PIB

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

The following article is the final version submitted to Springer after peer review; hosted by PTB;
DOI: 10.7795/EMPIR.17IND06.CA.20190410B. It is provided for personal use only.

Experimental Evaluation of Attacks on

TESLA-secured Time Synchronization Protocols
K. Teichel, G. Hildermeier

Acknowledgement: Parts of the presented work are used in the project 17IND06 (FutureGrid
Il) which has received funding from the EMPIR programme co-financed by the Participating
States and from the European Union’s Horizon 2020 research and innovation programme.

The final authenticated version is available online at https://doi.org/10.1007/978-3-030-04762-7 3.

Full Citation of the original article published by Springer in the LNCS series:

Teichel K., Hildermeier G. (2018) Experimental Evaluation of Attacks on TESLA-Secured
Time Synchronization Protocols. In: Cremers C., Lehmann A. (eds) Security Standardisation
Research. SSR 2018. Lecture Notes in Computer Science, vol 11322. Springer, Cham

doi: 10.1007/978-3-030-04762-7_3

https://doi.org/10.1007/978-3-030-04762-7_3

Experimental Evaluation of Attacks on
TESLA-secured Time Synchronization Protocols

Kristof Teichel'™ and Gregor Hildermeier?

! Physikalisch-Technische Bundesanstalt,
Bundesallee 100, 38116 Braunschweig, Germany
kristof.teichel@ptb.de
2 Technische Universitiat Braunschweig,
38092 Braunschweig, Germany

Abstract. There is an increasingly relevant class of protocols that em-
ploy TESLA stream authentication to provide authenticity for one-way
time synchronization. For such protocols, an interdependency between
synchronization and security has been found to theoretically enable attac-
kers to render the security measures useless. We evaluate to what extent
this attack works in practice. To this end, we use a tailor-made configu-
rable testbed implementation to simulate behaviors of TESLA-protected
one-way synchronization protocols in hostile networks. In particular, this
lets us confirm vulnerabilities to the attack for two published protocols,
TinySeRSync and ASTS. Our analysis also yields a set of countermeasu-
res, with which in-development and future specifications can potentially
use TESLA to successfully secure one-way time synchronization.

Keywords: (One-Way) Time Synchronization Protocols - TESLA -
Authentication - Experimental Attack Analysis - ASTS - TinySeRSync

1 Introduction

Time synchronization has been a crucial mechanism since the creation of the first
computer networks. In many settings, clock synchronization failure or manipula-
tion is unacceptable. With an increasing focus on security in recent years, the
demand for authenticity in time synchronization protocol specifications has incre-
ased. A mechanism called “Timed Efficient Stream Loss-tolerant Authentication”
(TESLA) [10,11], which employs delayed key disclosure, has been adopted for
providing authenticity for one-way time synchronization protocols. TESLA is
attractive because it meets a combined challenge: it supplies well-scaling authenti-
cation in systems with large numbers of slaves and mostly one-way communication
flow, but at the same time offers the speed of symmetric cryptography. However, a
potential attack vector has been discovered in which, under certain circumstances,
the authenticity provided by TESLA can be compromised entirely when it is
used to protect one-way time synchronization [16]. Our main focus in this paper
is the question to what extent this attack is relevant in practice, on standardized
protocol specifications.

2 K. Teichel, G. Hildermeier

At least two published protocols have already made use of TESLA-based
authentication mechanisms to secure time-related messages: the “Secure and
Resilient Time Synchronization protocol” [15] (TinySeRSync) and the “Agile
Secure Time Synchronization protocol” (ASTS) [17], both of which were developed
for wireless sensor networks. Furthermore, the network time synchronization
community is reviewing how to apply TESLA in ongoing specification work.
The Institute of Electrical and Electronics Engineers describes a TESLA-based
security scheme in the upcoming version of its Precision Time Protocol [1]
specification. The Internet Engineering Task Force has been discussing TESLA’s
use for the broadcast mode of the Network Time Protocol [9] in the context
of the ongoing Network Time Security specification [13,14]. The European
Space Agency is building TESLA protection into the Open Service Message
Authentication scheme [5] of Galileo, the European global Navigation satellite
system. Thus, depending on how these specifications turn out, TESLA-protected
one-way synchronization might in the future be employed on billions of devices.

The complexitiy that arises from the combination of TESLA with time
synchronization procedures makes evaluating the susceptibility of a given protocol
to the attack a hard problem. It is especially difficult to prove that a protocol is
positively secure, since this requires proof of absence of a successful attack path in
a highly complex system. Proving that a protocol is not secure is simple: one only
has to provide an attack scenario as a witness. However, it is not necessarily easy,
since finding and documenting such a scenario requires a solid understanding of
the mechanisms involved and a convenient way to log the events that lead to it.

The treatment in [16] is the only in-depth analysis on the problem that
we could find. However, it has limitations that we wanted to expand upon.
First, the analysis is limited to a generic, generalized and abstracted protocol
representing the class of all TESLA-protected one-way synchronization protocols
without regard for any potential specific intricacies of each. Second, the analysis
is executed only with model checking via the UPPAAL model checker, so any
abstractions made in the creation of the model might influence the applicability
of the results. Third, the model and the tool do not allow for even remotely
realistic ratios of interval lengths to time units: in the UPPAAL model, an
interval can only be in the order of 10 time units long before state space size
exceeds memory limitations. Other analysis [2, 3] avoids the details of the issue
altoghether, generally noting that the interdependency of timing and security is
a potentially critical problem.

