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1. Introduction 
Physical gauges are very important for the inspection of products, as they were already used prior to 
the development of initial coordinate measuring machines (CMM). The inspection principle is called 
the Taylor principle. The gauge used – also called functional gauge [1] – consists of two parts. A go 
gauge determines the maximum permissible limit deviations for the shape of product features. For 
the inspection of a hole, this is, for example, a cylindrical gauge pin which is to be entirely inserted in 
the manufactured hole. If the pin gets jammed during insertion, the hole is a reject. The second 
feature of gauging is the no-go gauge. With this feature, local measures are inspected for 
permissibility, in contrast to the go gauge. For holes, this includes pins for the inspection of maximum 
permissible two-point measures of the hole's inner surface. In a similar way, snap gauges are used for 
the inspection of shafts. The inspection by means of functional gauges is not limited to individual 
geometric elements, but can also include patterns of several functional features of one product.  
 

In modern productions, the components of several products are usually manufactured at different 
sites or by suppliers. The permissible shape deviations for workpieces are agreed upon by means of 
technical drawings with tolerance frames in accordance with the ISO standards 1101 [2], ASME 
Y14.5M [3] or other specific in-house standards. The ease of assembly of the components can be 
ensured later on, only if the tolerances in the technical drawings are interpreted in a consistent 
manner by the client and by the supplier. Therefore, a production which is adapted to the function 
indispensably requires the inspection of the fitting capability prior to the assembly. This problem is 
illustrated by the flange in Figure 1. 

 

 
Figure 1 Outline of the assembly requirements for a flange connection with a bolt. 

Figure 1 shows a flange with 16 equidistant holes. This flange is to be connected with a second 
flange via individual bolts in the form of screws. It is evident that the individual bolts of different 
diameters fit into the appurtenant holes. However, flange connections require all bolts to fit into the 
appurtenant holes at the same time. The right side of the figure makes the problem even more 
obvious, as holes and the appurtenant bolts can also be skew to each other. Generally, all shape 
deviations of the products have an influence on the fitting capability. This includes size, form and 
position deviations. If the requirements on accuracy are very high, influences by ripple and roughness 
of the workpiece surface at the mating surfaces must also be taken into account.  

 
The implementation of gauging via CMMs is generally called "virtual" or arithmetical gauging. 

Here, the physical functional gauge is replaced by a CAD model. The CMM is also used to measure 
the workpiece surface by probing a finite number of points with the CMM. These data are also 
referred to as extracted workpiece geometry. Finally, the virtual gauging is implemented by the 
procedure of the 3D fitting of hole patterns between the extracted geometry and a CAD model of the 
gauge. Thereby, the term "hole pattern" refers to the 3D elements of size "cylinder" (hole, shaft) and 
pairs of parallel planes (slot, toung). 

 
When fitting and associating single geometric elements, there is a wide range of standards for a 

uniform specification of procedures, robust reference algorithms and tests for industry ([4], [5]). In 
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contrast to this, the geometric fitting with several elements in the form of hole patterns and the 3D 
fitting of hole patterns have hardly been uniformly documented and regulated by standards with 
regard to metrological and computing processes. Although drawing specifications are defined for the 
tolerancing of the 3D hole pattern fit in ISO standardization for geometric product specification 
(GPS), the necessary standard parts for the implementation in a uniform test procedure are lacking 
entirely. Guidelines on the correct use of different sensors for the metrological detection of 
measurement points are required, so that the highest points of the elements considered are very 
likely to be measured. They are significant for the calculation of the quantities and thus for the 
quality and reliability of product inspection. With this background, optical and CT measurement 
procedures are of particular importance for the 3D fitting of hole patterns via virtual gauging, as they 
are suitable to detect the entire surface of a product very rapidly. However, a large part of today's 
existing standards is only designed for tactile sensors which generally detect a product surface much 
more slowly. 

