B, C.

⟨â⟩ = V1
−1 ∑

i=A, B, C
Ω(i) â(i) with V1 :=

∑
i=A, B, C

Ω(i). (4.92)

The average of the vector of real RI increments at N wavelengths is computed as
⟨α̂⟩ = G ⟨â⟩, where G is the N × M matrix of all basis functions. This is the
blue curve shown Fig. 4.23 on page 85. The covariance matrix corresponding to the
uncertainty of this weighted result was estimated as

Σ (⟨â⟩) = V1
−1

N P − 1
∑

i=A, B, C

(
â(i) − ⟨â⟩

)T
Ω(i)

(
â(i) − ⟨â⟩

)
(4.93)

which corresponds to the weighted sample covariance, thus also accounting for other
sources of error than spectral noise and CBC measurement uncertainties as far as
possible with the given data. The N × N covariance matrix Σ(⟨α̂⟩) of the real
RI increments at all N wavelengths follows accordingly, by multiplying the M ×
M matrix Σ(⟨â⟩) from left and right with G and its transpose, respectively (see
Eq. (4.67) on page 68). This empirical estimate, which accounts at least for some of
the influences not covered by the measurement noise model, could also be employed
to PS beads, provided a sufficient number of different datasets (e. g., different particle
sizes) had been measured.

To assess the influence of the RI of the sphering reagent and its uncertainty, an
additional inverse problem analysis was performed assuming for the suspending fluid
nm(λ) = nH2O(λ) instead of nm(λ) = nH2O(λ)+δnm as done before with δnm = 0.002.
The resulting α(λ) is lower by 6 × 10−3 mL g−1 without any significant wavelength-
dependence. Hence the sensitivity of the optimization result to the numerical value
of the RI of nm(λ) is

∂α

∂nm
≈ 6 × 10−3 mL g−1

2 × 10−3 = 3 mL g−1. (4.94)
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To account for the uncertainty of the RI of the sphering reagent of u[nm(λ)] =
3 × 10−4, stemming from the measurement of δnm with an Abbe refractometer,3 an
additional uncertainty term

unm [α(λ)] = ∂α

∂n
u[nm(λ)] = 9 × 10−4 mL g−1 (4.95)

is included. The total estimated standard uncertainty of the result for the real RI
increment of RBCs is thus

u[α(λi)] =
√
unm [α(λi)]2 + Σ(⟨α̂⟩)ii. (4.96)

This is the half-width of the blue band shown in Fig. 4.23 on page 85.

3 The expected value and uncertainty of δnm = 0.0020(3) measured with the Abbe refrac-
tometer at λ = 590 nm also covers the range in which a wavelength dependence of δnm(λ) for
λ ∈ [290, 1100] nm appears possible from the analysis of extinction spectra of PS beads suspended
in the sphering reagent and d-glucose solutions if one takes into account the found ∆nm(λ) (devi-
ations of the determined RI from the reference values) for glucose solutions with RI similar to the
sphering reagent.



Chapter 5

Extinction spectra of artificial
hemoglobin microparticles∗

5.1 Introduction
This chapter deals with the modeling and analysis of extinction spectra of suspen-
sions of hemoglobin microparticles (HbMP) that might serve as a replacement for
erythrocyte concentrates in transfusion medicine, i. e., be used as an oxygen-carrying
“blood substitute”. For the approval of clinical studies and also for quality control
of the production process, characterization of the composition of different Hb vari-
ants in these artificial particles is required. Most importantly, this includes the
assessment of their content of oxygenated and deoxygenated hemoglobin (oxyHb
and deoxyHb) as well as the non-functional methemoglobin (metHb) variant.

The HbMP discussed here are fabricated by the co-precipitation–cross-linking–
dissolution technique [51–53, 113]. In this method a biopolymer is co-precipitated
from solution in a template of inorganic salts. For the HbMP, one starts with bovine
Hb in an aqueous solution of manganese chloride (MnCl2) to which a solution of
sodium carbonate (Na2CO3) is added. This forms insoluble manganese carbonate
(MnCO3) which precipitates (falls out of solution) forming clusters that entrap Hb
molecules, hence “co-precipitation”. The result are aggregates of Hb molecules,

∗As in chapter 4, the experimental data discussed and analyzed in this chapter were mea-
sured by Kathrin Smuda (Charité/PTB Berlin) with an optical measurement device designed and
implemented by Jörg Neukammer and Ralph Müller (PTB Berlin).

(a) (b)

Figure 5.1: (a) Schematic of a HbMP made from cross-linked bovine Hb (red) and
HSA (yellow) molecules. (b) Idealized “peanut shape” of a HbMP.
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Figure 5.2: Reversible binding of oxygen (O2) to a prosthetic heme group of a Hb
subunit (protein chain not shown). On the left the iron ion is in the Fe2+ state, on
the right in the Fe3+ state.
https://commons.wikimedia.org/wiki/File:Mboxygenation.png
By Smokefoot [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)],
from Wikimedia Commons (no modifications made).

which are then covered with human serum albumin (HSA), serving to prevent the
agglomeration of the HbMP. For the particles considered here, some HSA is also
added to the initial bovine Hb solution, such that HSA is also found inside the
particles. The Hb and HSA molecules are then cross-linked with glutaraldehyde
(OCH(CH2)3CHO), i. e., covalent bonds are formed between the different protein
chains and within the chains of individual proteins. Eventually the inorganic salt
template is dissolved with EDTA, which results in the HbMP that are about 700 nm
in size, i. e., much smaller than a RBC. The structure of the HbMP is illustrated in
Fig. 5.1 (a). Their size distribution is relatively narrow, but wider than that of RBCs,
and they have a nearly uniform morphology described as “peanut-shaped”, i. e.,
somewhat elongated aspherical particles with a slight contraction in the middle, see
Fig. 5.1 (b). In contrast to RBCs, which have a liquid interior, held together by an
elastic membrane, the HbMP are “sponge-like” elastic particles that are permeable
for liquids. One consequence of this structure is that their volume is not well-defined
but depends on the applied force. This makes it difficult to measure their volume
fraction in suspension (hematocrit) by centrifugation.

As mentioned before, hemoglobin is a metalloprotein, which – in humans and
most other vertebrates – is made up of four subunits [76]. Each subunit consists of
a protein chain and a non-protein prosthetic heme group. Each heme group consists
of an iron (Fe) ion held in a porphyrin ring, see Fig. 5.2. As a part of hemoglobin’s
biological function as an oxygen carrier, oxygen molecules (O2) can reversibly bind
to the iron ions in the heme groups. If no oxygen is bound to a functional heme
group, the iron ion is in the ferrous state (Fe2+). When oxygen binds to this heme
group, the iron ion is temporarily oxidized to the Fe3+ state and the oxygen molecule
is temporarily reduced to the superoxide ion O−

2 [114]. If, without oxygen bound,
the iron ion is in the ferric state (Fe3+), the heme group cannot form a reversible
complex with O2 and one has ferrihemoglobin or methemoglobin. Hence metHb
cannot transport oxygen [115]. Normally, within RBCs, Hb is oxidized to metHb
at a certain rate, but is converted back by enzymes, thus metHb levels stay below
3% [115]. Obviously, it would be favorable for the artificial HbMP to exhibit similarly
low metHb levels in order to function optimally as oxygen carriers.

As already discussed in previous chapters, the absorption spectra of Hb vari-
ants in the visible range are well known for humans and various other animals [39].

https://commons.wikimedia.org/wiki/File:Mboxygenation.png
https://creativecommons.org/licenses/by-sa/4.0
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Figure 5.3: Complex RIs of human Hb solutions (cHb = 240 g L−1) of the pure
variants assumed for the simulations of HbMP extinction spectra

These spectra can be used for differentiation of Hb variants. For example, if oxyHb
is deoxygenated, the Soret band around 420 nm shifts to higher wavelengths and the
double-peak around 560 nm becomes a single peak. If oxyHb is converted to metHb,
the 420 nm and 560 nm peaks shift to lower wavelengths and the double-peak be-
comes a single peak as well. For RBCs, which can be lysed (i. e., their membrane
broken open) to obtain a homogeneous Hb solution, an analysis of the absorption
spectra suffices to accurately determine the levels of either Hb variant. Since the
HbMP are held together by cross-linking of the proteins, not by a membrane, lysis is
not possible. Hence, they have to either be further processed before analyzing them,
which alters the chemical structure of the Hb or they have to be analyzed “as is” in
the form of light-scattering microparticles. In this case, the analogue of absorption
spectra are extinction spectra computed from the collimated transmittance as dis-
cussed before in chapter 4. The optical properties of human oxyHb, deoxyHb and
metHb were determined in chapter 3 and chapter 4. These complex RI data will
now be used in light scattering simulations in order to analyze extinction spectra
of HbMP. The absorption spectra of human and bovine hemoglobins are known to
differ very little in the visible and near IR [39] and consequently the RIs differ very
little, too. Hence the error made by assuming the optical properties of human Hb
even though the HbMP are made of bovine Hb is small.

5.2 Mathematical modeling of HbMP
Images of HbMP recorded with scanning electron microscopy (SEM; measured by
Detlef Bergmann, PTB Braunschweig) reveal particle shapes like the idealized peanut
shape in Fig. 5.1 (b), but with some additional roughness and asymmetries. A typ-
ical length and width are 700 nm and 400 nm, respectively. However, for SEM the
samples need to be spread out on a surface and coated with platinum. This may
cause shrinking due to drying-out of the particles and does not correspond to the sit-
uation during extinction measurements (suspension). Light microscopy with struc-
tured illumination (measured by Andreas Kummrow, PTB Berlin) of the suspended
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particles reveals similar sizes of about 800 nm × 600 nm, but at a much lower spatial
resolution. The light scattering by particles with shapes like in Fig. 5.1 (b) could
in principle be computed using suitable numerical methods like the discrete dipole
approximation (DDA). However, this can be computationally expensive, since we
will need to average over particle orientations and sizes. Also, if one goes into such
detail for the particle shape, one should possibly consider shape variations of the
particles, too. On the other hand, the HbMP are not much larger than the vacuum
wavelength of visible light. Hence, their detailed shape might not have a strong
effect on the spectral extinction cross section, as we have already discussed with re-
gard to surface roughness of RBCs in section 4.7 of chapter 4. In order to assess the
effect of particle shape, we will model the HbMP as spheroids, which still matches
the shapes observed with SEM relatively well. This simple model will be compared
to an even more simplified model – a sphere. A spheroid is generated by rotating an
ellipse around either its major or minor axis. It is defined by the semi-axis c along
the axis of rotational symmetry and the semi-axis a perpendicular to that direction.
For c > a the spheroid is called prolate (i. e., it is “rugby ball-shaped”), for c < a it is
called oblate (i. e., it is “smarty-shaped”). The degenerate case of c = a corresponds
to a sphere. We define the aspect ratio as

h := c

a
(5.1)

and obviously h > 1 corresponds to prolate and h < 1 to oblate spheroids. HbMP
are modeled as prolate spheroids. The volume of the spheroid is

V = 4π
3 a2 c (5.2)

and thus the radius of a volume-equivalent sphere is

RV = 3
√
a2 c. (5.3)

The spheroidal shape model can be seen as a lowest-order representation of the
deviation of the shape of HbMPs from spheres in a series expansion of the particle
radius as a function of solid angle r(ϑ, φ) in spherical harmonics. In this series
expansion, the higher order terms that describe the deviation of the peanut-shape
in Fig. 5.1 (b) from a sphere or spheroid are expected to have less effect than the
leading term [101, 102]. Spheroids are a good means for examining the deviation
from a spherical shape, since the light scattering simulations are computationally
relatively cheap compared to more general irregular shapes.

As already mentioned, the HbMP feature a typical size of 700 nm. Hence we will
assume an average volume equivalent radius E(RV ) = 350 nm for the size distribu-
tion. The aspect ratio h is varied to estimate its influence on the spectra. Besides
structured-illumination light microscopy and SEM, dynamic light scattering (DLS)
measurements of the HbMP were taken (Kathrin Smuda, Charité and PTB Berlin).
DLS measures the particles’ diffusion coefficient by means of Brownian motion,
which can in turn be used to compute a sphere-equivalent hydrodynamic particle
size. These measurements are consistent with a log-normal size distribution with a
standard deviation of std(RV ) = 20%E(RV ), which is thus assumed for the mathe-
matical model. For mathematical details of the size distribution, see Eq. (4.27) in
chapter 4 on page 52.

The optical properties of the HbMP are assumed to be those of RBCs and Hb
solutions as determined in chapters 3 and 4. However, the particles are assumed to
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be composed of a mixture of three Hb variants. I. e., the complex RI of a HbMP is
given by

n(λ; cHb,ϕ) = n(λ) + iκ(λ) = nH2O(λ) + cHb
∑

x=oxy,deoxy,met
ϕx [αx(λ) + iγx(λ)] , (5.4)

where αx and γx are the real and imaginary RI increments of the respective Hb
variants and ϕx is their fraction of the total Hb (by mass), hence∑

x=oxy,deoxy,met
ϕx = 1. (5.5)

As already mentioned, the error made using the complex RI of human Hb instead
of bovine Hb (from which the HbMP are made) is small. But whether these optical
properties of Hb solutions quantitatively agree with those of the Hb molecules in
the fluid-perfused sponge-like HbMP that are chemically altered by the cross-linking
process will have to be evaluated. Due to the lack of additional information, the
intra-particle total Hb concentration cHb and the ratios ϕx are set to the same
values for all particles in an ensemble. I. e., the HbMP in a sample are assumed to
be optically monodisperse, like the polystyrene beads in the previous chapter. We
will, however, change the ratios ϕx to simulate the effect of (de-)oxygenation and of
samples with different metHb levels.

The question is, which value for the total intra-particle Hb concentration is
realistic. The average hemoglobin concentration within the suspension (particles
+ liquid) can be determined by enzymatic digestion of the particles, followed by
methods that are also used for RBCs. Such a measurements yields typical typical
values of HGB ≈ 26 g L−1 for samples with an estimated volume fraction HCT
= 20%. This would correspond to an (average) intra-particle concentration of
MCHC = HGB/HCT = 130 g L−1, which only about 40% the Hb concentration
within a typical RBC. However, the HbMP do not have a well-defined volume and
the outcome of HCT measurements employing centrifugation depend on the mea-
surement protocol (acceleration, time). This indicates that these MCHC estimates
might not be very reliable. From comparison between simulations and measured ex-
tinction spectra it was found that values of cHb = MCHC = 220 g L−1 . . . 260 g L−1

are more suitable for modeling the particles if average sizes between 2RV = 600 nm
and 900 nm are assumed. Hence the intra-particle Hb concentration of the particles
was set to cHb = 240 g L−1 in the simulations and the corresponding RIs of the pure
Hb variants are shown in Fig. 5.3.