In this paper, we make three key contributions to the subject area of practical
vulnerability to the attack of existing and future protocol specifications. We use
our own configurable testbed implementation to run simulations of TinySeRSync
and ASTS in which they are attacked by an adversary using techniques from [16].
The data from these simulations enables us to make well-founded statements
regarding the existing protocols. First, a faithful implementation of TinySeRSync
without further mitigation is attackable, albeit with a much easier attack scheme
than the one originally outlined. Second, a faithful implementation of ASTS
without further mitigation is attackable with exactly the methods outlined in [16].

Experiments in Attacking TESLA-Secured Time Synchronization 3

These statements about the established protocol definition constitute our first key
contribution to the subject area. They represent an improvement in the attack
analysis, from conjectured vulnerability of concrete protocols after loose study of
the describing papers, towards field tests on physically distributed devices running
faithful implementations of the protocol descriptions. Our testbed implementation
directly represents our second contribution, since it is generic enough that it can
be adapted to simulate both existing and future protocols and their behavior,
especially with regards to the attack within the scope of this work. Furthermore,
we deduce a set of countermeasures to mitigate the attack. These, combined with
the analysis and derivation that yields them and puts them into practical context
(an improvement over countermeasure suggestions in [16]), constitute our third key
contribution. The given countermeasures can be included in future specifications
of protocols which involve TESLA-protected one-way time synchronization. We
feel that the number of such specifications currently in development gives our
latter contributions extra weight.

This paper is structured as follows: Section 2 provides an introduction to basic
time synchronization techniques, to the TESLA protocol and to the attack vector
on which we base our simulation and analysis. In Section 3, we present the setup of
our experiments and give an overview of our implementation. Section 4 discusses
the results of our evaluation. This comprises an overview of our analysis regarding
protocol vulnerability as well as a derivation and evaluation of countermeasures.
Section 5 concludes this paper.

2 Preliminaries

Before we delve into details about results and interpretation of our simulation
runs, we use this section to introduce protocols and techniques that are essential
to this work, as well as a rough description of the relevant attack vector.

2.1 One-Way and Two-Way Time Synchronization

Generally, network-based time synchronization is achieved in one of two ways:
with one-way or with two-way communication. In two-way mode, the participants
exchange time request and response messages, as depicted in Fig. 1 (left). By
calulations under the assumption of symmetric network delays (i.e. € = 0.5 in the
figure), the client can obtain a value for the clock offset with a maximum error of
half the network round-trip [8] (i.e. /2 in the figure). In one-way mode, a master
periodically sends out messages to many slaves, as depicted in Fig. 1 (right). A
given slave then needs a good estimate of the transmission time of the packets in
order to calculate the clock offset. Note that there are no guarantees for the slave
regarding the maximum error of these calculations, and specifically any artificial
delay on the transmission packet (P in the figure) adds to that error.

4 K. Teichel, G. Hildermeier

Alice Bob Alice Bob

s
N
'\
Ve
o

Ly

R e
>

Fig. 1. Two-way (left) and one-way (right) time synchronization (cf. [16]).

2.2 Overview of TESLA

The TESLA protocol [10] was originally designed to authenticate media streams,
combining the scalability of asymmetric schemes with the high speed of symmetric
cryptography. It applies symmetric-key cryptography, but creates asymmetry by
making use of time progression: packets are signed and sent, but the key used to
sign them is only disclosed after the so-called disclosure lag. A received packet
is buffered and can be authenticated only after the key is disclosed. As long as
the slave can be certain that the key was not disclosed before the packet was
received the authenticity of the signature is guaranteed. In order for TESLA to
work, two main concepts are deployed:

The first main concept that is employed is that of using a key chain to be
able to commit to a key before using it. To generate a key chain, the master
applies a one-way pseudo-random function F' to a secret K, to compute a key
value K, 1 = F(K,). It repeats this to obtain K, ; = F/(K,) up to K_1,
which is called the key chain commit, while the next key K is the first one to
be used. This creates a chain of keys, with each key being verifiable by only its
predecessors. The master applies F’, another pseudo-random function, to a key
value K; in the chain to generate a key K. This key K| is used to create the
MAC for a packet. Before sending any packets, the master commits to the entire
chain by publishing K_1, as well as F' and F’.

The second main concept is that of using time intervals. The master defines
the starting time Ty and the length Th of a time interval I;, ¢ = 0,...,n. Each
interval I; is associated with the key K;. Every packet sent in interval I; is signed
with the key K. In interval I;14, the key value K; is then disclosed. A depiction
of this concept is presented in Fig. 2.

2.3 Attacking TESLA-secured Time Synchronisation Protocols

The attack described in this section was first formulated in [16]. It forms the
basis for the behavior of the attacker in our implementation, and is essential
throughout this paper. The attack is enabled when the TESLA protocol (or
any variant of a scheduled delayed key disclosure) is used to authenticate time

Experiments in Attacking TESLA-Secured Time Synchronization 5

Ki Kit+1 Ki+2 Ki+3
P S S S S T A
Ki Ki+1 Ki+2 Ki+3 Ki+4 Ki+s Ki+6 \\lﬁl?_/
1

Fig. 2. TESLA authenticates packets with keys disclosed in subsequent packets, in this
example after a disclosure delay of d = 4 intervals.

distribution in a one-way synchronization setting. Since the protocol itself is
time-dependent but, in this application, also directly influences the degree of
clock synchronization, the packet authenticity provided can be compromised.

The attacker is assumed to operate under the Dolev-Yao attack model [4].
It is therefore capable of impersonating any member of the network, as long as
there is no extra authentication mechanism in place. Notably, it is also capable
of delaying any packet. This has a special significance in the context of time
synchronization protocols and in the attack explained below.