 
Most of the inspection tasks which are dealt with by physical gauging or arithmetical gauging with 

several geometric elements refer to the tolerancing according to ISO 2691 [6]. This standard specifies 
the maximum material condition (MMC) and least material condition (LMC) for components. The 
guideline for the application of the standard is that a manufactured workpiece must be able to mate 
with a counterpart defined by drawing specifications. The implementation of the inspection by MMC 
and/or LMC in a simulation of assembly is not documented. Consequently, literature provides 
different approaches (e.g.: [7], [8], [9]) for arithmetical hole pattern fit. The diversity of the 
algorithms is also reflected in the measuring machine software. Solutions by various manufacturers 
are incompatible if different algorithms are used or if the procedures to be used have not been 
determined in the forefront. The general correct procedure is the fitting with all measurement points 
to the virtual counterpart. Furthermore, very large data sets occur in state-of-the-art coordinate 
measuring systems using multi-sensor technology, optical-tactile measuring sensors or also CT 
measuring systems. If, for reasons of efficiency, the software reaches its limits of economic benefit, 
filters are often used to reduce the measurement data prior to the evaluation. In addition to the 
fitting algorithm, they also have an influence on the measurement results during hole pattern fit. The 
task of this Guide to 3D hole pattern fitting is the user-oriented presentation of inspection processes 
for the arithmetical simulation of assembly with virtual gauging. Thereby, the fundamental 
requirements of classical physical gauging according to ISO 1101 are transferred to coordinate 
metrology and recommendations for a software-based implementation are presented. Various 
coordinate metrology systems with different sensors are considered. Product measurements with 
dimensional computer tomography (CT) are of special interest, as they allow the entire product 
surface to be efficiently extracted. Apart from the description of a general procedure in Section 2, the 
recommendations also comprise details for three special application examples. The first example is a 
flange which, e.g., has to be manufactured during the construction of wind engines. This flange is 
presented in Section 3.  Based on a technical drawing in which several parallel holes have a common 
position tolerance with maximum material condition, a rotatory hole pattern fit via cylinders is 
described. In the sense of the ISO GPS standardization, a geometric ideal datum system is attributed 
to the flange which determines a rotation axis of the gauge for fitting.   

 
In addition, Section 4 deals with tasks where miscellaneous geometric elements are fitted 

simultaneously. The example which is presented here is a conical disc with a slot consisting of parallel 
planes and several parallel holes. A datum is also available. The third application example in Section 5 
specifies the fitting of a gauge made of cylinder elements in several holes in a cube whose axes are 
perpendicular to each other. Here, the case of a free fit will be considered, i.e. datum features which 
limit the fitting of the gauge geometry are not specified. 
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2. General Requirements 
The 3D hole pattern fit is used for the inspection of specific form and position tolerances of 
functional product features. This mainly includes the inspection of complete geometries with 
arithmetical gauging. 
 

In addition, there is a whole range of further applications where integral geometric elements, e.g. 
axes or median planes, can also be inspected according to the formal principles of 3D hole pattern fit. 
These principles are referred to in a later suitable section of this Guide. However, this will not be 
dealt with in greater detail as the necessary procedures and requirements for the inspection are 
sufficiently covered by the standardization or can simply be taken over by arithmetic gauging. 

 
In Subsections 2.1, 2.2 and 2.3, the most important requirements placed on the hole pattern fit 

are presented which must be fulfilled when applying the ISO 1101 and ISO 2962 standards. The 
principle interpretation and supplement of hole pattern fitting for coordinate metrology are shown in 
Section 2.4. It also includes requirements placed on the evaluation software and relevant numerical 
procedures. Finally, Section 2.5 deals with the measurement deviations occurring during 3D hole 
pattern fit. These measurement deviations are significant for the consistency or inconsistency 
between arithmetical gauging and an inspection during real physical gauging.  

2.1. Hole pattern fit in standardization 
The subsequent considerations start with the technical drawings of products where the tolerancing 
according to the ISO 8015 [10] principle has been inserted. Hereby, the application of ISO 1101 and 
all attributed individual standards will be implied for the inspection of tolerances. The examples 
given in Figures 2-1 and 2-2 show a plate with two holes that are tolerated in four different ways. For 
each example, a 3D hole pattern fit will be used for inspection.  
 