During the optical measurements, the HbMP are in suspension with no preferred
orientation. Hence, the quantity measured in an extinction experiment corresponds
to the orientation and size average

C(λ;ϕ, h|r) =
∫ 2π

0

∫ π

0

∫ ∞

0
C (λ; n(λ; cHb,ϕ), RV , h,ν(ϑ, φ)) r(RV ) dRV sinϑ dϑ dφ,

(5.6)

where C (λ; n, RV , h,ν) is the extinction cross section of a single spheroidal particle
with complex RI n, equivalent radius RV , aspect ratio h and a rotational axis defined
by the unit vector ν in the direction defined by angles ϑ, φ. r(RV ) is the probability
density function of the radius RV .

It should be noted that due to the small size of the particles, no Mie resonances
are recorded in the extinction spectra for λ ∈ [250, 1100] nm and – besides features
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due to RI dispersion – the Cext(λ) curves are monotonically decaying with wave-
length. Thus, the effects of different parameters like mean particle volume, volume
distribution width and intra-particle concentration are rather unspecific and mainly
consist in increasing or decreasing the extinction cross section. Hence, their exact
values chosen for the simulations should not be overly critical when comparing the
positions of spectral lines as we will do in this chapter.

Numerical solver

Similar to spherical scatterers, there exists an analytical solution for the scattering of
light by a spheroid [56,57] that is based on the expansion of the electromagnetic field
in the eigenfunctions of the Helmholtz operator in the corresponding spheroidal co-
ordinates. In principle, this solution could be used to compute the extinction spectra
of the HbMP. However, for a numerical evaluation the infinite series of this analyti-
cal solution need to be truncated and it turns out that the convergence properties of
these truncated series are unfavorable. Hence, a T -matrix method is used instead to
solve the scattering problem. Like the analytical Mie solution, the T -matrix method
is based on the expansion of the electromagnetic fields in vector spherical harmonics
and the (infinite-dimensional) T -matrix is the matrix that describes the mapping
from the expansion coefficients of the incident field to those of the scattered field.
Unlike for a sphere, for which the T -matrix can be computed analytically because
its boundary coincides with a coordinate isosurface, the equations for the boundary
conditions have to be solved by numerical integration for a more general scatterer.
Of course, the T -matrix has to be truncated to be finite-dimensional. The numer-
ical solver employed here is the smarties v1.01 [105] Matlab (Matlab 2018a, The
MathWorks, Inc.) package, that makes use of the symmetries of the spheroidal scat-
terer to efficiently implement this numerical integration. Once the (approximate)
T -matrix of a scatterer is determined, its scattered field can be computed for differ-
ent incident beams by simply changing the vector of expansion coefficients to which
the T -matrix is multiplied to yield the expansion coefficients of the scattered field.
For incident beams with analytically known expansion coefficients, like the plane
wave assumed here, this allows for computing orientation averages like in Eq. (5.6)
with basically no additional computational cost and only the size average has to be
computed by sampling and numerical integration. All results shown here correspond
to an average over all possible orientations. In the case of spherical scatterers, Mie
scattering computations are performed like in the previous chapter.

5.3 Results

5.3.1 Sensitivity to particle shape
We will now discuss the influence of the shape of the HbMP modeled as spheroids
on the orientation-averaged spectral extinction cross section. For the sake of demon-
stration, monodisperse particles with a fixed size RV = 350 nm are considered, made
entirely of oxyHb (Fig. 5.3). In the next subsection, we will consider polydisperse
particles of varying composition.

The spectral extinction cross section simulated with the smarties package for
prolate spheroids with an aspect ratio of h = 1.4 is shown in Fig. 5.4 in comparison
with the result of a Mie computation for volume-equivalent spheres and of the ap-
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Figure 5.4: Simulated orientation-averaged extinction and absorption cross sections
of prolate spheroids (h = 1.4) assuming oxyHb (Fig. 5.3) in comparison to Mie
scattering for spheres and Rayleigh scattering for small particles.

proximations in the Rayleigh limit. The aspect ratio h = 1.4, i. e., semi-minor axis
a = 313 nm and semi-major axis c = 438 nm corresponds to typical values observed
for the HbMP by structured-illumination light microscopy and SEM. The Rayleigh
limit is the limit for small (spherical) scatterers that fulfill X ≪ 1 and |mX| ≪ 1.
As in the previous chapter, X = 2πnm RV /λ is the size parameter and m = n/nm
is the particle RI relative to the host medium (water). In this limiting case the
Mie formulae can be simplified and one finds for the scattering and absorption cross
sections [61]

Csca = 8π R2

3 X4 ℜ

⎧⎨⎩
(
m2 − 1
m2 + 2

)2
⎫⎬⎭ , (5.7)

Cabs = 4π R2 X ℑ
{
m2 − 1
m2 + 2

}
. (5.8)

The extinction cross section follows according to Cext = Csca + Cabs. As evident
from the left panel of Fig. 5.4, the difference between the extinction cross sections
of spheres and spheroids is very small. In contrast, the extinction cross section
computed in the Rayleigh approximation is completely off the correct curve. This
was to be expected, since for the HbMP with a size comparable to the wavelength,
i. e., with a size parameter X near unity, the assumption of small particles is not
fulfilled. In view of this, it is all the more interesting to note that the spectral
absorption cross section computed according to the Rayleigh limit [Eq. (5.8)] shown
in the right panel of Fig. 5.4 agrees with the curves for spheres and spheroids almost
perfectly. For the particles considered here, for which the imaginary part of the
relative RI m = m′ + im′′ is much smaller than the real part, i. e., m′′ ≪ m′, one can
further approximate Eq. (5.8):

Cabs ≈ 24π R2 X
m′m′′

(m′2 + 2)2 . (5.9)
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Figure 5.5: Relative and absolute deviation of the orientation-averaged extinction
cross section of prolate spheroids (h = 1.4 and 2.0) from that of a sphere, assuming
oxyHb (Fig. 5.3).

The wavelength dependence of the real relative RI m′(λ) is much weaker than that
of the imaginary relative RI m′′(λ) and of the size parameter X. Hence, the spec-
tral absorption cross section Cabs(λ) of the HbMP basically reflects the absorption
spectrum κ(λ) of Hb (compare oxyHb in Fig. 5.3 to Fig. 5.4), which is not gen-
erally the case, e. g., for larger particles. This resemblance of Cabs(λ) and κ(λ)
means that if the absorption cross section Cabs(λ) could be measured instead of the
extinction cross section Cext(λ), or in addition to it, the analysis of the particles’
chemical composition would be equally simple as analyzing an absorption spectrum
of a homogeneous solution. This will be discussed in section 5.4.

The difference between the extinction cross section of HbMP modeled spheroids
and of HbMP modeled as spheres

∆Cext(λ) := Cspheroid
ext (λ) − CMie

ext (λ) (5.10)

is small, but not zero. This is shown in Fig. 5.5 for spheroids of two different
aspect ratios. For prolate spheroids with an aspect ratio h = 1.4, corresponding
to a typical value for HbMP, the orientation-averaged extinction cross section is
about 1% smaller than that of a volume equivalent sphere, almost independent of
wavelength. An aspect ratio of h = 2.0 is already an extreme case that will – if at
all – likely only be found for a small fraction of the HbMP. In this case there is some
considerable wavelength dependence of ∆Cext(λ), i. e., the deviation is smallest at
the highest imaginary RI around 420 nm and deviations of up to 5% occur at the red
end of the spectrum. The dependence of the relative deviation on the aspect ratio
of the particles is resolved in more detail in the left panel of Fig. 5.6. Four different
wavelengths are shown that correspond to the beginning and end of the considered
spectral range and to the absorption bands of Hb at around 420 nm and 560 nm,
respectively. The relative deviation of Cext depends on the wavelength only weakly
and Cext generally decreases when h deviates from 1 in either direction. The relative
deviation of the absorption cross section Csca is shown in the right panel of Fig. 5.6.
The deviations between spheroids and spheres are generally much smaller than for
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Figure 5.6: Relative deviation of the orientation averaged cross sections Cext and
Cabs of spheroids from those of a sphere at four selected wavelengths in dependence
on the spheroids’ aspect ration h. Note the logarithmic scale for h.

Cext, not exceeding 0.3% even for h = 2 prolate spheroids. While the extinction
cross section Cext generally decreases with deviation from the spherical shape, for
λ = 420 nm the absorption cross section Cabs actually increases away from h = 1,
which can be attributed to the strong absorption at this wavelength. Note that in
the Rayleigh limit [Eq. (5.8)], there would be no change of Cabs with aspect ratio,
because Cabs is proportional to the particle volume in this case.

The deviations of Cext and Cabs when spherical scatterers are assumed instead of
spheroids amount to at most 1% for aspect ratios h ∈ [0.7, 1.4] and the wavelength-
dependence of these deviations is even weaker than 1%. The deviations of the actual
shape of the HbMP from a spheroid are higher-order terms in a perturbation series
and are expected to cause even less effect on the cross sections [101, 102]. On the
other hand, uncertainties of other parameters of the particles, such as their size
distribution and intra-particle Hb concentration result in much higher uncertainties
for the extinction cross section than 1%. For the purposes of this chapter, the
error made in modeling the HbMP as spherical scatterers is negligible. Thus, Mie
scattering computations are used in the following.

5.3.2 Comparison to experiments
We will now compare simulated spectral extinction cross sections of suspensions of
HbMP to experimentally measured curves. The HbMP were fabricated by CC-Ery
GmbH (Berlin, Germany) as briefly outlined in section 5.1 and described in detail
in Ref. 52. Sample preparation and the extinction measurements were performed
by Kathrin Smuda (Charité and PTB Berlin) in the same manner as described in
chapter 4 for RBCs and PS beads and using the same optical setup (Fig. 4.2 on
page 48). In contrast to sphered RBCs, the HbMP were suspended in water for the
measurements discussed here. Like in the previous chapter, spectra were recorded
for a wavelength range of λ ∈ [220, 1100] nm, but the differences between the Hb
variants can mainly be seen between 350 nm and 600 nm (compare simulations in
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Figure 5.7: Simulated extinction spectra of HbMP modeled as spheres with
mean(2R) = 700 nm and std(R) = 20% mean(R). Particles are optically monodis-
perse, cross sections for the pure Hb variants (Fig. 5.3) are shown.

Fig. 5.7). Hence the discussion of the measured spectra is restricted to this range.
Because of the uncertainty of the particle concentration in the suspensions, the
Cext(λ) curves of different measurements were rescaled to have minimal deviations
before comparing them further, compare chapter 4, p. 53.

Throughout this subsection, HbMP are modeled as spheres with a log-normal
size distribution with mean(2R) = 700 nm and std(R) = 20% mean(R) and variable
Hb composition. Simulation results for particles made from the pure Hb variants
are shown in Fig. 5.7. The Cext(λ) curves for the three cases differ from each other
significantly, indicating that a differentiation of HbMP of different composition is in
principle possible from their extinction spectra. Furthermore, the spectral extinction
cross section Cext(λ) exhibit similar shifts of spectral lines as the underlying complex
RIs (Fig. 5.3). As expressed in Eq. (5.4), the complex RI of the particles is a
weighted sum of the three curves in Fig. 5.3. In contrast, the spectral extinction cross
sections of particles of arbitrary composition cannot be computed by such a linear
combination of the three curves in Fig. 5.7, because of the nonlinear dependence of
Cext(λ) on the particle RI.

Fig. 5.8 shows measurements of two kinds of HbMP: (1) as fabricated and (2)
treated with potassium ferricyanide (K3[FeCN6]). Potassium ferricyanide oxidizes
the iron ion in the heme groups of the Hb molecules to the Fe3+ state and thus
converts the molecules to metHb. I. e., the assumption is that the green curve in the
left panel of Fig. 5.8 corresponds to particles made of 100% metHb, whereas the blue
curve corresponds to particles with a lower metHb content, with the remainder of the
Hb oxygenated, since the samples were in contact with air. If the untreated particles
have a low metHb level below 5% (as desired) and are able to reversibly bind oxygen,
the blue curve in Fig. 5.8 should correspond to (almost) 100% oxyHb. To test this,
the right panel of Fig. 5.8 shows simulations where the the metHb level ϕmet varied
between 0% and 100% and the rest of the Hb was oxygenated, i. e., ϕoxy = 1 − ϕmet

and ϕdeoxy = 0 in Eq. (5.4). First of all, we have to note that the peaks of Cext(λ)
between 400 nm and 450 nm due to the Soret band of Hb are more pronounced in the
simulations than in the measurement. This may have several reasons, including the
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Figure 5.8: Left: Measurements of HbMP, untreated and treated with potassium
ferricyanide (K3[FeCN6]) to generate metHb. Samples were in contact with air.
Right: Simulation for varying metHb levels with otherwise oxyHb.

presence of particle agglomerates in the suspension, a polydispersity of the HbMP
with respect to intra-particle Hb concentration or Hb composition, or the presence
of albumin or other non-functional Hb variants in the particles, neither of which was
taken into account in the simulations. Hence, no fully quantitative comparison, or
even the solution of an inverse problem, is possible with the present model, like is was
the case for sphered RBCS and PS beads discussed in chapter 4. One can, however,
compare the positions of spectral features relatively well, even if the peak heights are
not the same. For a higher resolution, intermediate compositions were simulated,
that are not shown in Fig. 5.8. The peak of the K3[FeCN6]-treated particles is
at 409.7 nm, which in the simulation corresponds to a metHb level between 80%
(410 nm) and 90% (409.3 nm). Hence, given the remaining discrepancies between
simulation and measurement discussed above, the assumption of particles converted
completely to metHb seems to be reasonable. If, on the other hand, the peak of the
untreated particles, which sits at 414.3 nm is compared to simulations, this suggests
that the metHb level is between 30% (414.5 nm) and 40% (413.3 nm) rather than
the desired value near 0% (417.5 nm).

Fig. 5.9 shows two measurements of the same sample of (untreated) HbMP, where
in one case the sample was first in contact with air and then the suspension was
bubbled with argon (Ar) for 15 min in order to wash out any oxygen. If the particles
are able to reversibly bind oxygen, they should be deoxygenated by this procedure.
The argon flow was turned of before the measurement, because otherwise gas bubbles
in the sample would cause an additional light scattering background that complicates
analysis of the spectra. We have seen before that there is a considerable metHb level
in the particles. Hence, this experiment was simulated by setting ϕmet = 1/3 and
then varying ϕoxy between 0 and 2/3 with ϕdeoxy = 2/3 − ϕoxy in Eq. (5.4), which is
shown in the right panel of Fig. 5.9. As can be seen the shift of the extinction cross
section during deoxygenation of the sample corresponds well to the effect observed
in the simulation. However the measurement for the argon-purged sample rather
corresponds to the simulation for an incomplete deoxygenation, i. e., ϕdeoxy ≈ 1/3.
This may in part be due to the fact that the spectrum could not be recorded while



5.4. SUMMARY AND OUTLOOK 109

Figure 5.9: Left: Measurements of HbMP in contact with air (for oxygenation)
and after bubbling with argon (for deoxygenation). Right: Simulation for varying
oxygenation at 33.3% metHb level.

the argon was bubbling through the suspension, i. e., when the oxygen concentration
was lowest. Thus the sample might have been partly re-oxygenated. If the same
kind of simulation is repeated for metHb-free particles (ϕmet = 0, ϕdeoxy = 1 −ϕoxy),
which is shown in Fig. 5.10, the agreement is much poorer than with higher metHb
levels of ϕmet = 30% . . . 50%, indicating again that there is a significant percentage
of metHb in the HbMP.