Attack Synopsis The attack has two phases. Phase One has multiple steps:

1. The attacker consistently delays any packets from the master by d;.

2. As soon as the slave uses the time data in the first delayed packet to adjust
its clock (usually when it verifies the packet after its disclosure lag), the
introduced delay d; starts to take effect.

3. This desynchronization increases the time by which the slave will accept a
packet as timely. The attacker is thus able to delay packets by d; + ds.

4. The attacker continues to increase the delay according to the step above.

Eventually, the desynchroization condition will be fulfilled, meaning that the
clocks will have desynchronized by more than (d — 1)Ta, where d is the disclosure
lag. Phase One of the attack is then complete and the attacker can perform Phase
Two of the attack. It is now possible to intercept any packet from the master,
wait until its respective key has been disclosed and replace it with a bogus packet,
for which the attacker can generate a correct MAC. The slave’s clock is so far
behind that it accepts the packet as timely. By this point, the attacker can fully
impersonate the master (including the ability to create valid MACs for forged
packets), thus breaking the security of the protocol.

Example Attack To further illustrate particularly Phase One of the attack,
consider the schematically depiction in Fig. 3, where it is demonstrated with
specific values d = 2 and Th = 6 and a delay increment of 4s (numbers chosen
for comprehensibility and brevity of the scheme).

6 K. Teichel, G. Hildermeier

0123 456 7 8 9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ...

Ip I In I3 I4 I5 I
| | | | | |
‘ i i i i i i b
6
\P() \Pl \P2+K0 \P5+K3 \x
dj dj dj p
R
_— >
2*d
———— o
L o o ! I5
9 1 23 45 § 7 8 9 1011 1‘2 13 14 15 16@1415 16 17 1‘8 19 20 21 22232‘425262728293‘031 323334@32...
o N

Fig. 3. Illustration of the attack on an example network. Alice adjusts her clock after
receiving P> and Ps, intervals I and I5 are prolonged accordingly.

— Step 1: The attacker delays Py by §; = 4s. The slave checks the timeliness
of Py and accepts it as timely.

— Step 2: Packets P; and P, are delayed in the same way as Py. The slave
receives P and the key value K. The slave authenticates Py, concludes that
its clock is fast by 4 seconds, and adjusts it accordingly.

— Step 3: The attacker delays P; and subsequent packets, by §; + § = 8s.

— Step 4: In our example, this increase is sufficient, since 8s > (d — 1)Ta.

The slave’s clock synchronization error is already large enough after it receives
Ps5, which enables it to process Ps, after which it adjusts its clock as though
it were fast by another 4 seconds. The slave’s clock now reads 31s, while the
master’s clock at the same time reads 39s. The offset between the two clocks has
surpassed the value (d — 1)T'a; hence, the desynchronization condition is satisfied
and Phase One is therefore complete and Phase Two can now start. The attacker
prevents Py and the following packets from ever reaching the slave. It waits until
the master discloses Kg in interval Iy and derives K§. It can now forge a packet
Q¢ with any bogus time chosen, use K to create a valid MAC and forward it to
the slave. In another forged packet Qg, it includes the original and correct key
value Kg. The slave will use this key to (successfully) authenticate the bogus
packet Qg, since K belongs to the key chain. The slave now uses the bogus time
data in Qg to adjust its clock, and Phase Two is therefore successful.

3 Experiment Setup

The overarching goal for this work was to answer the question to what extent the
idea for the attack from [16] would work in practice, on implementations of time
synchronization protocols running on distributed devices over physical networks.

Experiments in Attacking TESLA-Secured Time Synchronization 7

3.1 Objectives and Approach

In particular, the analysis was desired to be of a nature that would be helpful in
the standardization of future protocols securing one-way time synchronization
with mechanisms similar to TESLA. This requirement combined with the overall
goal yielded a number of specific objectives:

— Primary objective: to provide either of the following:

e Proof that at least one faithful implementation of an exisiting protocol
specification was successfully attacked,

e Statement that no implementation of the candidate protocols could be
successfully attacked, with a detailed explanation of why the attack failed.

— Secondary objective (in case at least one implementation was successfully
attacked): to investigate what role any configurable protocol parameters
would play. Specifically, to provide both of the following:

e A set of parameters under which the attack was successful,
e A different set of parameters under which the attack was not successful.

Therefore, the two existing finished protocol specifications (TinySeRSync and
ASTS) mentioned explicitly in that paper were investigated.

The shortest path to a definitive answer would have been to get an original
implementation of either of them running in the lab and perform a successful
attack on it. It turned out, however, that we would be unable to go that route.
For ASTS, there is to the best of our knowledge simply no publically available
implementation. Moreover, while there is code available for TinySeRSync, getting
it to run proved too difficult, due to the fact that it was developed for the now
unavailable TinyOS 1, and is incompatible with TinyOS 2. We therefore decided
to create a new implementation [7] of a highly configurable TESLA-protected
one-way synchronization protocol and run our experiments on that. This does
represent a caveat with regard to the proof of attackablity of the specific protocols.
However, we would like to note that the higher access to what-if scenarios was
beneficial, and that any analysis of future specifications is likely to benefit more
from our testbed implementation than it would have from successful attacks
on original implementations. Additionally, we did have the TinySeRSync code
available when developing and testing, and can at least attest that we did not
find anything in it that suggested different behaviour than what we ultimately
tested.

3.2 Testbed Implementation

We limit ourselves to an overview of the most important features of our imple-
mentation. More detail can be found in [6] and [7]. The implementation was
created using the C+411 programming language. The Boost and Boost.Asio
libraries were used to create efficient, easily readable and extendible code.

