

Progressing Optical Gas Standard concepts

- from environmental measurements to industrial process control and AMC monitoring

<u>Zhechao Qu</u>, Javis Nwaboh, Thomas Benoy, Olav Werhahn, Volker Ebert

About PTB

- National Metrology Institute of Germany, under the authority of the Federal Ministry for Economic Affairs and Energy (BMWi)
- approx. 1900 staff members,
 700 scientific papers per year,
 185 Mio. € annual budget

National Metrology Institute

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

Braunschweig

Mechanics and Acoustics

Chemical Physics and Explosion Protection

Precision Engineering

Legal and International Metrology

QUEST quest Institute at PTB

Electricity

Administrative Services

Berlin

Temperature and Synchrotron Radiation

Medical Physics and Metrological Information Technology

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

4

About us

Chemical Physics and Explosion Protection

Analytical chemistry of the gas phase

Spectrometric gas analysis

- Capabilities in 3.42 -

Laser spectroscopy

- Direct traceable methods for amount fraction measurements \rightarrow the TILSAM method
- Direct laser absorption spectroscopy (TDLAS/QCLAS) development of spectrometers
- Field TDLAS instruments (ground based, balloon, airplanes)
- Cavity-enhanced (CRDS/CEAS) and comb-assisted techniques
- Optical isotope ratio spectroscopy (OIRS)
 - Thermo ($\delta^{13}C$ -CO₂ and $\delta^{18}O$ -CO₂)
 - Picarro (δ^{13} C-CO₂ and δ^{13} C-CH₄)
 - Los Gatos (triple water analyser)

Current running projects

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

National Metrology Institute

<u>Technique – dTDLAS</u>

*Traceable Infrared Laser-Spectrometric Amount fraction Measurement (TILSAM) https://www.euramet.org/Media/docs/projects/934_METCHEM_Interim_Report.pdf

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

dTDLAS uncertainty

$$x_{\rm HCl} = \frac{k_{\rm B} \cdot A \cdot T}{S \cdot p \cdot L}$$

Quantities:

- $k_{\rm B}$: Boltzmann constant
- A : integrated absorbance (area), $u \sim 1 \%$
- T : gas temperature, u < 0.1 %
- p: gas pressure, u < 0.2 %
- L : optical path length, $u \sim 0.1 0.4 \%$
- S_{T} : line strength of the probed

molecular transition at *T*, $u_{HITRAN} \sim 2-20$ %, $u_{PTB} < 1-3$ %

Advantages of dTDLAS-TILSAM:

robust, simple, in situ, linear, calibration-free

8

Optical gas standard (OGS)

An optical gas standard is a laser spectrometer that can provide amount of substance fraction (concentration) results that are directly traceable to the SI

→ <u>TILSAM</u>*

*Traceable Infrared Laser-Spectrometric Amount fraction Measurement (TILSAM)/ https://www.euramet.org/Media/docs/projects/934_METCHEM_Interim_Report.pdf

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

Current realisation:

- Based on direct tunable diode laser absorption spectroscopy (dTDLAS)
 → accurate and reliable amount fraction measurements
- Calibration-free (no gaseous standards needed > low maintenance cost)
 → no need for calibration procedures … just validation
- dTDLAS-based amount fraction measurement instrument can be entirely described by a first principle physical model TILSAM compliant
 → all input parameters are directly traceable to the SI >> OGS!
- Especially for sticky and reactive gases which cannot be provided in static gas cylinders (Certified Reference Materials)

 \rightarrow to complement calibration gases

Current and future HCI - traceability ?

Current HCl reference method

- Biomethane : Reference method for HCI measurements is unavailable
- **Combustion**: emissions from stacks (EN1911)> indirect measurements via wet-chemistry
 - extractive gas sample / drying / filtration > systematic effects
 - stable gas standards for calibration (none for flue gas)
- Semiconductor: HCl in nmol/mol (ppb) to pmol/mol (ppt)
 - o no gaseous reference materials for instrument calibration

HCI metrology

- no HCI CMC for amount fractions below 10 µmol/mol
- existing HCI CMCs
 - NPL (UK): 10 1000 µmol/mol HCl in N₂
 - \circ VNIIM (Russia): 20 1000 µmol/mol HCl in N₂

HCI - OGS instruments

dTDLAS: direct tunable diode laser absorption spectroscopy

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

National Metrology Institute

BioMethane: HCI - in CH₄ OGS

Typical HCI dTDLAS signal in CH₄

HCI/CH₄: 50-500 µmol/mol

Relative uncertainty of HCI dTDLAS results: 4.6 %, k = 2

J. Nwaboh, Z. Qu, B. Buchholz, O. Werhahn and V. Ebert, OSA 2020 Optical Sensors and Sensing Congress

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

29 nmol/mol at Δt = 54 s

IMPRESS2: HCI - in flue gas OGS

Z. Qu, J. Nwaboh, O. Werhahn and V. Ebert, Flow, Turbulence and Combustion 2020 accepted

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

Absorption/desorption of reactive gas - HCI

HCI gas mixture in closed cell

Evacuation process

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

National Metrology Institute

Stack emission monitoring applications

"Metrology for Airborne Molecular Contaminations 2"

WP1: Spectroscopy instrumentation

- Develop an OGS system based on a combined dTDLAS/WMS to measure HCI in cleanrooms (air matrix)
- Design a bypass calibration system to bridge dTDLAS and WMS techniques
- Target detection of < 1 nmol/mol (ppb) in 1 minute</p>

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

MetMAC2: HCI - in air OGS

MetMAC2: HCI - in air OGS

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
2020-11-05

Summary and outlook

- > We presented the concept of calibration free instruments (dTDLAS based OGS).
- dTDLAS OGS instruments can
 - ✓ serve as SI-traceable instruments complying with the TILSAM method;
 - ✓ be used for field measurements, and also provide an alternative field calibration approach for sticky or reactive gases;
 - ✓ complement calibration gases (CRMs).
- > Three HCI-OGS instruments have been progressed for different applications.
- dTDLAS/WMS HCI-OGS instrument will be validated by comparison to NPL HCI gas mixtures and dynamic dilution system.
- EURAMET 1498 bilateral study with KRISS on 100µmol/mol HCl in nitrogen, and CCQM HCl key comparison (2021) >> goal HCl CMC(s).

Thanks for your attention!

EM

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Bundesallee 100

38116 Braunschweig

Zhechao Qu Telefon: +49 531 592-3112 E-Mail: zhechao.gu@ptb.d

-Mail: zhechao.qu@ptb.de

www.ptb.de

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

CLIMATE AND OCEAN OBSERVATION

Supplementary