5.4 Summary and outlook
In this chapter, results for the optical properties of different Hb variants that were
determined in the preceding two chapters and simulations of particle extinction
spectra were applied assess the composition of artificial Hb microparticles. By com-
parison of spherical and spheroidal shape models for the HbMP, it was shown that
the deviation of the particle shape from a sphere has only minor effect on the mea-
sured extinction spectra. In contrast, the particle concentration and particle size
(or volume) distribution have a much stronger influence. We compared measure-
ments of extinction spectra of HbMP that were subject to different treatments with
simulation results for varying Hb composition. This comparison reveals that a chem-
ical conversion of almost all the Hb molecules in the particles to metHb is possible
and results in a significant change of their optical properties. Judging from the
position of the main peak around 415 nm in the extinction spectra, the metHb
level in the untreated particles is between 30% and 40%. These levels may be
too high for the intended use as an oxygen carrier. Regardless of the outcome of
this analysis, this demonstrates that such a comparison betwen measurements and
simulation allows to assess the particle composition and may thus give guidance
for the fabrication process in order to reduce the metHb content of the particles.
Comparison of simulations with a second experiment, where the HbMP were ex-
posed to air (for oxygenation) and argon (for deoxygenation) reveals their ability
to bind and release oxygen, while indicating at the same time the presence of a
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Figure 5.10: Simulation for varying oxy-
genation at 0% metHb level

relatively high level of non-functional Hb.
The measurements discussed here

and the mathematical model used for
simulations allow to assess the compo-
sition of HbMP with an accuracy of the
levels of the Hb variants ϕx that seems to
be about 10 percentage points. However,
due to the lack of established methods
to compare against, this is hard to quan-
tify. Even if the metHb levels can be de-
creased by improvements of the produc-
tion process, this measurement accuracy
may not be sufficient for the approval of
the HbMP for clinical trials [115]. In the
previous chapter, an inverse problem was
discussed for extinction measurements of
microparticles and cells for a quantitative
determination of their optical properties
and sizes. In principle, this approach can be applied to the HbMP, too, but not
without some modifications. When analyzing the spectral extinction cross sections
of sphered RBCs, the imaginary RI increment of the intracellular Hb was assumed
to be known, since the RBCs were fully oxygenated. This assumption was tested by
lysis of the cells. For the HbMP which have variable Hb composition, the imaginary
RI increment is not a priori known in the general case. For the case, where the
particles are (presumably) fully converted to metHb by treatment with potassium
ferricyanide, one can fix the imaginary RI increment of the mathematical particle
model to that of metHb and attempt to retrieve the real part of the RI increment
of metHb as described for oxygenated RBCs in chapter 4. Parameters of the size
distribution need to be fixed or constrained, because otherwise no unique solution
is found. The reason for this is the lack of specificity of the effect of particle size,
particle concentration and particle RI on the extinction spectra of small particles
in the absence of Mie resonances or a ripple structure. However, the results thus
obtained for the real RI increment do not agree well with the curves computed using
Kramers-Kronig relations in chapter 3.

One can also slightly modify the inverse-problem solver of the previous chapter
by setting the vector of relative Hb compositions ϕ as a model parameter instead
of the expansion coefficients a of the real RI or real RI increment. The numer-
ical implementation of the forward model needs to be modified accordingly, e. g.,
by also including the derivatives of the extinction cross section with respect to the
imaginary RI, not only the real RI. But this is straight forward. If the measure-
ment data discussed here are analyzed in this way, the quality of the fit is rather
poor: about as good as the agreement between measured and simulated curves in
Fig. 5.8 and Fig. 5.9. In particular, the peak heights in Cext do not agree well with
the measurements. This indicates that the mathematical model for the HbMP is
incomplete. One important point to consider could be that other substances than
oxyHb, deoxyHb and metHb are present in the particles, but were not accounted
for in the model. Hence, one should possibly include the content of HSA (whose RI
increment is only known at single wavelengths) into the model. Furthermore, it is
not quite clear in how far the optical properties of the considered Hb variants change
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due to the cross-linking process, which chemically modifies the protein chains and
could change their conformation. In native Hb, conformational changes are known
to occur during reversible binding and release of oxygen [76,116]. Subtle changes of
the protein chains in the subunits of the Hb molecule due to mutations are known to
have a considerable effect on the oxygen affinity [117]. Hence artificially introduced
changes in the proteins due to cross linking may affect the oxygen binding capacity
and the absorption spectra of the Hb molecules. Thus it is not even clear if the
optical properties of the non-cross-linked Hb variants in solution can be used for
a quantitative functional analysis of the HbMP. On the other hand a hypothetical
increase of the oxygen affinity of the Hb molecules due to cross-linking could be an
explanation for what appeared to be an incomplete deoxygenation when the oxygen
was purged from the sample with argon.

When discussing the deviations between the extinction cross sections of spheroids
and spheres, we also discussed the spectral absorption cross section Cabs(λ). The
absorption cross section of either shape model is almost identical to the curves
computed in the Rayleigh limit for small particles. This could provide a way to in-
crease the sensitivity of optical measurements and simplify the analysis of measured
spectra. If one could measure them, the analysis of Cabs(λ) spectra of HbMP suspen-
sions would be almost as straight forward as the analysis of the absorption spectra
of homogeneous Hb solutions, because in contrast to scattering and extinction cross
sections in general, the absorption cross section in the Rayleigh limit is a product of
a term depending only on particle size and a term depending only on the complex
particle RI. Firstly, this means that Cabs in the Rayleigh limit is proportional to the
particle volume. In an ensemble measurement, one only has access to the product of
the size-averaged cross section and the particle concentration. Hence knowledge of
the volume fraction of particles would be sufficient for the analysis of these spectra
instead of the (more difficult to access) particle size distribution. Secondly, for the
case considered here, where the imaginary RI of the particles is much smaller than
their real RI, the RI-dependent factor in Cabs basically reproduces the absorption
spectrum of the particles’ material – the quantity that one would like to measure.
Of course, all these considerations only make sense if the absorption cross section
of the particles can actually be measured. If one recalls that Cext = Csca + Cabs,
measuring Cabs is equivalent to measuring the scattering cross section Csca, since
Cext can already be measured from the collimated transmittance. A measurement
of Csca(λ) is in principle possible by collecting all the light scattered by the sample in
all directions onto a spectrometer. This could be achieved by extending the optical
setup for the measurement of Cext considered here (chapter 4) by two integrating
spheres. These hollow spheres are coated on the inside with a material of high dif-
fuse reflectance. Any light entering the sphere is multiply reflected until an isotropic
radiation field is established inside the sphere. Hence a light intensity proportional
to the incident total power from different directions can be coupled out through a
small opening and measured with a spectrometer. One of these spheres would need
to be mounted in the forward-scatter direction of the sample cuvette and one in the
backscatter direction in order to collect the light scattered into either hemisphere.
Using a suitable calibration due to the spectral reflectance of the integrating spheres,
as well as thin sample cuvettes in order to loose as little light to the sides as possible,
this would allow to measure the total scattered power of the particle suspension and
hence the ensemble-averaged scattering cross section Csca(λ). The absorption cross
section could then be computed as Cabs(λ) = Cext(λ) −Csca(λ). For the application
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discussed here, this would mean taking the difference of two signals of similar am-
plitude, because for most wavelengths Cabs(λ) is smaller than Cext(λ) by a factor of
10 to 1000, making Cabs(λ) prone to measurement noise.



Chapter 6

Modeling and simulation of light
scattering by red blood cells in
flow cytometry∗

6.1 Introduction
In this chapter, light scattering simulations for red blood cells (RBCs) in the context
of optical flow cytometry are discussed. Optical flow cytometry is a widely used tool
to count and differentiate cell populations at high throughput of a few thousand cells
per second [1,2]. In an optical flow cytometer (Fig. 6.1), a cell suspension is injected
through a capillary into a flow cell (or flow-through cuvette), where it is accelerated
by a fast flowing laminar sheath flow of decreasing cross section. This stretches the
sample stream and hydrodynamically focuses it to the centerline of the flow channel.
The sample stream intersects with one or several laser beams and the light scattered
or – in the case of fluorescent labeling – emitted from the cells is collected onto one
or several detectors. Standard flow cytometers measure the forward light scatter,
by collecting light around the direction of the incident beam onto a detector and
the side scatter by collecting at 90◦ to the incident beam. Fluorescent labeling of
cells is often applied, in which case the light emitted by the cells is collected in the
90◦ direction, too. In contrast to fluorescent labeling, forward light scatter and side
scatter provide a label-free means for the examination of biological cells. However,
the interpretation of these signals is not straightforward.

If native human RBCs (i. e., not stained or fixed) are analyzed in a flow cy-
tometer, one observes a bimodal histogram for the forward scattering cross section
(FSC) [118, 119]. This can be qualitatively explained by the fact that native RBCs
of biconcave disk-like shape (discocytes) align with their figure axis perpendicu-
lar to the fluid flow in a channel much wider than themselves (250 µm channel
width in the cytometer discussed here compared to 2 µm–8 µm RBC size). This
leaves them with one angular degree of freedom, the rotation angle β around the
flow axis. The FSC of a face-on illuminated RBC (β = 0◦) is very different from

∗ This chapter is based on
J. Gienger, H. Groß, V. Ost, M. Bär, and J. Neukammer. Assessment of deformation of native red
blood cells in flow cytometry: Measurement and simulation of bimodal forward scatter distribu-
tions. in review at Biomed. Opt. Express, submitted 27 Oct. 2018.
The flow cytometric experiments with RBCs discussed in this chapter were conceived and per-
formed by Volker Ost and Jörg Neukammer (PTB Berlin). The DDA simulations of light scattering
by RBCs were performed by Hermann Groß (PTB Berlin) with the author’s shape models.
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Figure 6.1: Schematic of an optical flow
cytometer (not to scale)

an RBC illuminated from the side (β =
90◦). Depending in the laser wavelength
and the solid angle of the detector, the
FSC may increase in a “sin(β)2 fashion”
from β = 0◦ to β = 90◦. Since the circu-
lar cross section of the injection capillary
does not impose any particular cell orien-
tation, all values of β are equally likely
and a bimodal histogram is observed in
this case with peaks corresponding to the
extrema of the FSC as a function of β.
The quantitative properties of these his-
tograms, such as inter-peak distance and
height depend on the microscopic details
of the RBCs, i. e., their shape and the dis-
tributions of cell size and intracellular he-
moglobin (Hb) concentration. Due to de-
formation in flow, the shape of RBCs in

the cytometer may deviate significantly from the biconcave shape at rest. Hence, the
use of these bimodal histograms as a clinical marker for altered RBC rheology in con-
ditions such as terminal renal failure, diabetes mellitus, sepsis or acute inflammatory
state has been proposed [118, 119]. More generally, alterations of mechanical prop-
erties of human RBCs have been reported, e. g., for peripheral vascular disease [120],
malaria [121, 122] and diabetes mellitus [123]. However, cytometric studies done so
far [118,119] employ empirical criteria to link the forward scatter histograms to the
RBC shape or to detect abnormal rheological properties. As a step toward a quan-
titative analysis, in this chapter a detailed simulation of the scattering of light by
native RBCs is performed using the discrete dipole approximation (DDA) and the
effect of the distributions of cell orientation, volume and hemoglobin concentration
are taken into account by Monte Carlo (MC) sampling. This allows to assess the
impact of the RBC shape on the measured histograms of FSCs and thus an indirect
evaluation of the deformations occurring in the flow cytometer.

These simulations are compared to measurements of native RBCs with a ded-
icated flow cytometer that features the simultaneous measurement of FSC with
two orthogonal incident lasers with wavevectors k⃗1 and k⃗2 where k⃗1 ⊥ k⃗2, using a
helium–neon (HeNe) laser as well as one-direction FSC measurements at different
laser wavelengths. The velocity gradients of the fluid flow in the cytometer are
estimated and compared to deformations of RBCs reported in the literature. A
simple shape model for a stretched RBC is introduced and the deformation in the
cytometer is estimated by comparison to light scattering simulations. The assump-
tion that the RBCs align with their long axis in the flow direction, around which
they are otherwise free to rotate is put to a test by comparison of measurements
where the RBCs are oriented during injection into the flow cell and simulations with
non-uniform orientation distributions.
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Figure 6.2: Simplified optical layout of the flow cytometer for the simultaneous
2-direction FSC measurement. The beam is divided by a polarizing beam split-
ting cube and the sample stream in the flow cell is illuminated with two beams of
orthogonal wavevectors k⃗1 and k⃗2. Microscope objectives serve to (1) focus the in-
cident beams and (2) collect the forward-scattered light onto photomultiplier tubes
(PMTs).

6.2 Experiment

6.2.1 Optical setup

Figure 6.3: Surface triangulation of a dis-
cocyte shape model with arrows indicating
the orientation of the RBC relative to the
flow axis and the two incident lasers with
wavevectors k⃗1 and k⃗2

The measurements of the FSC of na-
tive RBCs discussed here were recored
using a dedicated flow cytometer con-
ceived and built by Volker Ost and Jörg
Neukammer (PTB Berlin), described in
more detail in Refs. 124, 125. The cy-
tometer features the simultaneous mea-
surement of the forward-scattered light
with two orthogonal directions of inci-
dence for the laser wavevector k⃗1 and
k⃗2 where k⃗1 ⊥ k⃗2 at λ = 632.8 nm. The
corresponding optical layout is shown in
Fig. 6.2. The orientations of the RBC
and the laser beams relative to each
other are in illustrated in Fig. 6.3. For
the two-direction measurements, the cy-
tometer features two orthogonal optical beam paths for a helium–neon laser (wave-
length 632.8 nm). The laser beam is divided using a polarizing beam splitting cube,
after which identical optical components are used in both beams paths, whose
lengths of approximately 1 m are identical to within about 1 mm. Furthermore,
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the experimental setup incorporates an Ar+-laser with an output wavelength of
413.1 nm and a Kr+-laser that was tuned by means of a wavelength selecting prism
to λ = 488.0 nm and 457.9 nm. These lasers were used for FSC measurements with
a single direction of incidence (not shown in Fig. 6.2). The output beams of the
lasers are shaped individually by spherical and cylindrical telescopes in order to
form elliptical beams, which are then superimposed by dichroic beam splitters and
focused via a microscope objective to a common spot of approximately the same
size 10 µm × 42 µm (full width of 1/e2 points of intensity) in the flow cell at the
intersection point with the blood cells. The minor axis of the elliptical focus and
the polarization vectors of the electric field are parallel to the direction of flow.