8 K. Teichel, G. Hildermeier

Participants The three participants are modeled as standalone programs inte-
racting with each other. The first is the time master. On request, it provides all
parameters needed for TESLA (time schedule and the key chain commitment).
After initialization, it starts up two periodic timers; one sends out time packets,
the other sends out keys according to the disclosure schedule. The second par-
ticipant is a time slave that attempts to synchronize its clock. It is initialized
by a request-response scheme to receive the necessary parameters. In the second
step, the loose synchronization required by the TESLA protocol is established by
performing multiple rounds of two-way time exchanges, which also quantify ;,ax.
Afterwards, the slave goes to a constant listening mode, waiting for incoming
packets. From then on, the clock is only adjusted through time messages received
via broadcast. The third participant, who serves as the network simulator, is a
Man-In-The-Middle (MITM) attacker. It is capable of all behavior necessary to
carry out the attack, such as withholding and forging packets.

The Clock We decided to run different participants on physically separate
systems. This implies that different participants also have completely separate
system clocks. One downside to this is the lack of a precise way of measuring
the exact time difference between two clocks on separate devices. However, in
our evaluation, the benefits outweighed the shortcomings: in this way, we were
able to model real-world synchronization conditions as closely as possible and
eliminate the concern of side effects influencing synchronization.

Clock Adjustment Algorithms We considered two different ways to adjust
a clock. The first way was simply to increase the current clock value by a
measured offset. The alternative was to slow down or speed up the clock for
a gradual adjustment. In the context of the TESLA protocol (particularly the
aspect of delayed authentication), we needed to consider a few pitfalls with
respect to performing gradual adjustments. The effect of an adjustment is not
yet reflected when the next packet arrives, but rather for packets a few intervals
later (after the disclosure lag). Because of the disclosure lag, there is a time
lag between the detection and the correction of a measured offset. Offsets will
therefore be measured repeatedly. Additionally, there is the question of exactly
how much the clock should be sped up or slowed down by to compensate for a
detected offset. Using simple constant values can have undesirable effects, namely
overcompensation (due to the correction delay mentioned above) or unnecessarily
long compensation times. Our solution to this problem was to speed up or slow
down the clock in such a way that it was expected to be adjusted to the given
offset after d + 1 intervals.

3.3 Distributed Setup

For the tests, we deployed the master, slave, and MITM on two separate servers
with a large distance between them. The master and the MITM were hosted on
a server in the Amazon Web Services Elastic Compute Cloud in Oregon, USA.
The slave was hosted on a cloud server run by the local technical university.

Experiments in Attacking TESLA-Secured Time Synchronization 9

4 Experiment Results and Evaluation

Conforming to TinySeRSync and ASTS to the greatest extent possible, we
evaluated protocol configurations regarding their susceptibility to the described
attack. First, we analyzed in general which parts of the TESLA protocol are
generally most relevant to the attack and formulated the core questions for our
evaluation. The attack does not target the authenticity of the key packets, nor
the authenticity of the time synchronization — at least not directly. Thus, we
notice first that the most critical operation, and the core of the entire TESLA
protocol, is the timeliness validation. Moving forward, we need to take a closer
look at how the packet’s timeliness is validated and what the consequences are
for the security of the protocol, by the following core questions:

1. To what extent does the clock adjustment influence the timeliness validation?3
2. How much of a delay can be introduced so that a packet will still be timely?
3. How fast does the clock adjust, or when is the adjustment process complete?

4.1 Vulnerability of Existing Protocols to the Attack

We examined TinySeRSync and ASTS with the questions above in mind to
determine whether they were vulnerable, and if so, how long it would take for an
attack to succeed. Both protocols make use of a variant of TESLA. To be more
precise, they make use of the pTESLA protocol, a TESLA variation specifically
designed to be lightweight enough to work in wireless sensor networks. The
difference between traditional TESLA and nTESLA pertains only to the way the
initial parameters are distributed and secured: traditional TESLA distributes
them via broadcast and secures them with asymmetric signatures, while ptTESLA
distributes them individually via unicast, secured by symmetric cryptography
using pre-shared keys. Since none of this has any impact on the part of TESLA
we wish to examine, we forego the distinction between the traditional protocol
and its lightweight variant in the following analysis.

TinySeRSync The TinySeRSync protocol [15] was designed for time synchro-
nization in wireless sensor networks and addressed the problems of security for
such protocols by employing (n)TESLA. The first step in the protocol is a secure
single-hop pairwise time synchronization technique, which in this publication
is called phase I. The second step is the actual global secure and resilient syn-
chronization, which employs the TESLA broadcast authentication mechanism
to establish a globally synchronized time throughout the entire network. This is
called phase II in this publication. The two phases run periodically and asyn-
chronously. The only restriction is that phase I has to be completed by a node at

3 Since we have occasionally run into misunderstandings about this point, we would
like to point out explicitly that none of our results in any way concerns the security
of TESLA in a vacuum, nor that of any protocol that uses a TESLA-like mechanism
to protect a generic data stream. The results apply only to protocols which use a
TESLA-like mechanism to protect exactly a one-way time synchronization protocol.

10 K. Teichel, G. Hildermeier

r R r R r R T

SenderA — 1 T T T i . Time
MK
Receiver B ‘t . Time

Fig. 4. Illustration of long (R) and short (r) intervals in timeliness validation context

least once before it can participate in phase II. The second phase is controlled
by a source node (usually a base station), which acts as the real-time reference
(master) clock in TESLA environments. The source node broadcasts the reference
time periodically, with each time packet being authenticated with the TESLA
protocol mechanism by the sensor nodes (slaves). Messages are re-broadcast to
reach nodes that cannot directly contact the base station.