Figure 2-1 (left) (Example a) shows a position tolerancing of the median lines of the holes. 
DIN EN ISO 14660 Part 2 [11] regulates the procedure for the extraction of these lines for cylindrical 
geometric elements. The tolerance frame is used to define two cylindrical tolerance zones which are 
represented below the technical drawing. These cylindrical regions have an ideal shape. Their axes 
are parallel with a nominal distance of 20 mm. In addition, both cylinders are orthogonal to the 
datum plane A. When inspecting the plate, first the lateral surface A and the holes are extracted in 
order to attribute the datum surface and the median lines of the holes. During fitting, the tolerance 
zones are allowed to be shifted along the planes A and to be rotated orthogonally to A. The 
workpiece is permissible if both median lines are within the tolerance zones at the same time. As the 
median lines of the holes are constructed, i.e. are not available as directly measurable geometry at 
the manufactured product, the inspection can only be carried out by means of arithmetical hole 
pattern fit. 

 
Example b) (Figure 2-1, on the right) inspects the position of the holes according to the maximum 

material condition. This has been specified with the aid of the drawing specification Ⓜ which is 
directly behind the value for the position’s tolerance. Normatively, the requirements for the 
inspection via MMC are regulated in ISO 2962. Next, the plate must be fittable by means of a 
geometrically ideal counterpart which is shown below the engineering drawing. The counterpart is 
composed of a level contact plane. Two bolts are orthogonal to the contact plane. The axes of the 
bolts have the nominal distance of the holes and are parallel. The bolt diameter of 4.9 mm is 
calculated on the basis of the lower size limit of a 5.0 mm hole and the position tolerance. The 
inspection aims to verify whether the holes of the plate lie within the admissible tolerance. Physical 
gauging as well as arithmetical gauging can be applied. For the arithmetical hole pattern fit, the level 
contact surface of the gauging is aligned to the datum surface A of the plate and/or an ideal plane is 
assigned. At the same time, the two bolts of the gauge must fit in the holes of the plate.  
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Figure 2-1 Two examples for tolerancing a plate with two holes. The virtual inspection of the 
tolerances presupposes the 3D hole pattern fit in both cases (Tolerance principle ISO 8015).  

Several products have specific functional requirements. In these cases, datum elements with the 

specification Ⓜ for the MMC are also occasionally entered in drawings. Figure 2-2 shows two 
examples for this.  

 

Figure 2-2 Tolerances with datum features including drawing specifications Ⓜ. 

In example c), the contact surface A is the primary datum. The left hole is defined as secondary 

datum B. The right hole has a position tolerance with the specification Ⓜ for the tolerance zone and 
the datum B. The form of hole B or its orientation to A is not tolerated. For this reason, the quantities 
are neglected during the toleration. The compliance with the tolerance can be inspected again by 
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classical physical gauging or arithmetical hole pattern fit. The nominal geometry of the go gauge 
assigned to it consists of a plane which is aligned to the datum surface A. On this datum surface, a 
gauge cylinder for the datum B is located having a diameter of 5.0 mm which is the lower size limit of 
the datum hole. The second gauge cylinder has a diameter of 4.4 mm which results from the lower 
limit of the hole minus the position tolerance. It stands for the position of the hole. Both cylinders 
are orthogonal to Plane A and their axes have the nominal distance of 20 mm. The classical 
inspection with physical gauging and the hole pattern fit in coordinate metrology can be applied in 
the example.  

 

Example d) in Figure 2-2 shows that datum elements with the specification Ⓜ can be identified for 
the MMC, but that the tolerated element will not be inspected according to the MMC. These drawing 
specifications only occur in rare applications. The inspection of the tolerance requires an arithmetical 
3D hole pattern fit as the extracted median line at the tolerated element does not exist at the real 
product as directly measurable geometry. A gauge cylinder in datum hole B and the cylindrical 
position tolerance zone to the median line will be fitted together for this purpose. The cylindrical 
tolerance zone has a diameter of 0.1 mm. The gauge pin has a diameter of 5.0 mm (the lower size 
limit of the datum hole). The bolts and the tolerance zone for the extracted axis are orthogonal on 
the datum plane A. The axes of gauge bolt and tolerance zone of the median line have a nominal 
distance of 20 mm. 

