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Parameter Identification and Measurement  
Uncertainty for Dynamic Measurement Systems

Sascha Eichstädt*

1 Introduction

The analysis of dynamic measurements requires 
new approaches to the estimation of the value 
of the measurand as well as for the evaluation of 
measurement uncertainty. In static measurements 
the value of the measurand is represented by a 
single value or a tuple of values, and estimation of 
the measurand typically requires solving algebraic 
equations. In dynamic measurements the value of 
the measurand varies with time. In addition, the 
response of the measurement device depends on 
the frequency content in the measured time series. 

A typical workflow in the analysis of a dynamic 
measurement is shown in figure 1. The measurand 
is the system input signal and the available data 
the corresponding output signal. Estimation of 
the measurand requires a mathematical model for 
the dynamic system which covers its frequency-
dependent response in the relevant frequency 
range. This cannot be accomplished by algebraic 
equations.

An appropriate mathematical model for most 
dynamic systems is given by the state-space system 
model 
 
ż(t) = f(z(t), y(t), t) (1) 
 
x(t) = g(z(t), y(t), t) , (2) 
 
with (1) being the state equation modelling the 
dynamics of the system, and (2) the observation 
equation modelling the data acquisition [1]. Such 
state-space system models cover single sensors 
[2] as well as complex measurement set-ups [3] 
or sensor networks. Sometimes the system model 
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can be determined based on physical reasoning 
and the calibrated parameters then give insights 
into the physical properties of the measurement 
system. For instance, in a shock-force calibration 
experiment the measurement system may be mod-
elled by means of coupled mass-spring-damper 
elements such that estimated spring stiffness 
values correspond to the stiffness of the coupling 
of the measurement system components [4]. 

The goal of dynamic calibration is to provide 
a characterization of the system dynamics and 
the influence of the measurement itself. Both can 
be achieved by means of parameterization of the 
functions f and g in (1)–(2). A parametric char-
acterization has the benefit that it allows versatile 
application of the calibration result. For instance, 
a calibrated parametric model of a force trans-
ducer can be applied as part of a model of a fatigue 
testing machine [3], or a model of a torque sensor 
can be incorporated into a model of an engine test 
stand [5]. 

For the state-space model (1)–(2), special cases 
exist which allow a simplified treatment in certain 
scenarios. For instance, if the complete measurement 
system can be modelled by a linear time-invariant 
(LTI) system with single input and single output, 
then equations (1)–(2) can be transformed to a 
transfer function model in the Laplace domain [1]

  . (3)

The relation between input and output of the 
dynamic system is then given by 
 
L{x(t)} = H(s)L{y(t)} , (4) 
 
where L{x(t)} denotes the Laplace transform of the 
time signal x(t). In order to emphasize the depend-
ence of the transfer function on its parameters we 
write H(s; θ) with θ = (b0, … , bK, a0,… , aL)T as the 
vector of parameters. 
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Figure 1: 
Work flow in the 
analysis of dynamic 
measurements.
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In the following, the task of calibrating a linear 
time-invariant dynamic system by means of identi-
fication of the transfer function model parameters 
(3) is considered. In section 2 generic methods for 
parameter estimation are discussed. In section 3 
and 4, estimation is addressed for calibration data 
available in the frequency and time domain, respec-
tively. The evaluation of uncertainty for parameter 
estimation in line with GUM [6] is discussed in 
section 5.

2 Generic Parameter Identification

An important step in the process of parameter 
identification is to set up the statistical measurement 
model 
 
H(sk; θ) = H0 (sk; θ) + εk  , (5) 
 
where H0 denotes the (unavailable) error-free value 
and the εk denote statistical measurement errors. 
The statistical model takes into account all sources 
of uncertainties in the calibration experiment, 
(cf. [7]) for an example, in the field of acceleration 
using sophisticated statistical modelling. 

The aim of parameter identification is to deter-
mine the parameter vector θ which provides the 
best explanation of the data given the statistical 
model (5). One possibility to achieve that goal is to 
carry out a maximum likelihood estimation [9]. In 
this approach the statistical model (5) is employed 
to define the likelihood function l(θ, H) as a 
probabilistic expression of the likelihood of the 
data H for a given parameter vector θ. Parameter 
estimation in this context corresponds to deter-
mining the solution of 
 
θ̂ = arg maxθ l(θ, H) .  (6) 

Consider, for instance, the case which the meas-
urement errors εk in (5) follow a normal distribu-
tion with zero mean and known covariance ∑. In 
this case, the likelihood function is proportional 
to exp(–0.5||H – H(s; θ)||2

Σ) and the application 
of the maximum likelihood method becomes the 
weighted least squares estimation [8] 
 
θ̂ = arg minθ || H – H (s; θ) || 2Σ ,  (7) 
 
with || A|| 2W = ATW 

–1A . 