A common problem inherent to the TESLA protocol is that its use requi-
res that loose synchronization of the clocks be established. The authors have
conveniently solved this problem with the pair-wise synchronization completed
in phase I. Each node knows the clock offset to each of its neighbor nodes and
the maximum transmission delay for a packet, enabling timeliness validation.
Even though TinySeRSync states that it utilizes (n)TESLA, it makes some
significant changes to the protocol ideas. For example, it changes the concept
of the intervals and disclosure delay. Broadcast messages are still signed at one
point in time and authenticated later when the key is disclosed, but the context
differs slightly. Instead of using equally sized, numbered intervals, TinySeRSync
uses long intervals R and short intervals r (compare Fig. 4). To be able to check
the timeliness, time synchronization messages are sent exclusively in the short
intervals, while key messages are sent only in long intervals. A message passes the
security condition if the slave is certain that, at the receive time of the message,
the key has not yet been disclosed. To ensure this, the slave simply estimates
whether the sending time is within a short interval. It is important to note that,
even when receiving a message carrying the global time broadcast, the timeliness
is checked against the pairwise synchronized clocks. A global time broadcast is
therefore merely a payload propagated throughout the network.

In order to answer Analysis Question 1 (as posed in the beginning of this
section), recall that nodes running TinySeRSync have two separate clock values;
one describes the clock offset between each two neighbors, while the other describes
the clock difference between a node and the base station. The first clock, the
offset between two neighbours, is constantly updated via unicast, which is, in the
context of our attack vector, immune against attacker-induced delays.

In TinySeRSync, packets are considered timely if the slave estimates that
they were sent before the end of the short interval (see Fig. 4 for an illustration).
The most decisive feature of TinySeRSync in our context is that the pairwise syn-
chronized clock is used to check timeliness, whereas the global time is not needed
and therefore ignored in this part of the validation. The authors describe this
technique as local use of the (u)TESLA protocol. Since the pairwise synchronized

Experiments in Attacking TESLA-Secured Time Synchronization 11

A

Sender A 1 1 1 I 1 | 1 1
Mx ‘ M" timely
MITM ok

e

Receiver B

Fig. 5. TinySeRSync’s simplified security condition does not differentiate between
different intervals other than whether they are short or long. This can be abused.

clock is immune to attacks based on delaying packets from the base station, we
expected that TinySeRSync would not be vulnerable to our attack whatsoever.
Nonetheless, we set up the experiment with the master and the slave configured
as described above, in order to support this expectation in practice. As expected,
our attack never worked, since the delays introduced have no cumulative effect.

In conclusion, the significantly altered version of TESLA employed by Tiny-
SeRSync does not suffer from vulnerability to the attack proposed. However, it
is vulnerable to a related, much simpler attack technique.

Further Security Analysis on TinySeRSync The TinySeRSync protocol
has implemented the idea of reducing the maximum attack delay. It also allows a
packet to arrive only in a short part of the interval. However, an oversimplification
introduces a conceptional flaw and creates a vulnerability. TinySeRSync changes
the notion of TESLA intervals by deploying different (short and long) intervals,
but does so without any numbering of the intervals. TinySeRSync’s timeliness
condition is ¢; — Ty + A4 B + Omax < i(R + 1) + r, where Ay p is the pairwise
offset and d,ax the maximum synchronization uncertainty. This condition ensures
that a received message has been sent in a short interval, checking it against the
pairwise synchronized clock. The corresponding key of the received message has
to be sent and received in the following long interval.

Surveying the timeliness condition, we noticed the lack of any numeration of
the intervals. Because of this, the slave can only calculate whether the packet was
sent in a short interval, but cannot distinguish between different short intervals.

Consider the following attack, for which Fig. 5 provides an illustration. If a
packet arrives in a short interval different from the one it was sent in, it will
still be accepted as timely. If an attacker delays a packet in such a way that it is
late by exactly r + R, the timeliness condition will be satisfied, even though the
key for that packet has already been disclosed. The security of the protocol is
therefore compromised.

We included TinySeRSync’s security condition (which is referred to as
pass_secure_time_check in the TinySeRSync code base) in our implementation
and had the MITM successfully insert bogus packets. Hence, attackers with delay
capabilities can control a slave’s clock almost from the very start of the protocol.

12 K. Teichel, G. Hildermeier

ASTS The authors of the ASTS Protocol considered the TinySeRSync protocol
to be unnecessarily complex, as it deploys two separate time synchronization
mechanisms. Consequently, they introduced a protocol for time synchronization
in wireless sensor networks, which is considerably more lightweight and stated
to be more accurate [17]. Like the TinySeRSync protocol, it makes use of the
(n)TESLA protocol, but forgoes the secure pair-wise synchronization to achieve
its agility. A very simple initial global broadcast is used instead to satisfy the
requirement of loose synchronization and to distribute the TESLA parameters.
This initial step is executed only once and secured by a single pre-shared key
known throughout the network, which is valid only for this first step. Afterwards,
the TESLA mechanism as described in [12] is carried out to achieve global time
synchronization.

In contrast to TinySeRSync, the ASTS protocol is based on the regular
(1)TESLA protocol with no significant variations. This implies it is likely that
the results on ASTS can be generalized to include more generic protocols that
employ TESLA-secured one-way synchronization. Most importantly, ASTS has
no extra pairwise synchronization with a separate clock mechanism. Only one
global clock is adjusted with packets that are broadcasted by the base station.
A broadcasted time packet is propagated throughout the network, with each
node adding its processing delay to the packet and then rebroadcasting the
modified packet to the neighbor nodes. A receving node calculates the offset to
the base station by comparing the arrival time with the packet timestamp under
consideration of the processing delay. The local clock is then adjusted by the
resulting offset. Therefore, in answer to Question 1, we conclude that the regular
clock adjustment process does influence the timeliness validation.