 
In each of the four examples shown, the 3D hole pattern fit for tolerance inspection has three 

degrees of freedom. They include two orthogonal translations and one rotation within the datum 
surface A.  

 

Further explanations refer to applications with the drawing specification Ⓜ for position tolerances 
and data. The following basic requirements apply for the correct application of drawing specifications 
according to ISO 2962.   

 Only form and position tolerances can be supplemented by the specification Ⓜ. 
 

 Tolerances and datum elements with the specification Ⓜ must refer to integral geometric 
elements from elements of size, such as the axis of a cylinder or of the median plane of a 
slot.  
 

 Further elements of size include spheres and – in the two-dimensional case – circles and 
pairs of parallel lines. In this context, cones and wedges are not elements of size.  
 

 Datum features can be supplemented by the specification Ⓜ. In the case of datum systems, 

individual datum elements can occur with and without the specification Ⓜ, as long as a Ⓜ 

element is not followed by an element which is not identified by Ⓜ at the evaluation 
sequence according to the drawing specification within the tolerance (justification according 
to ISO 5459 [12] for datum evaluation – uniqueness requirement). 
 
 

2.2. Determination of the CAD parameters for gauging 
The determination of go gauge geometric parameters is relevant for the hole pattern fitting. This 
means that the CAD model of a geometrically ideal counterpart must be constructed and 
manufactured as correctly as possible. When inspecting the fitting capability, an attempt is made to 
fit this part into the product without jamming. In Figure 2, these gauges are shown as sketches in the 
lower part of the picture, using the elementary example of the hole plate.  
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When defining geometrically ideal counterparts for gauging according to ISO 2692 in the case of 
drawing specifications numerous rules must be considered. The created ideal geometric elements 
which form a CAD model of a gauge are denoted as maximum material virtual condition (MMVC). 
The size of a geometric element of the gauge is referred to as maximum material virtual size (MMVS). 
Size, form and position tolerances can be equally integrated in the calculation of the MMVS. The 
following hand rules can be applied for the determination of the parameters required for the 
construction of the gauge: 

 Gauge geometry for form and position tolerances  with Ⓜ 

o External elements of size (shaft, toung):  
The MMVS of the gauge geometry will be formed as sum from the upper size 
limit of the tolerated geometric element Go and the tolerance for the form or 
likewise position deviation t. 
MMVS = Go + t 

o Internal elements of size (hole, slot):  
The MMVS of the gauge geometry will be formed as a difference from the 
lower limit of the tolerated geometric element Gu and the tolerance for form 
or likewise position deviation t. 
MMVS = Gu - t 

 

 Gauge geometry for datum elements with Ⓜ 
o External elements of size (shaft, toung):  

 The MMVS of the gauge geometry is the upper size limit Go of the datum 
element for negligible form deviations.  
MMVS = Go  

 If the datum element has an additional form or position tolerance (tolerance 
value referred to as t) it must be taken into account for the MMVC of the 
datum element. 
MMVS = Go + t 

o Internal element of size (hole, slot):  
 The MMVS of the gauge geometry is the lower size limit Gu of the datum 

element for negligible form deviations. 
MMVS = Gu 

 If the datum element has an additional form or position tolerance (tolerance 
value referred to as t) it must be taken into account for the MMVC of the 
datum element. 
MMVS = Gu - t 

The value for MMVS only determines the measures of the geometric elements which are plugged 
into or have to encircle the product during the gauging. As a gauge generally accounts for several of 
such coupling elements, the positions to each other and to a gauge coordinate system must be 
determined in the following. 
 

The distances between centre points, axes and median planes of the gauge’s geometric elements 
are clearly determined in the technical drawing by means of exact local measures. However, the 
assignment of a gauge coordinate system is not always obvious and the decision is left to the user. If 
datum elements are available according to ISO 5459 they can be used to determine the x, y and z 
axes of Cartesian coordinates, as local measures refer to the datum features in case of a correct 
drawing. If datum systems are incomplete or if no data are available, individual degrees of freedom 
remain available for the positioning of the gauge. For example, a single datum plane only defines the 
direction of one axis and one zero point on this axis. The user can then arbitrarily determine two 
further coordinate axes in the datum plane and their position. However, it must be ensured that – in 
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the coordinate system provisions – the nominal distances between the gauge elements comply with 
the requirements in the technical drawing. Only then is it ensured that the fitting results between the 
different coordinate systems are still compatible with each other.  
 