Figure 6.4: Measurements of the 2-
direction forward-scattered intensity of a
blood sample at 632.8 nm

The light scattered by the cells is col-
lected with microscope objectives onto
photomultiplier tubes (PMTs). In or-
der to block the direct laser beam, the
objectives have beam stops mounted in
front of them on the optical axis. For
the 1-direction FSC measurements the
angle of observation ϑ1 = 3.3◦ ≤ ϑ ≤
ϑ2 = 17.4◦ is determined by a circular
beam stop and the numerical aperture of
the light collecting microscope objective
20×/N.A. = 0.4. In the FSC measure-
ments with two orthogonal HeNe laser
beams, two identical microscope objec-
tives 7×/N.A. = 0.19 for collimation of
the scattered light were used. Stripe-
shaped beam-stops parallel to the inci-
dent polarization vector were used re-
sulting in an observation angle of ϑ3 =

2.2◦ ≤ ϑ ≤ ϑ4 = 8.2◦. The signal thus measured with the PMTs is proportional to
the intensity of light scattered into the detector aperture. Each cell passing the laser
beam causes a current pulse in the PMTs, the peak height of which is analyzed in
the following. An example for measurement data is shown in Fig. 6.4, where density-
colored (bright=high density) scatter plots are shown, created with the dscatter
function of the FACS Matlab package [126]. Each dot in the 2D plot corresponds
to a single cell. The histograms on the top and side are projections of the dot plot
to a single axis. The x and y axes of the main plot are the channel number of
the analog-to-digital converter (ADC) proportional to the intensity scattered into
the microscope objectives, i. e., these measurements are not calibrated to yield an
absolute cross section. The calibration procedure is discussed in section 6.4.6.

6.2.2 Flow setup
The flow cell of the cytometer consists of two parts, which are fused together: a
cylindrical inlet part and the quadratic cuvette tube with the flow channel. The
cylindrical inlet has an inner radius of Rmax = 2 mm. The conical part, where the
inlet diameter reduces to the dimensions of the quadratic flow channel (see Fig. 6.1)
has an apex angle of ψ = 25◦.

The volume flow rate of the sheath flow was adjusted to approximately V̇ =
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0.8 L h−1 = 0.22 mL s−1 by applying a driving pressure of 300 hPa. Consequently,
the average fluid velocity in the 250 µm × 250 µm channel of cross section Amin =
(1/16) mm2 amounted to vavg = V̇ /Amin = 3.56 m s−1. A laminar flow profile is
developed downstream in the flow channel of 10 mm length. In order to assess the
velocity of cells at the point of measurement, i. e., at the point of intersection with
the laser beams, measurements were performed using two laser beams at a known
distance (110 µm). The measured time delay between the light scattering signals
from the lasers corresponds to cell velocities of 7 m s−1.

The stainless steel capillaries used for injection of the diluted blood sample into
the sheath flow had a specified inner diameter of 153 µm. Besides using the standard
capillary with circular outlet, a preferential orientation was imposed on the RBCs
during injection by using a capillary with a flattened output end. This was achieved
by carefully squeezing several capillaries between two polished plates. Subsequent
examination of the modified capillaries under a light microscope revealed an oval
inner cross section measuring approximately 20 µm along the narrow direction. This
oriented the RBCs predominantly with their wide axis along the long axis of the
flattened capillary.

The end of the sample injection capillaries was positioned in the center of the
conical part of the flow cell at a distance of ∆z = 4 mm to the quadratic flow channel.
The volume rate of the sample flow typically amounted to V̇sample = 85 nL s−1. At
the sample velocity of v = 7 m s−1, determined by the sheath flow, this volume rate
corresponds to a cross section of the sample stream of Asample = V̇sample/v = 12.1 µm2

or a diameter of 3.9 µm.

6.2.3 Blood preparation
Human RBCs from one healthy volunteer were analyzed (written informed consent
was obtained). The blood was collected by venipuncture and anticoagulant ethylene-
diaminetetraacetic acid (EDTA), contained in 2.7 mL tubes (Monovette EDTA K,
Sarstedt AG & Co., Germany). The blood samples were diluted by a factor of about
100 in phosphate buffered saline (PBS) when investigating native erythrocytes. For
testing the device and for calibration, isovolumetric sphering of RBCs was applied
using the procedure described by Kim and Ornstein [22, 99]. I. e., the RBCs were
suspended in a mixture of isotonic saline, bovine serum albumin (BSA) and sodium
dodecyl sulfate (SDS), which causes their lipid membrane to contract while not
changing the volume. Hematological parameters of the volunteer were obtained
from the complete blood count (CBC) using a hematology analyzer. The relevant
parameters of the RBCs are shown in Tab. 6.1. MCV = E(V ) is the mean corpus-
cular volume and RDW = CV(V ) is the red cell distribution width, where E denotes
the expectation value (or mean) and CV denotes the coefficient of variation, i. e.,
the relative standard deviation. MCHC = E(cHb) is the mean corpuscular hemoglo-
bin concentration, where cHb is the intracellular Hb concentration. The hemoglobin
distribution width width HDW = CV(cHb) is not a routinely measured parameter.

Table 6.1: Hematological parameters for the concentration distribution and size
distribution of the RBC sample

MCHC/g L−1 HDW/% MCV/fL RDW/%
344 5 92.7 12.4
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For the simulations presented in this chapter it was set to a typical value that best
fits the measurements of sphered RBCs.

6.3 Hydrodynamics

6.3.1 Estimate of velocity gradients
Let us take a closer look at the hydrodynamic situation in the flow cytometer in
order to understand which types of forces are acting on the RBCs before and during
measurement. The dimensions of the flow cell and the volume flow rates are de-
scribed in section 6.2.2. The flow of the sheath fluid in the cytometer in the absence
of the blood cells is described by the Navier–Stokes equation for an incompressible
fluid

∂v

∂t
+ (v · ∇)v − µ

ρ0
∆v = − 1

ρ0
∇p+ g, (6.1)

where v is the velocity field, µ and ρ0 are the the viscosity and density of the
fluid, respectively and p is the pressure. The body accelerations g, e. g., due to
gravity can be set to zero here. No-slip boundary conditions, i. e., v = 0 have to be

Figure 6.5: RBC in the flow channel of the
cytometer (to scale)

fulfilled at the walls of the flow cell of
the cytometer. Because the RBCs are
much smaller than the cross section of
the flow channel (Fig. 6.5), the velocity
profile is not expected to change signif-
icantly due to the presence of the sin-
gle RBCs. The question adressed now
is: Which viscous forces due to veloc-
ity gradients in the fluid flow are expe-
rienced by a RBC while passing through
the cytometer? There are two kinds of

velocity gradients in the cytometer: (1) Transverse gradients occur due to the flow
profile in the channel, which is a (mostly) developed laminar Poiseuille flow at the
point of measurement. (2) Longitudinal gradients occur at the conical part of the
flow cell, where its cross section decreases from the rather wide inlet to the narrow
flow channel, i. e., the velocity increases downstream and one has extensional flow.

Transverse gradients

Analytical solutions of the Navier–Stokes equation exist for certain cases of pipe
flow, and these can be used to estimate the transverse gradients at the point of
measurement as well as to validate the assumption of a developed flow profile. Let
x denote the direction of the flow channel. Then a flow that is fully developed
(∂v/∂x = 0), stationary (∂v/∂t) and swirl-free (vy = vz = 0) has a velocity field
v = vx(y, z) ex. Consequently, the term (v · ∇)v in the Navier–Stokes equation
vanishes. It follows that the y and z components of the pressure gradient ∇p vanish
and the equation reduces to a two-dimensional Poisson problem

−∆yzvx(y, z) = − 1
µ

dp
dx = const (y, z) in Ω, (6.2)

vx(y, z) = 0 (y, z) on ∂Ω, (6.3)
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where Ω denotes the cross section of the pipe and ∆yz = ∂2/∂y2 + ∂2/∂z2 denotes
the two-dimensional Laplace operator. Since the pressure drops along the pipe,
one has dp/dx < 0. The solutions to this equation, describing laminar flow, are
known as Poiseuille flow. For a circular pipe of radius R the solution (in cylindrical
coordinates) is particularly simple

vx(ρ, φ) = − 1
4µ

dp
dx

(
R2 − ρ2

) def.vmax= vmax

(
1 − ρ2

R2

)
for ρ ≤ R, (6.4)

i. e., a parabolic velocity profile, where ρ =
√
y2 + z2. The volume flow rate trough

the pipe is given by

V̇ =
∫ 2π

0

∫ R

0
vx(ρ, φ) ρ dρ dφ = −πR4

8µ
dp
dx = 1

2 vmax πR
2. (6.5)

Hence the average velocity of the Poiseuille flow in a circular pipe is half the maxi-
mum velocity vavg = V̇ /A = 1

2 vmax, where A = πR2 is the cross-sectional area of the
pipe. In the experiments considered here, where the volume rate V̇ is known and the
maximum velocity vmax can be measured using tracer particles or cells, this property
can be used to check whether the flow profile is really fully developed at the point
of measurement. However, since the flow channel is quadratic, not circular, this
solution can not be applied in the strict sense. Like for a circular domain Ω, there
exists an analytical solution for the Poisson problem Eq. (6.2), (6.3) on a rectangle
that describes the velocity profile of a fully developed laminar flow in a rectangular
pipe. In the special case of a quadratic pipe, i. e., Ω = [−a, a]2, the velocity is given
by

vx(y, z) = − a2

µ

dp
dx

⎧⎨⎩1
2(1 − η2) − 16

π3

∞∑
j=1
j odd

1
j3 sinh(jπ) sin

(
jπ(1 + η)

2

)

×
[
sinh

(
jπ(1 + ζ)

2

)
+ sinh

(
jπ(1 − ζ)

2

)]⎫⎬⎭
(6.6)

with rescaled dimensionless coordinates η = y/a and ζ = z/a, i. e., (η, ζ) ∈ [−1, 1]2.
This flow profile has a maximum velocity of

vmax = vx(0, 0) = − a2

µ

dp
dx

⎧⎪⎪⎨⎪⎪⎩
1
2 − 32

π3

∞∑
j=1
j odd

(−1)(j−1)/2

j3

sinh
(
jπ
2

)
sinh(jπ)

⎫⎪⎪⎬⎪⎪⎭  
=0.2946...

(6.7)

and an average velocity of

vavg = 1
4a2

∫ a

−a

∫ a

−a
vx(y, z) dy dz = −a2

µ

dp
dx

⎧⎪⎪⎨⎪⎪⎩
1
3 − 64

π5

∞∑
j=1
j odd

1
j5

cosh(jπ) − 1
sinh(jπ)

⎫⎪⎪⎬⎪⎪⎭  
=0.1405...

. (6.8)

Hence the ratio of maximum to average velocity is vmax/vavg = 2.096 . . . for a
quadratic pipe. Like in a circular pipe, the tip of the profile can be approximated
by a paraboloid

vx(z, y) = vx(0, 0) + 1
4µ

dp
dx(y2 + z2) def. Reff= vmax

(
1 − ρ2

R2
eff

)
for |y|, |z| ≪ a (6.9)
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with an effective radius of Reff = 1.085 . . .× a.
In the experiment, the average fluid velocity in the quadratic flow channel was

vavg = V̇ /A = 3.56 m s−1, determined by the volume rate of the sheath flow. Hence
for a fully developed Poiseuille flow in a circular flow channel the maximum that
should be achieved in the center of a parabolic velocity profile would be vmax =
2vavg = 7.1 m s−1. For the quadratic cross section that was used one expects a
higher velocity of vmax = 7.45 m s−1. Velocity measurements of cells traveling along
the centerline of the quadratic channel yielded 7 m s−1, which agrees reasonably
well with the theoretical value for a circular pipe, but is somewhat smaller than
the expectation for a quadratic cross section. This indicates that at the point of
measurement, the flow profile is mostly developed, but not fully. Hence, at this
point, the velocity gradients are mostly transverse and longitudinal gradients are
weak.

The transverse gradients in the flow channel experienced by a RBC moving along
the channel’s centerline can now be estimated using the approximation of the flow
profile in the 250 µm × 250 µm quadratic channel, Eq. (6.9), with effective pipe
radius Reff = 136 µm. Since vmax = 7 m s−1 was measured, a typical transverse
velocity gradient (shear rate) for a (deformed) RBC measuring 2∆ρ = 5 µm across
is

γ̇typ = vx(0) − vx(∆ρ)
∆ρ = vmax

∆ρ
R2

eff
= 950 s−1. (6.10)

Longitudinal gradients

We now consider the longitudinal velocity gradients in the conical part of the flow cell
where the RBC suspension is injected (Fig. 6.1). To obtain a quantitative result for
the velocity field would require a numerical solution of the Navier–Stokes equation
in this non-trivial geometry, at least for a stationary flow, which goes beyond the
scope of this thesis. In order to obtain an estimate of the order of magnitude of these
gradients, we assume a flat flow profile with v(x, y, z) = vavg(x) = V̇ /A(x) at every
cross section of the cone, which has an apex angle ψ = 25◦. Furthermore, we assume
that the circular cone transitions smoothly into the quadratic flow channel of area
Amin = (1/16) mm2, thus defining the minimal effective radius Rmin =

√
Amin/π =

140 µm. The radius R reduces linearly with x starting from Rmax = 2 mm at the
inlet (x = −L = −8.4 mm) and ending in the flow channel at x = 0, i. e.,

R(x) = Rmin − x tan(ψ/2), for x < 0. (6.11)

Hence, the area A(x) is a quadratic polynomial of x and

vavg(x) = V̇

A(x) = V̇

π [Rmin − x tan(ψ/2)]2
. (6.12)

The longitudinal gradient of this extensional flow is given by

ε̇ = dvavg(x)
dx = 2V̇ tan(ψ/2)

π R(x)3 , (6.13)

which is highest at the narrowest part of the cone (x = 0) where it amounts to
ε̇max = 11.2 × 103 s−1. Besides the velocity and gradients, one can further estimate
the time it takes the RBC to get from the point of injection into the flow channel of
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constant cross section. This time of passage corresponds to the time during which
the RBC is subject to extensional stress. Since the sample injection capillary is
placed ∆xinj = 4 mm upstream from the flow channel, this time is

∆t =
∫ 0

−∆xinj

1
vavg(x) dx = π

3 V̇ tan(ψ/2)
[
R(−∆xinj)3 −R3

min

]
= 23 ms. (6.14)

Even when inside the flow channel where A(x) = const, the RBC still experi-
ences stress due to longitudinal velocity gradients, because the flow profile is just
developing. These gradients are, however, much weaker than in the conical part.
To get an estimate, we note that between the beginning of the flow channel and
the point of measurement, some 10 mm downstream, the velocity at the centerline
of the channel increases from at least v = vavg ≈ 3.6 m s−1 to vmeas

max = 7 m s−1.
Hence, a typical time-averaged value for the corresponding extensional strain ε̇ is
(7 − 3.6) m s−1/10 mm = 340 s−1, which is much less than the estimated ε̇max =
11.2 × 103 s−1 at the narrowest part of the cone.