In order to answer Question 2, we examine the timeliness validation of
ASTS, which is described in [17] as follows: Assume a node receives a packet
at time t,.1ive in interval ¢. The latest possible sending time tgenq of this packet
iS tarrive + Omax, Where O ., is the difference of the maximum clock difference
between the two participants and the maximum network delay of the packet. The
protocol suggests using a O, large enough to be an upper bound of any usual
network delay. This value of O« should still be negligible compared to Ta,
thus not influencing the following equation. The sending interval can always be
calculated as isend = [(tsena —T0)/Ta], where Tp is the interval starting time and
T'A is the interval length. The timeliness condition is thus: x < i+ d. A difference
of exactly one interval exists between the timeliness of ASTS and original TESLA
equations, due to the changed rounding function. This makes ASTS stricter
when it comes to validating the timeliness of packets; the time a packet can be
delayed by is smaller by one interval length. Given an endpoint delay &, the
maximum attack delay 0,4 that the MITM can introduce is therefore given by
Oatk = TaA(d — 1) — (0¢ + Omax), as shown in Fig. 6. With this knowledge, we can
state three dependencies:

— The maximum delay that can be added is proportional to the interval length.
— The maximum delay that can be added is proportional to the disclosure lag.

Experiments in Attacking TESLA-Secured Time Synchronization 13

SELIECK
Se +6,,, Saltack Se +5m;/_/\
—~———ea— —_—
| ! > | | | >
i b o T2 i T Tie2

Fig. 6. Illustration of the difference between the original TESLA (right) security
condition, and the slightly changed version of ASTS (left).

— There is a correlation between the maximum clock error 0,2« and the maxi-
mum attack delay since increasing d,,.x shortens the time to the next interval.

The authors of ASTS do not specify the way in which the clock is adjusted. We
therefore assume, in response to Question 3, that the clock adjustment process is
instantaneous, equivalent to stepping the clock.

Having answered all of the above questions, we deduce that ASTS is indeed
vulnerable to our attack in theory. We conducted a set of experimental attack
runs on our implementation in simulation of ASTS to prove this in practice and
to evaluate the dependencies stated above. The overall result of the experimental
attack runs confirmed that ASTS, as simulated with our implementation, is
vulnerable to the attack as specified in [16]. In fact, we concluded that an
intelligent attacker carrying out an attack on ASTS would eventually always be
successful, regardless of ASTS’ exact parameters. Nevertheless, the implications
of tuning the different parameters were of great relevance and allowed us valuable
insight into potential countermeasures.

4.2 Observations from Test Attack Runs on ASTS

As mentioned earlier, ASTS employs (n)TESLA protection of one-way time
synchronization in such a straightforward way that it is suitable as an example of
more generic assessments regarding the security of the scheme. Therefore, many
conclusions can be generalized from the data of our attack runs on ASTS, which
may thus have implications for ongoing or future specification work.

The results of carrying out the experiments with a disclosure delay of d = 2
and with d = 3 are shown in Fig. 7. In the tables, T)A denotes the length of the
intervals, d,tx denotes the maximum amount of delay the attacker can introduce
with each increment, I, denotes the number of the earliest interval in which the
attack was fully successful, and Ipn2 denotes the number of the earliest interval
after which Phase One of the attack was completed. Note that each of the rows
in the tables represents large numbers of successful attacks, from which Ig,. and
I h2 were deduced empirically.

Observations Regarding Duration of the Attack We have made a few ob-
servations regarding the duration of successful attack runs and their implications.

14 K. Teichel, G. Hildermeier

‘ TA ‘ 5atk ‘ Isuc ‘ Iph2 - - - - -

1 {1000 ms | 911 ms| 10 7 60 [b
2| 800 ms | 711 ms| 10 7

3| 500ms [411ms| 10 | 7 50 - 1
4 | 300 ms |211 ms| 10 7 ”

5| 200ms [111ms| 13 | 10 O 1
6180ms | 9lms | 13 | 10 2 4|]
7/160ms | 71ms | 16 | 13

8 140ms | 51 ms | 19 | 16 20 4
91130ms | 41ms | 22 | 19

10 120 ms | 31 ms | 25 | 22 10 R
111110 ms | 21 ms | 34 | 31 0 200 200 500 800 1000
12| 100 ms 11 ms 58 55 Interval length [ms]

‘ TA ‘ 6atk ‘ Isuc ‘ IphZ 19

1 {1000 ms | 1911 ms | 14 9

2 | 800 ms | 1511 ms| 14 9 18 1 e

3 1500ms | 911 ms | 14 9

4| 300ms | 511 ms | 14 9 ” 17r b
5(200ms | 311ms | 14 | 9 e | |
6|180ms | 271ms | 14 | 9 £

7]160ms | 231 ms | 14 | 9 * sl 4

8| 140 ms | 191 ms | 14 9

9] 130ms | 171 ms | 18 | 13 14 - 1
10} 120 ms | 151 ms | 18 | 13 J J J J J

11| 110 ms | 131 ms | 18 | 13 B 200 400 600 800 1000
121 100 ms | 111 ms | 18 | 13 Interval length [ms]

Fig.7. Data and graphs of attack runs on ASTS with d = 2 (top) and d = 3
(bottom). Here, T'a denotes interval length, datx denotes maximum introducable delay
per increment, I, denotes the interval number of the earliest successful attack, and Ipno
denotes the interval number of the earliest successful Phase One.

These observations have been very helpful in reasoning about countermeasures
(see below).