Further information for the use of the MMC including the drawing specification Ⓜ as well as the 
correct calculation of gauge complying with the standards are presented in Jorden [1], for example. 

2.3. Degrees of freedom for fitting and datum features 
So far, the question of how the term "fitting" ("coupling" or "plugging together") of a product and 
gauge can be formally interpreted has not been answered. For this purpose, the classical physical 
gauging is initially considered. A tester will try to plug the product together with the gauge. Thereby, 
he/she puts the product on the edges of the gauge and by simply "shaking" and "tilting" he causes 
both parts to slide into each other. If a product and a gauge can be plugged together by this 
procedure to such an extent that the requirements of the inspection are complied with, the product 
is within the tolerance which is referred to as complete fitting capability. 
 

The CAD model of the virtual counterpart for arithmetical 3D gauging is available in the gauge 
coordinate system (𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺). The measurement points of the extracted product are given in the 
workpiece coordinate system(𝑥𝑊, 𝑦𝑊, 𝑧𝑊). Both systems are Cartesian coordinates. The fitting of the 
gauge to the extracted geometry is described by a linear transformation. 
 

𝑇: (𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺) ⟶ (𝑥𝑊, 𝑦𝑊, 𝑧𝑊) 
 

This transformation maps the gauge geometry into the workpiece coordinate system. Overlapping 
or empty space can be quantified between the extracted product geometry and the transformed 
gauge. The virtual gauge and the extracted geometry are completely fitted if there is a 
transformation which represents a plugged state where there is still empty space between gauge 
geometry and the measurement points.  
 

In the three-dimensional case, the transformation is defined by rotations – e.g. by means of the 
Euler angle – and translations towards the three coordinate axes 𝑥𝐺 , 𝑦𝐺  and 𝑧𝐺 . Generally, six 
parameters are available for the transformation of gauge geometry. The unrestricted selection of a 
parameter value is referred to as degree of freedom for the fitting. If there are no restrictions for the 
parameter selection, they are referred to as full degrees of freedom to determine the transformation 
T.  
 

In many cases, the transformation permitted for the fitting is limited by constraints. In the context 
of position tolerancing including hole pattern fit there are datum elements which block the degrees 
of freedom during transformation. If, for example, a datum axis of the workpiece is given, the 
workpiece coordinate system is initially oriented towards this. The rotation around and a translation 
along the datum axis then remain as degrees of freedom for the fitting. An exception for the 

restriction of the degrees of freedom is the datum elements labelled with the symbol Ⓜ. 

2.4. Gauging with coordinate measurement systems 
In Figure 3, eight individual steps are represented for the implementation of gauging or – in general –
 3D hole pattern fit by means of coordinate measurement systems. They are split up in two groups. 
The first group is the workpiece measurement. It comprises the steps of extraction via the recording 
of measurement points at the functional surfaces of the product, partitioning and/or a reduction of 
the measurement points. The second group comprises all steps for the arithmetical evaluation of the 
hole pattern fit by means of given measurement points. Hereby, data and datum systems are initially 
set up which are required for the definition of product and gauge coordinate systems. By means of 
transformation of the measurement points into the nominal position of the gauge the procedure 
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then leads to the actual arithmetical 3D hole pattern fit. In the following, details are described for the 
individual sub-steps within the scope of coordinate metrology. It should be pointed out that the 
influence of measurement deviations during product measurement on the arithmetical fit will be 
discussed in the next section.  

 

Figure 3 Principal procedure of the arithmetic gauging by means of coordinate measurement 
machines.  

Extraction of the product surface: The measurement strategy has an essential influence on the result 
of the 3D hole pattern fit. In general, a user has different sensors at his disposal which can be used to 
extract a product [13]. This includes contact/non-contact probes, sensors that extract the product 
surface by means of single points, in lines or profiles as well as over the surface, or provide a 
volumetric image of the product, e.g. the dimensional computer tomography. The scope of 
application of the different sensors is based on – among other things – product dimensions, the 
accessibility, material properties, the specified tolerances and the economic aspects, such as costs 
and celerity. 
 