6.3.2 Comparison to microfluidic flows
We now have an estimate of the velocity gradients occurring in the flow cytometer,
from which the magnitudes of the resulting viscous forces acting on the RBC can be
determined. In the optical simulations presented in the next section the deformations
resulting from these forces shall be accounted for by a suitable shape model. Detailed
quantitative mathematical models exist for the viscoelastic behavior of RBCs in
fluid flows [19, 127, 128] that could be applied to the problem at hand. However,
the numerical simulation of these models is a challenging topic on its own that
goes beyond the scope of this thesis. Nevertheless, one can at least compare the
hydrodynamic situation estimated above to theoretical and experimental results for
RBC deformation presented in the literature. To the author’s knowledge, detailed
quantitative simulations of the deformation of RBCs in a flow cytometer have been
described only in one case in the literature: Gibaud [129] discusses the deformation,
alignment and lateral migration of RBCs in an impedance flow cytometer. While
some qualitative effects can be compared between this study and the optical flow
cytometer used here, the geometry of the flow cells of the two devices are quite
different. For example the impedance flow cytometer considered by Gibaud does not
feature a narrow flow channel but an orifice for electrical impedance measurements.
Hence no quantitative shape models for optical simulations can be derived from these
results. But they suggest that alignment of the RBCs with their long axis in the
flow direction and elongation along this axis are typical effects of the hydrodynamic
focusing.

Due to the interesting modes of RBC motion one can observe, a lot of studies
of RBC deformation focused on simple shear flows [130, 131], which is not appli-
cable to the situation at hand. Furthermore, microcapillary flow and mesoscale
blood dynamics are topics of apparent biomedical importance and have thus been
studied extensively in recent years, see Ref. 19 and references therein. The defor-
mation of single RBCs in pipe flow has been studied for microcapillaries of a few
µm width, i. e., comparable to the RBC’s size and much narrower than the cytome-
ter’s flow channel. Flow velocities in these experiments typically are in the µm s−1

to cm s−1 range [132, 133], i. e., much smaller than in the flow cytometer consid-
ered here. In such a stationary microcapillary flow the deformation of the RBC
is caused by transverse velocity gradients and the proximity to the capillary walls.
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Figure 6.6: Shape of a RBC in a microcap-
illary [132] (top) compared to the shape and
orientation expected in the flow channel of the
cytometer (bottom). Developed flow profiles
in the absence of the cell are indicated by ar-
rows.

The resulting RBC shapes and
orientations include “bullet” or
“parachute” modes, where the sym-
metry axis of the RBC is oriented
along the flow direction [128, 132–
134], which is depicted in the top
panel of Fig. 6.6, as well as a “slip-
per” mode where this symmetry is
broken to some extent [134–137].
In experiments with narrow rect-
angular flow channels a “croissant”
shape [137] can be observed, simi-
lar to a parachute but without ro-
tational symmetry around the flow
axis. In contrast, the (almost) de-
veloped laminar flow profile in the
flow cell of the cytometer considered
here rather corresponds to an infi-
nite Poiseuille flow since the walls

are macroscopically far away. Due to the much higher flow velocity, the trans-
verse gradients and the curvature of the flow profile at the center (in absence of
the RBC) are still comparable to microcapillary flows [132, 133]. However, due to
the long distance to the walls the RBC is not “squeezed through” the channel like
in a microcapillary and the transverse gradients alone might not cause as strong
deformations of RBCs in the flow cytometer as depicted in Fig. 6.6.

As discussed above, extensional flow occurs at the conical part of the flow cell
of the cytometer, where the sample fluid is injected. The deformation of RBCs in
homogeneous extensional flows has been studied by Lee et al. [138] and Yaginuma
et al. [139] using hyperbolically converging microfluidic channels. The observation
of flowing RBCs with medium-resolution light microscopy in these studies revealed
a stretching of the RBCs with an elliptical deformation of the discocyte shape. The
extensional stresses ranged from σe = 0.1 Pa to 13 Pa [138] and σe = 0.4 Pa to
16.5 Pa [139], respectively. We estimated the longitudinal gradient (or extensional
strain rate) in the flow cytometer to be as high as ε̇max = 11 × 103 s−1, i. e., one
order of magnitude higher than a typical shear rate due to the curvature of the
Poiseuille profile. The sheath fluid is assumed to have the shear viscosity of water
µs ≈ 1 mPa s. Consequently its extensional viscosity is [138] µe = 3µs ≈ 3 mPa s
and the extensional stress upon injection peaks at about σe,max = ε̇max µe ≈ 33 Pa.
This is of the same order of magnitude as the highest extensional stresses applied
to RBCs in Ref. 138,139, hence similar deformations are expected here, too.

As estimated above, the RBCs in the cytometer take about 23 ms to get through
the converging part of the flow cell. During this time, they are exposed to increas-
ing extensional stress σe(t) ≤ σe,max ≈ 33 Pa. The optical measurement, i. e., the
intersection with the laser beams happens downstream in the flow channel, where
mostly transverse gradients occur. I. e., the RBCS are measured some time after
they were exposed to the extensional stress and might have had time to relax from
the deformation. The viscoelastic relaxation time constants of stretched RBCs are
known to be about 100 ms–250 ms [140, 141]. In this time a RBC flowing in the
flow channel at 7 m s−1 covers a distance ≥ 700 mm, i. e., has long passed the laser
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a few mm downstream. Hence the effect of the extensional stress is still well visible
in the RBC shape at the point of measurement. On the other hand, compared to
the relaxation time constants, the exposure time to the extensional stress of around
23 ms seems long enough to expect a noticeable deformation.

6.4 Optical modeling and simulation

6.4.1 Scattering problem and FSC
As already discussed in chapter 1 and detailed in chapter 2, a RBC can be modeled
as a homogeneous dielectric particle because it has minimal internal structure (if
any at all) and its membrane is very thin [21]. Hence the scattering of a laser beam
by a single RBC embedded in a quasi-infinite host medium (the sheath fluid) is
described by the Helmholtz equation for the electric field E

∆E + n2 k2E = 0, (6.15)

where n = n + iκ is the complex refractive index (RI), and k = ω/c0 = 2π/λ is the
vacuum wavevector of the electric field of the laser operating at vacuum wavelength
λ. For a homogeneous dielectric scatterer with RI ns in a non-absorbing host medium
with RI nm, one has

n(r) =
⎧⎨⎩ns for r inside the scatterer
nm outside

. (6.16)

The total electric field is the sum of the incident and scattered fields

E = Ei +Es. (6.17)

Together with radiation conditions for Es at r → ∞ and continuity conditions for
the tangential field components on the particle boundary this defines the scattering
problem.

We have already made use of the analytical solution for a spherical scatterer (Mie
theory/Mie scattering) in the previous chapters. To solve this problem for more
general shapes the scattering problem has to be solved numerically. One possible
method, which is employed here is the discrete dipole approximation (DDA), where
the volume of the scatterer is discretized into a cubic grid. Using the Green’s function
of the Helmholtz operator, Eq. (6.15) can be re-written as a volume integral equation.
Using the volume discretization, this integral equation is then approximated by a
system of algebraic equations that can be solved by methods of numerical linear
algebra. For numerical reasons, the variable for which this system of equations is
written is not the total electric field E, but rather an “exciting field” Eexc or the
polarization P , from which the total electric field can then be easily computed. An
outline of the DDA is given in section 2.2.2 of chapter 2. The DDA method is
characterized by requiring a volume discretization only of the scatterer, but not of
the surrounding medium. This solution method works for arbitrary incident fields
Ei given on the grid points defining the scatterer. The ADDA 1.2 implementation
of the DDA was used. The details of the method and implementation are given in
Ref. 66.

The incident beam is assumed to be a plane wave propagating along the z axis,
i. e., with wavevector (in the host medium) k⃗m = 2π nm/λ ez. The DDA yields the
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total electric field E inside the scatterer, from which the outside field and far field
can be computed, again using the Green’s function of the Helmholtz operator and
its far-field limit. Among others this allows to compute the Mueller matrix of the
scattered far field. In general, a Mueller matrix, which is a 4 × 4 real-valued matrix
describes the transformation of the Stokes vector (I,Q, U, V )T in a linear optical
process, such as scattering. Here I is the total intensity of an incident beam, Q
and U describe the linearly polarized portion of the light and V describes circular
polarization. The scattered far field is transverse and decays like a spherical wave, its
Mueller matrix M(ϑ, φ) describes the direction-dependent intensity in dependence
on the polarization state of the incident field. The Stokes vector of the scattered
field, relative to the scattering plane [spanned by the unit vectors ez and er(ϑ, φ)],
is given by

(Is, Qs, U s, V s)T = 1
k2

mr
2 M(ϑ, φ) (I i, Qi, U i, V i)T . (6.18)

Since an x-polarized incident beam is used, the Stokes vector in the coordinate
system of the laboratory is I i (1, 1, 0, 0)T . Expressed relative to the scattering plane,
this reads

(I i, Qi, U i, V i)T = I i (1, cos 2φ, sin 2φ, 0)T . (6.19)
Consequently the total scattered intensity is

Is(ϑ, φ) = 1
k2

mr
2 I

i (M11 +M12 cos 2φ+M13 sin 2φ), (6.20)

where the Mij depend on (ϑ, φ). The forward scattering cross section is computed
from this as

FSC = 1
k2

m

∫∫
Ω
(M11 +M12 cos 2φ+M13 sin 2φ) sinϑ dϑ dφ, (6.21)

where Ω is the detector aperture. The aperture of a microscope objective with
on-axis circular beam stop used for the four-wavelength one-direction FSC measure-
ments is given by

Ωcircle = {ϑ ∈ [ϑ1, ϑ2], φ ∈ [0, 2π]} (6.22)
and the aperture with a stripe-shaped beam stop along the x-axis used for the
two-direction FSC measurements is given by

Ωstripe = {ϑ ∈ [ϑ3, ϑ4], | sinφ| ∈ [ϑ3/ϑ, 1]} . (6.23)

Here ϑ2 and ϑ4 are the outer acceptance angles of the respective microscope ob-
jectives, ϑ1 is the angular radius of the circular beam stop, and ϑ3 the angular
half-width of the stripe-shaped beam stop.

6.4.2 Shape model
Several mathematical models exist to approximately describe the biconcave shape
of a native RBC at rest. Here, we use the equation of Yurkin [142], which reads

ρ4 + 2R4 ρ
2 z2 + z4 +R1ρ

2 +R2 z
2 +R3 = 0. (6.24)

This implicit equation describes the surface of the cell in cylindrical coordinates
(ρ, φ, z). As written this shape model is symmetric with respect to rotation around
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(a) (b)

Figure 6.7: (a) Cross section through the center of the shape model defined by
Eq. (6.24). (b) Surface triangulation of the stretched model, compare Fig. 6.3.
Arrows indicate the orientation of the RBC relative to the flow axis and the two
incident lasers with wavevectors k⃗1 and k⃗2. “Figure axis” denotes the symmetry axis
before stretching.

the z-axis, or axisymmetric. It further has mirror-symmetry with respect to the
xy-plane. Alternatively to the the coefficients R1 . . . R4 of Eq. (6.24), the model
can be characterized by the diameter D of the cell, its minimal thickness b and
maximal thickness h and the diameter c of the circle of maximal thickness, see
Fig. 6.7 (a). This shape model describes RBCs at rest, as they can be observed,
e. g., on a glass slide under a light microscope (if one ignores the effects of adhesion
to the slide). However, as discussed above in section 6.3, RBCs in the flow cytometer
are subject to considerable hydrodynamic forces. Hence, deformation is expected
to occur as a response to both, transverse and longitudinal velocity gradients of
the sheath fluid. Since the latter are much higher than the former and motivated
by the elliptical shapes observed for RBCs in pure extensional flows [138, 139], the
above axisymmetric model is extended by a non-uniform linear scaling. In Cartesian
coordinates this is expressed by the mapping

(x, y, z) ↦→ (fx x, fy y, fz z). (6.25)

Since fx is the direction of fluid flow along which the cell is stretched one has fx > 1.
Table 6.2: Parameters of the shape mod-
els used. S is the surface area and V the
volume of the cell. The sphericity index
(SI) is defined as SI = 3

√
36π V 2/S.

axisymm. stretched
fx 1 9/4
fy 1 2/3

D/µm∗ 7.65 7.64
c/D 0.62 0.62
h/µm 2.5 2.55
b/µm 1.25 0.8
S/µm2∗ 125 169

SI∗ 0.795 0.587
∗ Values for a RBC with V = 92.7 fL = MCV.

Along the other two directions, we ex-
pect a compression of the cell fy, fz < 1.
We chose fy = fz = 1/

√
fx. This way,

the stretching is described by a single
parameter fx and conserves the cell’s
volume, since the determinant of the
transformation matrix is then fx fy fz =
1.

The result is a shape model whose
top-view is an ellipse of major axis fxD
and minor axis D/

√
fx. The minimum

and maximum thickness are b/
√
fx and

h/
√
fx, respectively. For the stretched

model fx = 9/4 = 2.25 was used.
The parameters of the stretched and
unstretched shape models are given in
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Tab. 6.2 and the corresponding shapes are depicted in Fig. 6.3 and Fig. 6.7 (b), re-
spectively. The parameters of the unstretched model in Tab. 6.2 describe a typical
RBC at rest [143]. The parameters of the stretched model were tuned by hand in
order to match the 1D and 2D FSC measurements. A variable RBC volume was
accounted for by varying the diameter D, while keeping h, b and the ratio c/D
constant. Furthermore, the RBC shape model is allowed to rotate around its long
axis, i. e., the direction of flow. The Euler angle β is a free parameter of the model,
compare Fig. 6.7 (b).

6.4.3 Refractive index
For the optical properties of the fluid, in which the RBCs are suspended during
measurement we assume those of water [41], since the sheath fluid is made up mostly
of water. For the complex RI of the RBCs we assume wavelength- and concentration-
dependent values

n(λ; cHb) = nH2O + cHb [α(λ) + i γ(λ)] (6.26)

determined from Kramers-Kronig (KK) relations in chapter 3.1 Numerical values
for the four laser wavelengths used and the mean cellular hemoglobin concentration
MCHC = 344 g L−1 are given in Tab. 6.3. Note, however, that the complex RI of the
RBCs is subject to biological variation due to the variation of the Hb concentration
cHb within the blood sample. This is accounted for in the simulation by sampling a
range of values for cHb.