Number of Intervals for Success has Lower Bound Our first observation was that,
given a disclosure delay d, there seemed to be a fixed minimum number of intervals
required for the attack to succeed. Investigating further, we have found this to
be caused by a combination of the protocol environment and self-inflicted limits
of the attacker due to its behavioral model: it takes the next step only when it is
sure (from conservative calculations) that the previous step was successful. We
also refined an equation to calculate the minimum amount of intervals necessary
to successfully carry out the attack (see below).

More than Just Desynchronization Our second observation is that the desyn-
chronization condition alone is not sufficient. There also needs to be a sufficient

Experiments in Attacking TESLA-Secured Time Synchronization 15

@ 5 (b)
1
I 1+1 S,
2 1
I 1+1 I 1+1
f f
. L
3 2
I I+1 I I+1
4
I T+1

Fig. 8. Visualization of introducing delays during the attack, where f is the amount
of time required to forge a bogus packet from intercepted data. In part (a), the delay
introduced is small relative to Ta; in (b), it is relatively large.

amount of time f for the bogus packet to be considered timely. In [16], the need
for f was already mentioned, but not quantified. We supply this quantification
by demanding that f satisfy the following condition: f > dpax + Oe-

The Role of Endpoint Delay and Uncertainty The third observation is that the
smaller the difference (max +0.) —Ta, the more iterations of step 3 are needed. In
Fig. 8, we illustrate how the attacker comes closer to the goal with each iteration.
If it tried to deliver a bogus packet after three iterations, it would be discarded
as being untimely, even though the desynchronization condition is satisfied. Thus,
another iteration is needed.

Quantification of Minimum Required Intervals The experiments with

attack runs on ASTS have enabled us to deduce an equation for the earliest

interval I, by which the attack’s first phase can have succeeded:

TA(d -]-) + 5max + 66
6atk

Lo = | J@+1)+2a (1)
This represents a refinement over the quantification in [16] due to the ability of
our experiments to account for real-world parameters such as dyax, de, and f.

4.3 Countermeasures and Best Practice

With a few changes to the security condition and the protocol flow, we can
successfully mitigate the attack described above. Note that the changes required
are significant: complete mitigation comes at the expense of introducing an
extra step in the protocol, and this step must involve two-way communication.
However, the contermeasures were designed to not negatively affect the quality
of the achieved time synchronization, and our experiments have supported our
belief that this goal was fulfilled.

16 K. Teichel, G. Hildermeier

Individual Measures There are two overall building blocks that we examined
for their capability to prevent the attack. It turns out that it is only in combination
of the two that the attack is fully defended against.

Make the Attack Take Longer The first general measure is to increase the amount
of time required for successful execution of the attack. This can be achieved by
combining the following tactics:

— The maximum introducable delay d,41, should be minimized. For example,
one can simply set a limit to the amount of measured offset that is accepted.

— The interval length should be maximized, under the conditions that the
synchronization should still work, and that the maximum d,¢ should not
be increased. One option is to introduce dead space into the intervals where
no communication can take place. This would not make sense for most
application areas of the TESLA protocol, but does make sense for time
synchronization.

Note that such measures alone can only delay the success of Phase One of
the attack, not fully prevent it. This brings us to the second general measure.

Introduce a Periodical Synchronization Reset The second general measure is to
introduce a reset to the time synchronization. The protocol must resynchronize via
an alternate technique before the time by which the attack can have succeeded.
This could be tied to the end of the key chain, for the sake of convenience.
Note that, to provide sufficient guarantees, a reset must entail synchronization
via alternative (two-way) communication. Only then can an upper bound be
determined for the possible synchronization error. Note that doing this without
a good understanding of how long the attack takes to be successful (or with
too low an amount in that regard), this measure is wasteful. Any system that
largely relies on broadcast probably has good reasons for doing so, and requiring
additional two-way communication too often likely defeats the purpose.

Combined Approach To achieve the goal of completely preventing the attack, the
measures described above work only in combination. The first measure gives a
guarantee that the protocol is secure up to a given point in time. The second
measure ensures that the protocol (including the security guarantee above) is
reset before that point in time is reached. From another perspective, the second
measure makes the attacker start over with its scheme. The first measure ensures
that there is a reasonable point in time to do so. This can neither be too late
(which would leave security compromised) nor too early (which would be wasteful
of communication resources).

Our experiments have suggested that if one of the measures is not taken, or
not taken correctly, the attack can always succeed eventually. The converse is
also true: in our experiments, if both measures are taken correctly, the attack
can never be executed successfully.

Experiments in Attacking TESLA-Secured Time Synchronization 17

4.4 Recommendations for Fixing TinySeRSync and ASTS

From the above, we deduce that in order to fix ASTS’ security, one would have
to re-introduce a form of pairwise synchronization. Note that this might render
stated advantages of ASTS over TinySeRSync invalid.

For TinySeRSync, it seems that the first fix would be to re-introduce the
actual numbering of intervals that (n) TESLA originally prescribes. Given this
modification, it seems to us that there would be a reasonable way to combine
the two protocol phases (one of which employs two-way time synchronization
anyway) to a successful variant of TESLA-protected synchronization.

5 Conclusions

5.1 Summary

We have investigated security issues with the deployment of the TESLA pro-
tocol in one-way time synchronization protocols. To this end, we have built an
implementation that reflects the security-relevant characteristics of the class of
protocols that apply delayed disclosure authentication (e.g. TESLA) to one-way
time synchronization. This has enabled us to draw a number of conclusions
(presented in Section 4), some of which are specific to certain protocols, while
others hold generally for the whole class of protocols.