It is worth noting that least squares estimation is 
often applied for parameter estimation irrespective 
of the statistical model (5). However, although the 
resulting parameter vector estimate then satis-
fies (7), it may not be the optimal solution for the 
model (5). Moreover, assignment and interpretation 
of measurement uncertainty becomes problematic 
if the statistical properties of the data are ignored.

Maximum likelihood estimation can be consid-
ered as a numerical optimization problem [9]. The 
optimization merit function is given by equation 
(6) and is typically non-linear. In contrast to linear 
optimization, the solution space of non-linear 
problems can be very complex and many (local) 
solutions may exist. In general, non-linear optimi-
zation has many pitfalls that have to be considered 
in order to obtain a reliable parameter estimate. For 
instance, stopping of the iterations is decided, based 
on user-defined tolerances, and numerical calcu-
lation of the model function’s Jacobian re quires 
appropriately small step sizes. Convergence of 
optimization routines is typically proven under the 
assumption of an appropriate choice of method 
parameters. Hence, reliable parameter estimation 
requires a careful usage of the applied non-linear 
optimization method.

An often applied optimization method in the 
case of non-linear least squares is the Levenberg-
Marquardt method [9]. This is an iterative method 
where in each step the Jacobian of the model func-
tion H(s; θ) with respect to θ is employed in order 
to progress to a solution of (7). In many software 
environments, such as LabView, Matlab and SciPy, 
the Levenberg-Marquardt method is the default 
method for non-linear least squares problems. 
However, like all iterative solution methods, the 
Levenberg-Marquardt method requires defining 
an initial starting point θ(0) and only provides local 
solutions to problem (7). That is, for a different 
starting point, the outcome of the optimization 
might differ. It is thus advisable to repeat the opti-
mization process with different initial parameter 
estimates. 

An alternative approach to the maximum 
likelihood method for parameter estimation is 
the application of Bayesian inference [10, 11]. 
Therefore, in addition to the likelihood function, 
a probability distribution function (PDF) model-
ling the a priori knowledge about the parameters 
is employed. Parameter estimation in this context 
is then applied in terms of a probability calculus 
using Bayes’ Theorem, carried out numerically, e.g. 
by means of Markov Chain Monte Carlo (MCMC) 
sampling [11]. The result of such a Bayesian infer-
ence is a posterior PDF modelling the (probabi lis tic) 
knowledge about the parameter values after taking 
into account the measurement data. The benefit of 
the Bayesian approach here is that no numerical 
optimization has to be applied and that uncertain-
ties associated with the parameter estimate can be 
directly obtained from the posterior PDF. However, 
care has to be taken when no actual prior knowl-
edge about the model parameters is available, 
and a careful convergence analysis of the MCMC 
sampling has to be carried out in order to obtain 
reliable results [11]. In the following, we focus 
on the maximum likelihood estimation and refer 
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the time domain measurements [14]. Determi-
nation of the likelihood function for frequency 
domain maximum likelihood estimation is thus 
more complicated than for the case of sinusoidal 
excitation and the time domain estimation might 
be more appropriate then. In addition, systematic 
errors introduced by the non-ideal DFT itself have 
to be taken into account in the subsequent uncer-
tainty analysis [17].

4 Time Domain Identification

The time domain description of a transfer function 
model is obtained by taking the inverse Laplace 
transform of equation (4)  
 
x(t) = (hθ * y) (t) , (9) 
 
where hθ(t) = h(t; θ) denotes the system’s impulse 
response function and ʹ*ʹ means convolution [1]. 
The statistical models 
 
y(t) = y0(t) + εy , (10)
 
x(t) = x0(t) + εx (11)

 
have to be set up by taking into account measure-
ment noise, systematic influences of the involved 
measurement devices and other sources of uncer-
tainty [18]. When the uncertainty in y is negligible 
and the statistical model (11) for x is covered by a 
normal distribution with known covariance matrix 
Σ, then the parameter estimation becomes the least 
squares problem

 
θ̂ = arg minθ || x – (hθ * y) || 2Σ  (12)

 
with vector x = (x(t1), … , x(tN))T of system output 
values and the corresponding input values 
y = (y(t1), … , y(tN))T.