6.4.4 DDA simulations
It should be noted that the surface triangulations of the RBC shape models in
Figs. 6.3 and 6.7 serve only to illustrate the shape. They were not used for scattering
simulations, where a volume discretization with 45 nm cubes was employed. The size
of the cubes corresponds to 6.9 dipoles per wavelength at the shortest wavelength
λ = 413.1 nm (λ/nH2O = 307.7 nm) and 10.6 dipoles per wavelength at the longest
wavelength λ = 632.8 nm (λ/nH2O = 475.0 nm). Mueller matrices were computed
in ADDA 1.2 for ϑ = 0.0◦ : 0.2◦ : 28.0◦ and φ = 0◦ : 1◦ : 360◦, from which the
FSC was computed for the respective apertures [Eqs. (6.21) to (6.23)] by numerical
integration. In the a : b : c expression a and c are the start and end values,
respectively and b is the step width of a uniform grid. An example for the far-field

1 The values used here for DDA simulations represent the fit of the the deep-UV KK model
to the measurement data of Friebel and Meinke [38] for the real RI increment of Hb solutions.
The results of chapter 4 of this thesis were not used, because the extinction measurement data
used in that chapter to determine the optical properties of RBCs became available only after the
computationally expensive DDA simulations of the present chapter had already been performed.

Table 6.3: RI of water and RBCs (at cHb = 344 g L−1 = MCHC) assumed for
simulation. m = n/nH2O is the relative RI of the RBCs.

λ/nm 413.1 457.9 488 632.8
nH2O 1.3424 1.3391 1.3374 1.3321
n 1.4316 + 0.0200i 1.4343 + 0.0020i 1.4299 + 0.0011i 1.4230 + 6.2i × 10−5

m 1.0665 + 0.0149i 1.0711 + 0.0015i 1.0691 + 8.2i × 10−4 1.0682 + 4.7i × 10−5
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Figure 6.8: Far-field intensity distributions Is(ϑ, φ) [Eq. (6.20)] on a logarithmic
scale at λ = 632.8 nm for the stretched RBC shape model with fx = 2.25, size
D = 7.8 µm and cHb = 335 g L−1. The solid angle is 0◦ ≤ ϑ ≤ 28◦. The long axis
of the stretched RBC is oriented horizontally. Three different rotations around this
axis are shown. For β = 0◦ the cell is parallel to the image plane.

intensities that were integrated over in order to obtain the FSC is shown in Fig. 6.8.
A database of FSC values was thus computed for parameters

β = 0◦ : 5◦ : 90◦,

cHb = (290 : 15 : 395) g L−1,

D = (5.4 : 0.4 : 10.2) µm.

The latter corresponds to RBC volumes V between 49 fL and 169 fL. A wider range
for the orientation angle β is not necessary due to the mirror symmetries of the
shape model. The density of these grid points was chosen such that intermediate
values of the FSC can be quickly computed by cubic spline interpolation. We denote
this interpolant by the function g(V, β, cHb).

For a fixed size (D = 7.6 µm or V = 91.5 fL) and concentration (cHb = 335 g L−1),
the angular dependenc of the FSC g(β) was computed for elongation factors fx =
1.75 : 0.25 : 3. The result is shown in Fig. 6.9. Histograms were sampled by
generating pseudorandom uniformly distributed orientations β as described below.
The best agreement between simulation and experiment was found for fx = 2.25.
Hence the full database, accounting for polydispersity, was computed for g(V, β, cHb)
with fx = 2.25.

6.4.5 Propagation of probability distributions
While the optical simulations yield a function for the FSC in dependence on the
model parameters, the observable in the experiment is a (one- or two-dimensional)
histogram of FSC values. The corresponding quantity in the theoretical model is
the probability distribution function (pdf) of the FSC. In order to compute it, the
pdfs of the input parameters V, β, cHb need to be propagated through the nonlinear
function g. If one is dealing with scalar random variables, where the pdf px of the
random variable x is given and one wants to know the pdf py of y = g(x), this
change of variables can be done analytically using the expression

py(y) =
⏐⏐⏐⏐⏐ d
dyg

−1(y)
⏐⏐⏐⏐⏐ px (g−1(y)

)
(6.27)

for functions g(x) that are monotonic and can be uniquely inverted, or the corre-
sponding expression for non-monotonous functions, where the right hand side of
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Figure 6.9: Dependence of the simulated FSC on orientation angle β and elongation
factor fx for fixed volume and Hb concentration

the above equation is summed over all solutions fulfilling g(x) = y. However, this
method can not be easily transfered to higher dimensions. Hence the change of vari-
ables for the pdfs was achieved by a direct sampling Monte Carlo (MC) technique.
NMC = 105 triples of pseudorandom numbers were drawn for (V, β, cHb) from their
respective distributions. A uniform distribution was assumed for β, a normal one
for cHb and a log-normal distribution for V , compare section 4.4.1 of chapter 4. The
distribution parameters for cHb and V are given in Tab. 6.1. The FSC was computed
for each of the NMC triples, i. e., yj = g(V j, βj, cjHb), j = 1, . . . , NMC. The pdf py(y)
for discrete values y = yν , ν = 1, . . . , Nbins is then approximated by a histogram of
the MC samples {yj}NMC

j=1 , with appropriate normalization. If the number of grid
points is chosen appropriately (e. g., Nbins = 60 was used for calibration, see below),
then the pdf py(y) at intermediate values can be computed by interpolation. The
pdfs thus computed were used for calibration of the FSC-axes (see next subsection).

To model the 2-direction FSC measurements, one sets

FSC(k⃗1) = xj = g(V j, βj, cjHb) and FSC(k⃗2) = yj = g(V j, 90◦ − βj, cjHb) (6.28)

for each random parameter triple and the pdfs of x and y follow accordingly. The
joint pdf pxy(x, y) could be computed in the same manner, but this function is actu-
ally not required here since the comparison with measurements will be made based
on 2D dot plots. In this case, instead of computing a smooth pdf, detector noise
was mimicked by adding independent normally distributed pseudorandom numbers
of zero mean and 0.5 µm2 standard deviation to the MC samples for the FSC. This
yields a list of data that can be treated and plotted just like experimental data.
Density-colored scatter plots were created with the dscatter function of the FACS
Matlab package [126].

6.4.6 Axes calibration
Calibration of the FSC-axes to obtain absolute values in µm2 was performed by com-
paring measurements of the forward-scattered intensity of isovolumetrically sphered
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RBCs (see section 6.2.3) to forward scattering cross sections according to Mie scat-
tering computations. Plane wave incidence was assumed. The RIs, hematological
parameters (see Tab. 6.1) and the MC sampling method for extracting probabil-
ity distributions were the same as used for the DDA simulations described above.
The conversion factor between the channel number of the ADC, which records the
(linearly-amplified) signal of the PMTs, proportional to scattered intensity, and ab-
solute cross section is set by numerical optimization such that the scalar product
between the measured and simulated frequency/probability distributions becomes
maximal.

For Mie scattering, the Mueller matrix elements read [61]

M11 = 1
2
(
|S2|2 + |S1|2

)
, (6.29)

M12 = 1
2
(
|S2|2 − |S1|2

)
, (6.30)

M13 = 0, (6.31)

where S2 and S1 are the diagonal elements of the (2×2 complex) amplitude scattering
matrix that depend only on ϑ, compare section 2.2.1 of chapter 2. Hence one obtains
for the circular beam stop used in the 1-direction FSC measurements

FSCMie
circle = 1

k2
m

∫ ϑ2

ϑ1

∫ 2π

0
[M11(ϑ) +M12(ϑ) cos 2φ] dφ sinϑ dϑ

= 2π
k2

m

∫ ϑ2

ϑ1
M11(ϑ) sinϑ dϑ.

(6.32)

For the stripe-shaped beam stop along the x-direction used in the 2-direction mea-
surements, one obtains

FSCMie
stripe = 2

k2
m

∫ ϑ4

ϑ3
{M11(ϑ) [π − 2 Φ(ϑ)] −M12(ϑ) sin[Φ(ϑ)]} sinϑ dϑ, (6.33)

where Φ(ϑ) := arcsin(ϑ3/ϑ). For both cases, the ϑ integration can be carried out
numerically.

In the following, the random variable y denotes the forward scattering cross
section. The above Eq. (6.32) and Eq. (6.33) allow to compute the FSC of sphered
RBCs as a function of cell volume V and Hb concentration cHb, which is denoted
by y = g(V, cHb). As described above, by MC sampling of V and cHb, one can
compute the corresponding pdf of the cross sections pMie

y (y). The corresponding
measured signal is a histogram for the channels j = 0, 1, . . . , N − 1 of the ADC with
counts h0, . . . , hN−1 ∈ N0. The channel numbers linearly correspond to intensities
or scattering cross sections, i. e.,

yj = q j, (6.34)

however the calibration factor q is unknown. If there are M total events in the
measurement, the normalized histogram that can be compared to the simulated pdf
to determine the calibration factor q is

pexp
y (yj) = 1

M q
hj. (6.35)
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Figure 6.10: Calibration of FSC axes us-
ing sphered RBCs and Mie theory. The
solid lines indicate the simulated probabil-
ity distributions (normalized to the num-
ber of counts). Both axes were calibrated
independently.

The conversion factor q between
channel number of the ADC and ab-
solute cross section is now determined
by numerical optimization such that the
scalar product between the normalized
pdfs of measurement and simulation be-
comes maximal∫ ∞

0
pMie
y (y) pexp

y (y) dy

≈
N−1∑
j=0

pMie
y (yj) pexp

y (yj) q

= 1
M

N−1∑
j=0

pMie
y (q j)hj → max .

(6.36)

Numerically, this was done using
fminsearch in Matlab (Matlab R2018a,
The MathWorks, Inc.).

This axis calibration was performed
for each of the four laser wavelengths
separately. Since the 1-direction and
2-direction FSC measurements at λ =

632.8 nm used different apertures and beams stops, the calibration was performed
for both cases separately. An example of this calibration procedure is shown in
Fig. 6.10.

6.5 Results

6.5.1 Comparison between measurements and simulations
Results for the simulated dependence of the FSC on β for varying stretching fac-
tor fx = 1.75, . . . , 3 of monodisperse samples (i. e., constant RBC volume V and
Hb concentration cHb) were already shown in Fig. 6.9. While such curves are com-
puted relatively easily from simulation data, the dependence of the FSC on β cannot
be obtained from the experiment since the orientation of an individual cell is not
known. However, these simulated curves may help to understand why and under
which conditions a bimodal distribution is observed in the FSC histograms. Since
all angles β are equally likely, i. e., the pdf of β is a constant, according to the rule
for change of (scalar) variables in probability densities, Eq. (6.27), a maximum in
the pdf of FSC = g(β), or equivalently in the FSC histograms (1D or 2D), occurs
whenever the derivative dg(β)/dβ is low, i. e., near the extrema of the curves in
Fig. 6.9. As can be seen, all curves have a minimum at β = 0 and at least one
maximum at higher angles. For high stretching factors fx, the curves are almost
monotonically increasing, which then effectively leads to a bimodal distributions for
the FSC – one peak for the minimum of g(β) and one peak for the maximum (or
several maxima of similar height). For lower stretching fx, a pronounced intermedi-
ate maximum at β ≈ 60◦ is developed, which then results in multimodal histograms
for the FSC, and possibly very intricate shapes for the 2D FSC histograms. How-
ever, the curves in Fig. 6.9 do not give the full picture, for which polydispersity
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Figure 6.11: Comparison between measurements and simulations of the FSC (3.3◦ ≤
ϑ ≤ 17.4◦) at four different laser vacuum wavelengths λ. The y-axes show the
probability density function. The simulated pdfs were smoothed using the 0.5 µm2

Gaussian noise that was also applied to the simulated 2D histograms.
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Figure 6.12: Measurement data (left) and simulation (right) of the 2-direction FSC
for native RBCs. The simulation was performed using the stretched shape model
and the hematological parameters from the CBC (Tab. 6.1). The orientation angle
β is uniformly distributed, i. e., β ∈ U(−90◦, 90◦).

Figure 6.13: Simulation of the 2-direction
FSC in Fig. 6.12 using the undeformed,
axisymmetric shape model and the hema-
tological parameters from the CBC

needs to be considered. If simulations of
the 2-direction FSC histograms are per-
formed with monodisperse ensembles, in
the 2D plots one sees clearly drawn lines
instead of point clouds and sharp peaks
instead of broad ones in the correspond-
ing 1D histograms. The effects of vari-
able cell size and variable intracellular
Hb concentration (i. e., variable RI) turn
out to have effects of similar magnitude
in “smearing out” these curves. These
distributions were taken into account in
the following and a fixed stretching fac-
tor fx = 2.25 was used.

Fig. 6.11 shows measurements of
FSC histograms with one incident
laser beam at vacuum wavelengths
λ = 413.1 nm, 457.9 nm, 488 nm and
632.8 nm in comparison with simulation
data obtained with the stretched shape model. At λ = 632.8 nm, bimodal histograms
occur in both, experiment2 and simulation and qualitatively, the agreement betwen
the two is good. However, even though the FSC axis was calibrated using mea-
surements of sphered RBCs and Mie scattering computations, there is a significant
deviation of the absolute FSC scales, by about a factor two. However, this devia-
tion can be explained by the model assumptions made. This will be discussed in
detail in section 6.5.2. As the laser wavelength is decreased from 632.8 nm down
to 413.1 nm, the imaginary part of the RI of the RBCs increases, i. e., they become

2 The peak at very low FSC in the experimental data is due to blood platelets in the sample.
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Figure 6.14: Measurement data (left) and simulation (right) of the 2-direction FSC
for native RBCs injected through a flattened capillary resulting in preferential ori-
entation face-on to k⃗1. Simulation as in Fig. 6.12, but with β normally distributed
around k⃗1, i. e., β ∈ N (0, 36◦).

significantly absorbing. The result is a decrease of both, the inter-peak distance
and the height of the high-FSC peak. At 413.1 nm the distribution is very narrow
and unimodal with only a slight shoulder remaining of the high-FSC peak. These
tendencies are reproduced in the simulations, however, quantitative agreement is
not achieved. Note that the same shape model was used for all wavelengths. The
parameters of the shape model were tuned by hand until the simulations agreed
qualitatively with the measurement data at 632.8 nm, but no attempt was made for
mathematical optimization. The RBC volume and intracellular Hb concentration
was sampled according to the hematological parameters of the blood sample and
the Hb concentration-dependent RI dispersion of RBCs was considered according to
the results of chapter 3.