We have conducted a range of tests proving that the attack described in [16]
can be executed in a real-world environment with physically distributed devices
on a protocol that represents a faithful recreation of ASTS. Furthermore, we have
conducted tests proving that TinySeRSync’s security measures can be broken,
albeit by an attack different from our original concept. Regarding the more
general class of protocols, we have supported the theory that, without extra
security features beyond those that TESLA provides, the attack can always
succeed eventually. In particular, we have reaffirmed our conjecture that the
attack cannot be prevented with only one-way communication.

We have also collected a set of countermeasures, some of which can be used
to reduce the amount of delay the attacker can introduce, making the attack take
longer. In Equation 1, we quantify the minimum amount of time/intervals the
attack will take to execute until packets can be forged at will. With this amount
known beforehand, additional countermeasures can be taken early enough that
the attack can be completely defeated. However, this still comes with the strict
caveat that these additional measures need to involve two-way communication.
All of these implementation-based results represent improvements on the work
in [16], where the attack was only investigated via model checking.

5.2 Future Work

All relevant in-development or future time synchronization protocol specifications
should be analyzed regarding their vulnerability to the attack. It is our hope that
the implementation created for this work can support such analyses.

18 K. Teichel, G. Hildermeier

Additionally, further research regarding potential countermeasures would
be interesting. Even though we are skeptical of the existence of efficient coun-
termeasures that do not require two-way communication, the value of such a
design would be tremendous, especially in environments such as global navigation
satellite systems, where communication is designed to be one-way only.

Overall, it should be stated that even with the highlighted issues, we still
believe that TESLA is a worthwhile candidate for a protection mechanism for one-
way synchronization. Therefore, the next research project we are focusing on are
formal proofs of positive statements about the security of TESLA-protected one-
way synchronization protocols. Such statements might include that, other than
the attack vector described in [16], TESLA-protection of one-way synchronization
protocols is secure and/or that TESLA-protection with a given set of added
countermeasures overall makes one-way synchronization secure.

Acknowledgment

We would like to express our thanks to Dieter Sibold, for supervising large parts
of the work and for valuable input in the creation of this paper.

References

1. Standard for a precision clock synchronization protocol for networked measurement
and control systems, https://standards.ieee.org/develop/project/1588.html

2. Annessi, R., Fabini, J., Zseby, T.: It’s about time: Securing broadcast time syn-
chronization with data origin authentication. In: 2017 26th International Confe-
rence on Computer Communication and Networks (ICCCN). pp. 1-11 (July 2017).
https://doi.org/10.1109/ICCCN.2017.8038418

3. Annessi, R., Fabini, J., Zseby, T.: SecureTime: Secure multicast time synchroniza-
tion. ArXiv e-prints (May 2017)

4. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198-208 (1983)

5. Fernandez-Hernandez, 1., Rijmen, V., Seco-Granados, G., Sim’on, J., Rodriguez, I.,
David Calle, J.: A navigation message authentication proposal for the galileo open
service. Navigation - Journal of The Institute of Navigation 63 (03 2016)

6. Hildermeier, G.: Attacking tesla-secured time synchronisation protocols. Master’s
Thesis (09 2017)

7. Hildermeier, G.: Testbed implementation for simunlating attacks on tesla-secured
time synchronisation protocols (09 2017), https://gitlabl.ptb.de/teiche04/
Hildermeier-TESLA-Protected-One-Way-Synchronization.git

8. Levine, J.: A review of time and frequency transfer methods. Metrolo-
gia 45(6), S162-S174 (2008). https://doi.org/10.1088,/0026-1394/45/6/S22,
<GotoISI>://W0S:000262502900023http://iopscience.iop.org/0026-1394/
45/6/S822/pdf/0026-1394_45_6_522.pdf

9. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Tran-
sactions on Communications 39(10), 1482-1493 (1991)

10. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: Efficient authentication and signing
of multicast streams over lossy channels. In: Security and Privacy, 2000. S&P 2000.
Proceedings. 2000 IEEE Symposium on. pp. 56-73. IEEE (2000)

11.

12.

13.

14.

15.

16.

17.

Experiments in Attacking TESLA-Secured Time Synchronization 19

Perrig, A., Canetti, R., Tygar, J.D., Song, D.: The TESLA broadcast authentication
protocol. RSA Cryptobytes 5 (2005)

Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: Security
protocols for sensor networks. Wireless Networks 8(5), 521-534 (2002)

Sibold, D., Roettger, S., Teichel, K.: Network Time Security. Inter-
net Draft draft-ietf-ntp-network-time-security-15, Internet Engineer-
ing Task Force (Sep 2016), https://datatracker.ietf.org/doc/html/
draft-ietf-ntp-network-time-security-15, work in Progress

Sibold, D., Roettger, S., Teichel, K.: Using the Network Time Security Specification
to Secure the Network Time Protocol. Internet Draft draft-ietf-ntp-using-nts-for-
ntp-06, Internet Engineering Task Force (Sep 2016), https://datatracker.ietf.
org/doc/html/draft-ietf-ntp-using-nts-for-ntp-06, work in Progress

Sun, K., Ning, P., Wang, C.: TinySeRSync: Secure and resilient time synchronization
in wireless sensor networks. In: Proceedings of the 13th ACM Conference on
Computer and Communications Security. pp. 264-277. ACM (2006)

Teichel, K., Sibold, D., Milius, S.: An attack possibility on time synchronization
protocols secured with TESLA-like mechanisms. In: Information Systems Security,
pp. 3-22. Springer (2016)

Yin, X., Qi, W., Fu, F.: ASTS: An agile secure time synchronization protocol for
wireless sensor networks. In: Wireless Communications, Networking and Mobile
Computing, 2007. WiCom 2007. International Conference on. pp. 2808-2811. IEEE
(2007)

	Experimental Evaluation of Attacks on TESLA-secured Time Synchronization Protocols