Note that a non-parametric estimation of the 
impulse response h(t) from measured system 
input y(t) and output x(t) requires a deconvolu-

the reader interested in details about the Bayesian 
approach to parameter estimation to    [10, 11] and 
references therein.

3 Frequency Domain Identification

The transfer function model (3) gives rise to a 
frequency domain representation of the dynamic 
system by replacing the variable s with jω with 
j = √

—
–1 and the radial frequency ω = 2πf giving
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Identification of the system parameters in the 
frequency domain requires measurements of the 
frequency response of the dynamic system over 
the whole range of relevant frequencies [12]. This 
can be achieved either frequency-by-frequency 
using sinusoidal excitations [13] or by application 
of the discrete-time Fourier transform (DFT) to a 
time domain calibration measurement of input and 
output signal [14].

In any case, parameter identification based 
on equation (8) requires measurement of the 
complex-valued frequency response values 
H = (H(f1), … , H(fN))T, represented either by means 
of the real and the imaginary part of H or of the 
corresponding amplitude and phase values. The 
uncertain knowledge about these values is modelled 
by a (multivariate) probability density function 
(PDF) or is given as an estimate of the values and an 
asso ciated matrix U of (mutual) uncertainties.

When the frequency response measurements 
are carried out by means of a sinusoidal excitation 
experiment, amplitude and phase values  
H~ = (|H(f1)|, … ,H(fN)) with associated uncertain-
ties are typically available [13, 15]. In general, the 
values at different frequencies are correlated, for 
instance, due to being obtained with the same meas-
urement set-up. However, in practice the correlation 
between the estimates at different frequencies is 
often considered to be negligible. The correspond-
ing statistical model for the measurement errors 
in equation (5) is then given by ε ~ N(0, Σ) with 
known diagonal matrix Σii = u2

i  , where ui denotes 
the uncertainty associated with the i-th compo-
nent of the vector H~. Depending on the type of the 
transfer function model (3), a linear or non-linear 
least squares method can then be applied for the 
determination of transfer function parameter esti-
mates [13, 16]. 

In the case of time domain measurement and 
subsequent application of the discrete Fourier trans-
form (DFT) to obtain frequency response values, 
the model (5) depends on the statistical model of 

Figure 2: 
Estimated transfer function for sinusoidal excitation data.

.
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tion, which is an ill-posed inverse problem [19]. 
The corresponding model for the estimation of the 
impulse response in the time domain is given by 

 
h(t) = (x * y†)(t) + ε ,  (13)

 
where y† denotes the regularized inverse of y [19, 
20]. It is worth noting that (13) is typically applied 
in the frequency domain for ease of calculation.

For the more general dynamic system model 
(1)-(2) an ordinary differential equation (ODE) 
has to be solved. When the uncertainty in y(t) can 
be neglected, the statistical model is then given by

 
x(t) = g(y(t), z(t; θ), t; θ) + εx ,  (14) 
 
which is derived from the measurement equa-
tion (2). Note that in order to calculate z(t), the 
differential equation

 
ż(t; θ) = f(z(t; θ), y(t), t; θ)  (15) 
 
has to be solved. To this end, typically numerical 
integration, such as the backward differentiation 
formula or a Runge-Kutta method can be applied 
[21]. Software tools for this task are available in 
almost all major scientific software packages. 
However, the numerical optimization in conjunction 
with numerical ODE integration requires careful 
selection of the step size tolerances of the ODE 
solver and of the numerical differentiation in the 
optimization routine. For instance, the application of 
the Levenberg-Marquardt method for the optimiza-
tion problem

 
θ̂ = arg minθ || x – g(y, z, θ) || 2Σ  ,  (16) 
 
in the case of normally distributed errors εx with 
known covariance Σ requires differentiation of g 
with respect to θ which itself requires solving the 
ODE (15). Hence, at each iteration in the optimi-

zation process a numerical differentiation of the 
ODE integration method has to be carried out with 
precision being high enough for a reliable parameter 
estimation result. In some cases, this may require use 
of an optimization routine which does not require 
differentiation, such as the Powell method [4, 9].