The 1D histograms contain no direct evidence to support the assumption that
the RBCs are oriented with their symmetry axis (before deformation) perpendicu-
lar to the flow. This assumption can be tested using the 2D histograms for FSC
measurements with two perpendicular laser beams at 632.8 nm. Fig. 6.12 shows
scatter plots of x = FSC(k⃗1) vs. y = FSC(k⃗2) with marginal histograms of x and y
individually. Calibrated measurement data is compared to simulations. The mea-
surement data exhibit a bimodal distribution, which (in 2D) lies on a cross diagonal
(y = const−x) of the plot. The latter indicates that the RBCs are oriented in a way,
where they are asymmetric with respect to the direction of flow. If the RBCs were
oriented with their rotational axis aligned to the flow, as it occurs, e. g., in microflu-
idic flows [128, 132, 133], or in any other way symmetric around the flow axis, they
would “look the same” from both directions k⃗1 and k⃗2. This would result in a 2D
histogram located on the main diagonal (y = x) of the plot as observed for sphered
RBCs (Fig. 6.10). The symmetry between the upper and lower triangle of the plot
is, however, not perfect, indicating a slight preference for cell orientation face-on to
k⃗1. This may be caused by imperfections or asymmetries of the flow cell or the sam-
ple injection capillary of the flow cytometer. Another possible explanation are slight
differences in the detector apertures of the two laser beam paths, e. g., caused by
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variation of the beam stop’s position. Similar to the 1D case, the simulated scatter
plot reproduces the qualitative features of the experiment (cross-diagonal, bimodal
2D distribution) well, but the absolute FSC values deviate significantly.3 If, on the
other hand, the non-stretched, axisymmetric shape model is used in the simulation,
the results look very different from the experiment, even qualitatively. This is shown
in Fig. 6.13. Rather than describing a bimodal distribution, the maxima of the 2D
FSC plot form a “loop”. Projected to the 1D histograms this results in a trimodal
distribution.

The cross-diagonal character of the 2D measurements already indicates that
bimodality is a result of random orientation of the cells, described by angle β.
Experimentally, this was investigated further by measurements where the steel cap-
illary used for injecting the RBCs into the cytometer was flattened to an oval cross
section measuring 20 µm along the narrow direction. This results in predominant
orientation of the cells along β = 0◦, or face on to k⃗1. The corresponding measure-
ment data and simulations are shown in Fig. 6.14. A pronounced asymmetry occurs
now between the formerly symmetric peaks: The peak with low FSC(k⃗1) and high
FSC(k⃗2) remains almost unaffected whereas the high-FSC(k⃗1)/low-FSC(k⃗2) peak is
suppressed. In the simulations, this effect is reproduced if the orientation angle β is
sampled from a normal distribution β ∈ N (0, 36◦) instead of a uniform distribution
β ∈ U(−90◦, 90◦).

6.5.2 Influence of laser beam shape
As mentioned before, the most significant difference between simulated and mea-
sured FSCs is a deviation by about a factor 2, with otherwise qualitative agreement
of the histograms. This deviation can be explained by the assumption made in the
simulations of the incident laser beam being a plane wave. In the cytometric setup,
the incident beam is shaped to an elliptical focus with semi-axes (e−2 points of inten-
sity) w0⊥ = 21 µm perpendicular to the flow direction and w0∥ = 5 µm along the flow
direction. The hydrodynamic focusing ensures that the sample stream is centered
in the focal ellipse along the long axis. The RBCs can be assumed to be centered
in the light focus also in the other direction, because the measurement signals are
proportional to the pulse heights of the scattered intensities, corresponding to the
moment when the RBC is right at the center of the focal ellipse. For the sphered
RBCs of approximately 5.6 µm diameter for which the calibration of the FSC-axis
was performed, and which are smaller than the elliptical beam focus, this causes
only little variation of the incident electric field Ei: it varies across the sphered cell
between e−(2.8 µm/5 µm)2 = 69% and 100% of the maximum. With the stretching fac-
tor fx = 2.25, the deformed cells on the other hand reach lengths of around 17 µm
such that the incident electric field at the tips is only e−(8.5 µm/5 µm)2 = 5% of the
amplitude at the center. In other words: Much less cell mass is in the beam focus for
stretched RBCs than for sphered ones. The result is a lower scattering cross section
for the former when an elliptical beam is used instead of a plane wave. The impact
on the FSC was estimated performing additional simulations with circular Gaus-
sian laser beams (as readily available in ADDA 1.2) of waist radii w0 ∈ [5, 30] µm
at a fixed cHb = 335 g L−1. Results of these computations are shown in Fig. 6.15

3 The microscope objectives in the 2-direction forward scatter measurements have a lower
numerical aperture than the ones in the 1-direction measurements and the beam stops are different.
Hence, the absolute FSC values differ from the measurements at λ = 632.8 nm discussed above.
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Figure 6.15: Dependence of the FSC of the stretched shape model on the waist
diameter 2w0 of a Gaussian beam for three different RBC volumes and orientations
at fixed Hb concentration. A plane wave corresponds to w0 → ∞.

for selected RBC volumes V and orientations β. As expected, the main effect of
the Gaussian beam compared to the plane wave is to reduce the FSC in total with
decreasing beam waist. Apart from this, the general shape of the function g(V, β)
does not change drastically with beam waist. An elliptical Gaussian beam [144],
that could also be used for Ei in the DDA simulations, is expected to have a similar
effect with a magnitude somewhere in between the cases of w0 = w0∥ = 5 µm and
w0 = w0⊥ = 21 µm. Hence simulations with a realistic Gaussian beam are expected
to yield very similar qualitative agreement with the measurements, while at the
same time providing better quantitative agreement for the absolute values of the
FSC.

6.6 Summary and Discussion
In this chapter, the distribution of forward light scattering cross sections of native
RBCs in a flow cytometer were modeled and simulated. The experimentally mea-
sured bimodal distributions of the FSC were explained by a combination of random
orientation of the RBCs around the flow axis and deformation due to sheath fluid
velocity gradients. The velocity gradients in the cytometer were estimated using
analytical solutions for fully developed pipe flow and a consideration of the aver-
age velocity in the conical part of the flow cell. It was found that the longitudinal
gradients right after sample injection are much higher than the transverse gradients
in the flow channel of constant cross section 250 µm × 250 µm, where cell veloci-
ties are about 7 m s−1. A comparison to hydrodynamic deformation of RBCs in the
literature was made.

The discrete dipole approximation was applied to calculate the Mueller matrix
and the FSC of the RBCs in dependence on different shapes, orientations and Hb
concentrations. A simple extension of an existing RBC shape model [142] was pro-
posed, in which the axisymmetric equilibrium shape (with figure axis perpendicular
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to the flow) is linearly stretched along the flow direction and compressed perpendicu-
lar to it. Furthermore, we accounted for the fact that intracellular Hb concentration
cHb varies within the RBC population even of a single person by several percent
(HDW = 5% for the blood sample examined) and consequently the RI varies from
cell to cell, depending linearly on cHb. Even though not perfect, FSC histograms
computed with the proposed shape model and using independently measured hema-
tological parameters (MCV, RDW and MCHC) are in good qualitative agreement
with measurements of the 1D and 2D FSC. The remaining deviation of the absolute
FSC values can be explained by the laser beams in the experiment having a finite,
elliptical focus, in contrast to the plane waves assumed in the simulation. No such
agreement between simulation and experiment is obtained with the unstretched,
axisymmetric shape model for RBCs at rest. This indicates that significant defor-
mation of native human RBCs occurs during measurement in the flow cytometer
which can be attributed to the hydrodynamic forces present in the cytometer’s flow
cell. As a side note, axisymmetric shape models have been used in many simulation
studies in the context of RBCs in flow cytometry [27, 145–147]. Depending on the
hydrodynamic parameters in the particular cytometers used, deformations may need
to be included in the corresponding optical modeling.

Since the estimated extensional strain of the fluid flow is higher than the shear
strain, the deformation of the RBCs was attributed to the former. The extensional
stress upon injection of the RBC sample into flow channel was estimated to peak at
about σe,max ≈ 33 Pa. This is of the same order of magnitude as the highest exten-
sional stresses applied to RBCs in experiments by Lee et al. [138] (σe ∈ [0.1, 13] Pa)
and Yaginuma et al. [139] (σe ∈ [0.4, 16.5] Pa), which can thus serve for a plausibility
check of the ad hoc shape model for deformed RBCs proposed here.

Firstly, this shape model is consistent with the elliptical deformation of RBCs
in homogeneous extensional flow reported in Refs. 138,139. In the analysis of those
experiments, a deformation index DI = (X − Y )/(X + Y ) was employed, where
X and Y are the long and short axis of the RBC, respectively, as seen in a light
microscope. The relation to the stretching parameter fx in the present shape model
is

DI = fx − 1/
√
fx

fx + 1/
√
fx
. (6.37)

Lee at al. [138] reported DI ≈ 0.6 for stresses σe = 10 Pa which corresponds to fx =
2.52. This deformation is comparable to the value of fx = 2.25 (or DI = 0.54) for
which best agreement of simulation and FSC measurement was found here, however
at a higher maximum stress. Hence, one could expect a stronger deformation. On the
other hand, Yaginuma et al. reported lower deformation DI ≈ 0.35 (corresponding
to fx = 1.63) for higher stresses than Lee at al. of σe = 16.5 Pa.

The different deformation indices might be explained by the different passage
times of the RBCs through the converging part of the flow cell or flow channel. In
the cytometer considered here, the RBCs take an estimated 23 ms to get through
the conical part of the flow cell and the extensional stress σe(t) ≤ σe,max increases
as they flow. In the two previously mentioned experiments, the RBCs took about
200 ms [138] and 2.5 ms [139] to go through the hyperbolic converging channels, at
the respective highest reported extensional stresses, experiencing constant exten-
sional stress. Since the viscoelastic relaxation times of stretched RBCs (100 ms–
250 ms [140, 141]) are comparable or longer than these times, the measured defor-
mation may not be fully developed and the DIs reported can only be compared to
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limited extent. Considering this, the stretching factor fx required here to explain
the experimental data appears consistent (or at least not in contradiction) to the di-
rectly measured deformations of RBCs in homogeneous extensional flows [138,139].
Hence, we conclude that the measured RBC shape in the optical flow cytometer is
an impression of the extensional stresses occurring further upstream during hydro-
dynamic focusing and not so much a steady state shape caused by the laminar flow
profile in the narrow flow channel.

By comparison between measurements and simulations, it was demonstrated that
the occurrence of bimodal FSC histograms in optical flow cytometry is a combined
effect of random orientation angle β of the RBCs relative to the laser and their
deformed shape due to hydrodynamic forces. It was also demonstrated that a pref-
erential orientation can be imposed by using flattened injection capillary with an
oval inner cross section instead of a circular one. From the simulations for varying
stretching factor (Fig. 6.9) it is evident that selecting the appropriate observation
angle β allows to measure FSC signals that are either very sensitive (β ≈ 90◦) or
insensitive (|β| < 60◦) to hydrodynamic stretching. Hence, this kind of simulation
can serve to guide future experimental designs, e. g., for finding empirical measures
of RBC shapes and pathologies from FSC histograms [118,119].

Even though a quasi-exact numerical solver for the electromagnetic scattering
problem was employed, the agreement between simulation and measurement remains
only qualitative. In order to quantitatively analyze FSC histograms of native RBCs,
the mathematical model would need to be refined: Firstly, the use of elliptical
Gaussian beams [144] is expected to bring the absolute FSC values of experiment and
simulation into agreement. More importantly, a shape model that reflects the actual
mechanical processes in the cell is required, particularly if elastic parameters of the
cells are to be determined by standard flow cytometry. The proposed ad hoc shape
model for deformed RBCs has some unrealistic properties. For example, it is known
that the RBC volume and surface area remain quasi-constant during deformation of
the cell [127]. While the distribution of RBC volumes was measured independently
in a CBC and sampled accordingly in the simulations, the surface areas of the
RBCs in the blood sample are unknown. However, the correlation between volume
and surface area reported in the literature suggest that an average RBC in the
blood sample considered here (92.7 fL volume) should have a surface area of about
125 µm2 [148]. The deformed shape model predicts a surface area of 169 µm2, which
is not plausible. A more realistic description of the shape could possibly be found
by simulations using mathematical models for the viscoelastic behavior of RBCs in
fluid flows [19,127,128]. A combined approach involving both, accurate optical and
cell mechanical simulations could allow to extract quantitative elastic information
about cells using high throughput flow cytometers that are already present in many
laboratories.



Summary

In this thesis, we considered problems related to the quantitative modeling of light
scattering by human red blood cells (RBCs) and analyzed measurements of RBCs
and artificial microparticles with extinction spectroscopy as well as flow cytometry,
which shall now be summarized.

Chapter 1

In chapter 1, an introduction was given to RBCs, regarding their structure and them
routinely being measured with optical flow cytometry in laboratory medicine. We
further discussed how their complex refractive index (RI) provides the contrast in
light scattering measurements. The complex RI of the liquid cytoplasm of RBCs,
making up the vast majority of the cell volume, is linearly dependent on the intra-
cellular concentration cHb of hemoglobin (Hb) according to

n(λ) = nH2O(λ) + cHb[α(λ) + i γ(λ)].

While the imaginary RI increment γ(λ) is well known, strong discrepancies are
present in the literature values for the real part of the RI increment α(λ). These
hamper a true quantitative analysis of RBC light scattering measurements. Hence,
one important problem tackled in this thesis was the accurate determination of the
RI increment of RBCs.

Chapter 2

In chapter 2, we considered the theoretical foundations of light scattering problems
as well as the numerical solution methods employed in this thesis. The scalar and
vector Helmholtz equations for the electric and magnetic field were derived from the
Maxwell equations for time-harmonic fields. The Helmholtz equation ∆E+n2 k2E =
0 is the governing equation for the light scattering by RBCs, which – due to their
particularly simple structure – can be modeled as optically homogeneous dielectric
particles. We introduced vector spherical wavefunctions (VSWFs), which can be
used for solving the Helmholtz equation for homogeneous scatterers by separation of
variables. The basics of the T -matrix method for the numerical solution of scattering
problems, which consists in a representation of the incident and scattered fields in
VSWFs were briefly outlined. Afterwards, we went through the most important
steps in the derivation of the Mie solution for a spherical scatterer. For more general
scatterers, we discussed the concept of the discrete dipole approximation (DDA),
which is based on the volume-integral formulation of the vector Helmholtz equation
−∇×∇×E+n2 k2E = 0. By volume discretization of the scatterer, approximation
of the field inside the grid cells and careful treatment of the singularities for the
Green’s function of the differential operator ∇ × ∇ × 1 − k2

m, the integral equation

138
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is converted to a system of linear equations with three equations for every grid cell.
Typically, for scattering of visible light by RBCs, the number of grid cells are in the
hundred thousands to over a million.