Ideally, a measuring system should allow measurement points to be densely extracted on the 
product surface. The denser the measurement points lie together the greater the possibility to 
extract the surface points which are relevant for the hole pattern fit. They include, e.g. the tops of 
rippled surfaces. The ripple is thereby caused by the manufacturing procedure. In general, these 
points are also called "highest surface points". Experience has shown that during the mating of the 
product and the gauge they are almost adjacent to the gauge or even cause the jamming of gauge 
and product. 

 
In practice, a user cannot arbitrarily select the fineness of measurement point density. In general, 

it is limited by the measuring system. Tactile measuring of single points is generally very accurate. 
During scanning measurements along a driving cycle of the probe, many measurement points with a 
small distance to each other can be included. However, for surface measurement with the same 
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distance, many individual curves must be run. For this purpose, the time expenditure is very high. 
This generally makes a complete extraction of the surface uneconomic. Here, alternatives are specific 
iterative measuring strategies ([14], [15]). Their suitable use requires an additional inspection of the 
product surface. This includes systematic shape deviations caused by the manufacturing process. The 
barrel shape of ripples can be a possible deviation. Ripples and roughness are just as relevant. 

For surface measuring, optical and CT systems, very large measurement point densities can be 
achieved as compared to tactile measuring. In case of a sufficient metrological spatial resolution of 
the sensor, the highest points of the workpiece with small measurement uncertainty will be included.  
 
Partitioning according to functional surfaces: In case of partitioning, the whole extracted geometry 
of the product is fragmented into the relevant parts. Thereby, the individual measurement points are 
attributed to the associated datum elements and functional surfaces for 3D hole pattern fit. Different 
sensors and measurement strategies lead to different requirements made on partitioning.  
 

For tactile-extraction products the partitioning is generally pre-defined by measurement planning, 
as different surface segments of a product are usually measured successively and the measurement 
points are assigned to exactly one workpiece feature. On the other hand, the measurement using a 
CT system initially provides an unpartitioned point cloud for the entire product. It is only in the 
course of the evaluation that individual measurement points are assigned to the subareas.  

 
At places where product surfaces are merging, it is difficult to clearly determine which points 

must be assigned to which surface. For this purpose, the assignment of measurement points often 
dispenses with edges. During partitioning of the measurement points for hole pattern fit, this 
problem also arises. If a bolt, for example, protrudes vertically from a plane, the partitioning must 
ensure that no measurement points are added to the bolt from the plane. On the other hand, there 
are also products for which the partitioning of the edges is uncritical for the hole pattern fit. Here, 
one can imagine a clearance hole in a plate into which a bolt is fitted. Measurement points at the 
edges of the hole are then always in the direction of the material side of the hole and do not 
influence the fitting result. It is even suitable to assign measurement points of the plate's cover side 
at a small edge around the hole to the measurement points of the hole. It is thereby ensured that all 
relevant measurement points of the hole's surface are available for the fitting, including the edges.  

 
Filtering and reduction: In some exceptional cases, the partitioned measurement points are not yet 
suited for further arithmetical evaluation. On the one hand, impurities of the product surface can 
cause gross measurement deviations. On the other hand, there are measurement errors of the 
extracted product surface, for example for measurements via CT, which do not exist in reality but 
which are artificially caused by physical effects during the measurement or product reconstructions. 
With suitable mathematical filter algorithms such deviations can be removed from the data. This 
includes both the manual visual inspection for simple products and the application of intelligent filter 
algorithms in general.  
 

In this context, Gaussian filters are not suited for the elimination of undesired measurement 
deviations. The highest points are eliminated by Gaussian filters. Their application is thereby very 
likely to lead to false results in the case of 3D hole pattern fit. 