Figure 3 shows the outcome of a time domain 
parameter estimation for a shock force calibration 
experiment. In this example, the system model equa-
tion (1) models the dynamics of the measurement 
system as a series of mass-spring-damper elements. 
Measured data (14) in this case is the sensor output 
signal and the acceleration of one of the involved 
masses, see [4] for details.

5 Evaluation of Uncertainty

In order to provide the parameter estimates as part 
of a calibration result, reliable uncertainties have to 
be associated with the estimated parameters in line 
with GUM [6, 22]. Statistically speaking, the task of 
parameter estimation is a regression. Although this 
task is very common in metrological applications, 
so far there is no generally accepted approach to 
the corresponding GUM-compliant evaluation of 
uncertainties. The GUM itself provides an example 
for uncertainty evaluation for linear least squares, see 
H.3 in [6] or example 3 in 6.2.2 in [22]. There are a 
number of publications which assess the applicabil-
ity of the GUM framework to regression models. 
For instance, in [23] a Bayesian inference approach 
is compared to an application of GUM-S1 Monte 
Carlo. The authors conclude that GUM-S1 does in 
general not provide a Bayesian solution, opposed to 
what is stated in the introduction of GUM-S1 [22]. 
Furthermore, the authors in [23] point out that the 
measurement model is ambiguous in contrast to the 
assumptions made by the GUM as it depends on the 
actual data and not the physical model alone. 

Despite the pitfalls of the application of GUM to 
least squares and other regression problems, this task 
is routinely considered in many metrological appli-
cations. Therefore, the statistical model (5) has to be 
replaced by a GUM-compliant measurement model. 
For the linear least squares problem, i.e. a linear 
mathematical model and normally distributed data 
with known covariance Σ, the measurement model is 
 
θ̂ = arg minθ  || y – Hθ || 2Σ (17) 
 
which can also be written as  
 
θ̂ = (HTΣ–1H)–1HTΣ–1y . (18) 

The uncertainty associated with this estimate is 
then calculated as the variance of this expression 
and results in 
 
Uθ̂ = (HTΣ–1H)–1 . (19)

Figure 3: 
Time domain parameter estimation for shock calibration of 
a force sensor.
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For a non-linear optimization often an approach 
is chosen that mimics the linear least squares case. 
Therefore, the Jacobian of the optimization merit 
function at the final iteration is employed together 
with the covariance matrix associated with the 
data points [16, 24]. Another approach is the utili-
zation of the Hessian matrix of the least squares cost 
functional [24]. However, the resulting uncertain-
ties may be underestimated in the case of uncertain-
ties in the independent variables (time or frequency 
in the here considered scenarios), see [24]. To this 
end, the authors in [16] propose the application 
of a Monte Carlo method instead of a linearized 
propagation with closed formulas. In a Monte 
Carlo propagation of uncertainties for a parameter 
estimation problem, the input quantities and their 
associated uncertainty are given by the calibration 
data. As a measurement model, equation (6) is con-
sidered and propagation of uncertainties is carried 
out according to GUM-S2 [22]. As discussed in 
section 3, non-linear optimization requires careful 
choice of the numerical method and its parameters. 
This is of particular importance for the application 
of Monte Carlo where the optimization has to be 
repeated many times in an automated way. 

Irrespective of whether closed formulae are 
applied or a Monte Carlo propagation is carried out, 
the ambiguity of the measurement model and the 
difference to the result of a full Bayesian treatment 
remain. This makes a general GUM-compliant 
approach for uncertainty evaluation in parameter 
estimation based on statistical arguments very 
challenging. However, this has been recognized by 
the BIPM JCGM working groups and a supplement 
addressing this issue for the case of least squares 
regression is in preparation [25].

6 Conclusions

The characterization of a dynamic system in terms 
of a parametric model allows a versatile utilization of 
the calibration result. In its mathematical description, 
parameter estimation is a regression problem which 
itself can be interpreted as a numerical optimization 
problem. Both are well-estab lished disciplines in 
mathematics and statistics and many scientific soft-
ware packages contain efficient tools for their appli-
cation. However, care has to be taken in the determi-
nation of the statistical model of the measured data 
and in the application of the estimation method in 
order to obtain a reliable calibration result. 

Unfortunately, there is no general commonly 
accepted GUM-compliant approach yet. To this 
end, some authors have proposed approaches for 
certain non-linear least squares scenarios. A more 
general approach would be to fully embrace the 
Bayesian framework, and to carry out Bayesian 
inference not only for the interpretation of uncer-
tainty, but for parameter estimation, too. 
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