Chapter 3

In chapter 3, the real RI increment α(λ) of different Hb variants in aqueous solu-
tions was computed from literature spectra of the imaginary RI increment γ(λ) for
the wavelength range λ ∈ [228, 1100] nm using Kramers-Kronig (KK) relations. We
discussed that KK relations arise for any linear response function under the only
requirement of a causal behavior of the system. Furthermore we discussed the sym-
metry implications of the commonly used form of these relation for the complex RI.
Analytical transformations for three exemplary absorption spectra were calculated
– a δ-peak, a rectangle peak and a Lorentzian peak – to give an impression of the
implications of the KK relations for the complex RI.

For an application of the KK relations to Hb solutions, we formally separated
the imaginary RI into a water and a Hb part, of which the former results in the
well-known real RI of water after KK transformation. Hence, only the Hb part needs
to be transformed numerically to obtain the real RI increment α(λ). The literature
absorption spectra [37,39,72] do not resolve the strong deep UV absorbance of Hb’s
peptide-backbone, which was thus supplemented by a Lorentzian line of unknown
amplitude, located at 187 nm [74]. In addition, a δ-peak at zero wavelength was
introduced that accounts for extreme UV absorbance. The amplitudes of these peaks
are free parameters of the model. They were determined by a linear least-squares
fit to an independently measured reference curve for the real RI increment αmeas(λ).
Hence, an analysis using KK relations cannot resolve the discrepancies between
the existing measurement data for the real RI increment of Hb and RBCs with
respect to their absolute value, but it can serve as a consistency check. Two different
datasets were considered for this parameter fitting: (1) The real RI increment data
measured by Friebel and Meinke [38] using reflectance spectroscopy on extracted
RBC cytoplasm and (2) the real RI increment data determined in chapter 4 of this
thesis from the extinction spectra of suspensions of intact sphered RBCs. Both
datasets are for oxygenated Hb (oxyHb). The fit to the data of Friebel and Meinke
[38] results in significant discrepancies, indicating that these data may be incorrect.
In contrast, the independent measurement results of chapter 4 were found to be
in very good agreement with the KK analysis and were used in the following KK
analysis of different Hb variants.

We then discussed the improvements of the present analysis method over KK
approaches previously discussed in the literature by other authors [68, 69]. After-
wards, the KK analysis was applied to spectra of deoxygenated Hb (deoxyHb) and
the non-functional methemoglobin (metHb) variant to yield their real RI increments.
To this end, we employed the deep UV model parameters obtained from the analysis
of oxyHb. Since, in contrast to oxyHb, no measurements of the real RI increment
exist for deoxyHb and metHb, the KK analysis provides an important tool to make
such information available with relatively easily.

Chapter 4

Chapter 4 dealt with the analysis of extinction spectra of spherical microparticles
and cells in order to determine their RI by solving an inverse problem. The aim
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was to determine the real RI increment of isovolumetrically sphered, intact RBCs.
But first, the method was evaluated using synthetic polystyrene (PS) microbeads.
We briefly discussed the concept of the extinction cross section of a light-scattering
particle, describing the combined effects of scattering and absorption, as well as the
corresponding mathematical expression for the Mie solution for a spherical scatterer.
It was further explained how a spectrum of the ensemble-averaged extinction cross
section Cext(λ) can be determined from collimated transmittance measurements of
dilute cell or particle suspensions. A mathematical model for this measurement
quantity was formulated based on a numerical implementation of Mie scattering,
averages over the distributions of size and – in the case of RBCs – intracellular Hb
concentration of the polydisperse ensemble of microparticles or cells. The sensitivity
of this forward model to the size and optical properties was discussed.

We then turned to the problem of inferring the particle RI (or RI increment)
from such measurement data. For PS microbeads as an example, we discussed
that a pointwise inference for all wavelengths separately under the assumption of a
known size distribution is problematic due to instabilities with respect to errors of
the particle size. To overcome these issues and reduce the number of parameters
representing the ensemble of scatterers, an expression of the real particle RI n(λ) or
the real RI increment of the RBCs α(λ) with a relatively small set of suitable basis
functions was discussed, namely Lorentz-type resonances (LTRs) and third-order
cardinal splines. This was used to implement a mathematical forward model for the
measured cross sections which can furthermore compensate errors of the particle or
cell concentration in the suspensions. The data analysis method then consists in
applying nonlinear least-squares optimization to fit the L model parameters to the
N measurement data points. For the cases discussed, we had N ≈ 1800 data points
and between L = 23 (for PS using LTRs) and L = 89 (for RBCs using splines)
model parameters. Uncertainties of the results can be estimated using linearized
propagation of covariance matrices of the measurement data.

For the benchmark case of PS beads suspended in water, the retrieved particle
RI agreed to within about 3 × 10−3 with literature values for bulk PS [79]. However,
it was found that the estimated uncertainties of the RI result thus obtained were too
small and could not explain the differences to the literature values quantitatively.
As we discussed, this is most likely an indicator of an insufficient model for the
uncertainties of the measured spectra, rather than for actual deviations between
the RIs of PS in the form of microbeads and of bulk material. The mean diameter
of the 2.5 µm PS beads determined from their extinction spectra was well within
the uncertainty specified by the manufacturer of the material used. On the other
hand, the width of the size distribution, expressed by the coefficient of variation
of the diameter, was found to be about 0.5%, which is significantly lower than the
specification of 1.4%. It follows that the particles are closer to monodispersity than
declared, presumably since the specified distribution widths are estimates of the
corresponding upper limit during production.

We then discussed the possibility to determine the RI of an unknown fluid matrix
by using particles with known properties as a probe. As a demonstration, the RIs
of d-glucose solutions of different concentrations were determined from extinction
spectra by suspending in them the same PS particles analyzed before. The accuracy
of this kind of RI determination was found to be similar to the determination of
the particle RI. The method was also applied to determine the RI increment of the
sphering reagent in which RBCs have to be suspended during measurement. Unfor-
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tunately the accuracy was insufficient to resolve the (weak) wavelength dependence
of the RI increment of the sphering reagent, hence a wavelength-independent value
with appropriate uncertainty was used in the following analysis.

Eventually, the real RI increment α(λ) of sphered RBCs was determined from
extinction measurements. Due to contact of the samples with air, the RBCs were
oxygenated. Blood samples from three different volunteers were analyzed which
exhibited strongly different mean corpuscular volumes (MCV) and were selected on
purpose to provide some variability in the measurement data. In contrast to the
quasi-monodisperse PS beads, which furthermore have a higher RI contrast, the
extinction spectra of RBCs did not exhibit a characteristic ripple structure. This
made accurate simultaneous determination of size, intracellular Hb concentration
and RI increment quasi impossible. As a remedy, the hematological parameters
MCHC, MCV and RDW of the blood samples obtained from complete blood counts
(CBCs) with hematology analyzers were used for regularization of the least-squares
optimization problem. The three curves for α(λ) obtained from the three different
blood samples agree relatively well, with deviations on the 0.01 mL g−1 scale. In
contrast to the KK analysis of absorption spectra of Hb solutions, the nonlinear
analysis of extinction spectra of sphered RBCs yields absolute values for the real RI
increment of Hb solutions and RBCs. The results found in chapter 4 speak in favor
of this quantity being around α ≈ 0.22 mL g−1, which is in good agreement with
some of the values reported in the literature (having, however, higher uncertainties)
[48, 49]. As discussed above, these results are furthermore in very good agreement
with the Kramers-Kronig analysis of chapter 3. However, because literature data
range from about α ≈ 0.15 mL g−1 to α ≈ 0.27 mL g−1, disagreement of the results
presented here is necessarily found with many other sources. Possible explanations
for these deviations and the advantages of the method employed in this chapter were
discussed. In combination with KK relations (chapter 3), the results of chapter 4
provide accurate values for the RI increment of RBCs and different Hb variants over
a wide wavelength range.

Chapter 5

As an application of the results of the previous two chapters, chapter 5 was about
the analysis of extinction spectra of hemoglobin microparticles (HbMP). Firstly,
we assessed the influence of the non-spherical “peanut shape” of these artificial
HbMP on the measured spectra by comparison of spherical and spheroidal shape
models. The non-spherical particle shape has only minor effect on the extinction
spectra and hence the Mie solution was used for further analysis. We compared
measured extinction spectra of HbMP to simulations in order to assess the levels of
different Hb variants in the particles. In particular, this allowed to assess the levels
of the non-functional metHb variant in untreated particles (30%–40%) and particles
whose Hb molecules were converted to metHb by chemical treatment (80%–90%).
By comparison between simulations and measurement data for HbMP exposed to
air (for oxygenation) and argon (for deoxygenation) reveals their ability to bind and
release oxygen (oxyHb ↔ deoxyHb), while indicating at the same time the presence
of a relatively high level of non-functional Hb.

For a perspectively higher accuracy of the determination of the levels of different
Hb variants, we discussed possible improvements of the data analysis, including the
use of numerical optimization like in chapter 4 and issues with such an approach,
which are linked to the simplistic forward model. For a more complete model of
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the particle RI it would be necessary to consider a variety of other substances,
such as the serum albumin present in the particles, whose optical properties would,
however, first need to be determined accurately. Lastly we discussed why the optical
properties of Hb molecules in solution might be unsuitable to accurately describe
the cross-linked HbMP, in which the protein chains are chemically altered. As a
possibility for experimental improvements, measuring the spectral absorption cross
section Cabs(λ) of the particle suspension was discussed. In principle, the absorption
cross section is experimentally accessible by extending the current optical setup
with two integrating spheres. In contrast to the extinction cross section Cext(λ),
the absorption cross section Cabs(λ) of the HbMP could be shown to be accurately
modeled by the Rayleigh limit for small particles. In this limit the mathematical
expressions for the cross sections simplify significantly. We discussed the possibility
to exploit this for a straightforward data analysis that could yield the absorption
spectrum of the particles’ material.

Chapter 6

In chapter 6, we modeled and simulated the light scattering by native RBCs in an
optical flow cytometer. In particular, histograms of the forward light scattering cross
sections (FSCs) of native RBCs were considered, which in the experiment exhibit a
pronounced bimodality at certain wavelengths. We estimated the velocity gradients
in the flow chamber of the cytometer, which comprises longitudinal gradients during
hydrodynamic focusing and transverse gradients in the 250 µm×250 µm flow channel,
where cells reach velocities of 7 m s−1. By comparison to the shapes of RBCs reported
for different flow conditions in the literature, a simple shape model was proposed
that accounts for the expected deformation in the cytometer. In particular, the
estimated longitudinal (extensional) velocity gradients of the sheath flow exceed the
transverse (shear) gradients by one order of magnitude. Shapes reported for RBCs in
homogeneous extensional flows at extensional stresses comparable to the cytometer
[138, 139] motivate an elliptical RBC shape. Hence, an existing model [142] for the
axisymmetric biconcave resting shape of RBCs was extended by a linear stretching
along the flow direction and compression perpendicular to it. The DDA was applied
to calculate the Mueller matrix of the RBCs for different volumes, intracellular Hb
concentrations and orientations. The FSC was computed from the Mueller matrix
by integration over the detector aperture. The random orientation of the RBCs
around the flow direction as well as their distributions of size and intracellular Hb
concentration were simulated by direct Monte Carlo sampling.

By comparison between measurements and simulations, it was demonstrated
that the occurrence of bimodal FSC histograms in optical flow cytometry is a com-
bined effect of the random orientation angle β of the RBCs relative to the laser
and their deformed shape due to hydrodynamic forces. A comparison between FSC
measurements for different laser wavelengths and simulations reveals that the pro-
posed elliptically elongated shape model reproduces the qualitative features of the
experiment very well when the independently measured hematological parameters
MCV, RDW and MCHC are used, i. e., these are not free parameters of the model.
Comparison with two-direction FSC measurements using orthogonal lasers allows
to assess the hypothesis of an alignment of the RBCs with their narrowest cross
section perpendicular to the flow direction and a random orientation around this
axis. This is confirmed by the symmetry properties of the 2D histograms as well as
the breaking of this symmetry when RBCs are actively oriented during injection in
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the cytometer, which could be reproduced by the simulation. No such agreement
between simulation and experiment was obtained with the unstretched, axisymmet-
ric shape model for RBCs at rest. This indicates that significant deformation of
native human RBCs occurs during measurement in the flow cytometer which can be
attributed to the hydrodynamic forces present in the cytometer, most notably the
extensional flow during hydrodynamic focusing. Due to the good qualitative agree-
ment with the experiments, such simulations could be used as a guidance for future
cytometer designs and cytometric studies of RBC rheology, because, in contrast to
the experiment, quantities like the far-field intensity distribution of single cells or the
dependence of the FSC on cell size, orientation and shape are directly available in
the simulation. Lastly, we discussed that by a combination with detailed mathemat-
ical modeling of the hydrodynamics and cell mechanics, an assessment of mechanical
properties of RBCs might be possible from measurements and simulations of light
scattering.
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Abbreviations

abbreviation explanation
i. e. id est (lat.) – that is
cf. confer (lat.) – “compare”
et al. et alii (lat.) – “and others”
e. g. exempli gratia (lat.) – “for the sake of example”, “for example”
etc. et cetera (lat.) – “and so on”
vs. versus (lat.) – “against”, “compared with”

ADC analog-to-digital converter
AR Abbe refractometer
BSA bovine serum albumin (protein)
CBC complete blood count (hematological measurement)
deoxyHb deoxygenated hemoglobin
EDTA ethylene-diaminetetraacetic acid
FSC forward scattering cross section
Hb hemoglobin
HbMP hemoglobin microparticle
HCT hematocrit (volume fraction of RBCs in blood; hematological pa-

rameter)
HDW hemoglobin distribution width (coefficient of variation of intra-

RBC Hb concentration; hematological parameter)
HGB hemoglobin concentration in blood (hematological parameter)
HSA human serum albumin (protein)
IR infrared
KK Kramers-Kronig (relations/transformation)
LTR Lorentz-type resonance
MC Monte Carlo
MCH mean corpuscular hemoglobin content (hematological parameter)
MCHC mean corpuscular hemoglobin concentration (mean of intra-RBC

Hb concentration; hematological parameter)
MCV mean corpuscular volume (mean of RBC volume; hematological

parameter)
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abbreviation explanation
metHb methemoglobin (non-functional hemoglobin variant)
N.A. numerical aperture
oxyHb oxygenated hemoglobin
PBS phosphate buffered saline
pdf probability density function
PMT photomultiplier tube
PS polystyrene
RBC red blood cell, erythrocyte
RDW red cell distribution width (coefficient of variation of RBC volume;

hematological parameter)
RI refractive index
SDS sodium dodecyl sulfate (a surfactant)
SEM scanning electron microscopy
UV ultraviolet
VSWF vector spherical wavefunction
w/v weight in volume (concentration; 1%w/v equals 10 g L−1)
WBC white blood cell, leukocyte
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