 
If an evaluation programme can only process a limited number of measurement points in a time-

efficient way, it may be necessary to use algorithms to reduce the measurement points in order to 
use the means of coordinate metrology in a cost-effective way. Here, there is also the risk that 
unsuitable procedures remove the important highest points and thus lead to imprecise measurement 
results. 
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Assignment of datum features: If datum elements are defined, all of them must be associated 
arithmetically. The procedures for datum evaluation are regulated in ISO 5459. Maximum 
circumscribed elements and maximum inscribed elements must be calculated as well as adjacent 
geometric elements according to the Chebyshev criterion. The datum elements determine special 
points, axes or planes at the extracted product. In connection with the hole pattern fit they later set 
constraints on the translation and rotation of the gauge. By selecting a suited workpiece and gauge 
coordinate system, these constraints can be implemented as inhibition of individual transformation 
parameters during fitting.   
 
Determination of the workpiece coordinate system: 
The measurement points of extracted workpiece geometry are considered in a workpiece coordinate 
system. In a general case, this is identical to the measuring machine coordinate system in which the 
points at the workpiece surface are included. However, for several applications with hole pattern fit 
it is suitable or even necessary to assign a coordinate system to the extracted workpiece which is 
independent of the measuring machine. The measurement point coordinates will then be 
transformed into the workpiece coordination system before the hole pattern fit takes place. This 
realization clearly simplifies the hole pattern fit.  

In the application examples considered in the Guide, the position of the workpiece coordinate 
system is oriented towards the geometric datum elements which are assigned to the extracted 
geometry. If a datum does not clearly define the position and direction of the coordinate system –
 which is generally the case – it is up to the user to determine the missing degrees of freedom. 

 

Figure 4 Workpiece datum systems: a) extracted workpiece geometry in measuring machine 
coordinates, b) Alignment of the workpiece coordinate system at the lower edge of the extracted 

product.  

Figure 4 sketches the assignment of a workpiece coordinate system to a simple plate with two 
holes. The realization shows a section through the x-y-plane of the coordinate system with the 
available measurement points. On the left, there is the initial situation. The measurement point 
coordinate system is referred to as 𝑥𝑀 and 𝑦𝑀. A datum plane is assigned to the lower edge of the 
extracted product. This defines the x direction 𝑥𝑤 of the workpiece coordination system. The y 
direction can be an arbitrary vector which is orthogonal to 𝑥𝑤. In the figure on the right, 𝑦𝑊 was 
selected as the symmetry line of the extracted geometry. The intersection 𝑊0 between the axes of 
the workpiece coordinate system is the coordinate origin point.   

In order to represent the measurement point coordinates in workpiece coordinates, a conversion 
of the measuring machine coordinate system into the workpiece coordinate system is necessary. This 
is realized by means of a linear transformation according to the following steps:  
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1. Translate all points by the coordinate origin 𝑊0 into the zero point 𝑁 = (0,0,0)𝑇 . 
2. Rotate all points around the zero point, so that the axes of the workpiece coordinate system 

are parallel to the Cartesian basis vectors 𝑒𝑥 = (1,0,0)
𝑇, 𝑒𝑦 = (0,1,0)

𝑇 and 𝑒𝑧 = (0,0,1)
𝑇. 

 

Figure 5 Conversion of the measurement point coordinates for the example from Figure 4. 

The conversion of the measurement point coordinates is illustrated in Figure 5. The workpiece 
coordinate system has the same absolute position to the measurement points as in Figure 4 b). 
However, the point coordinates are converted so that the workpiece coordinate system is described 
by the zero point and the basis vectors of a Cartesian coordinate system. If only one single datum 
element is available, not all axes of the workpiece can be clearly determined. It is then the task of the 
user to define the remaining axes and/or the coordinate origin. Technically, the symmetry lines of 
the product and measurement point cloud centre of gravity projected on the datum elements 

component can be used for a decision. Furthermore, datum elements with the symbol Ⓜ do not 
define axes of the workpiece coordinate system.  
 
Elaborating a CAD model of the virtual gauge: The CAD model of the geometrically ideal counterpart 
for hole pattern fit is also set up in a Cartesian coordinate system. Initially, the geometric elements 
fitted must be identified. From the tolerances, the virtual measures (MMVS) are calculated for each 
geometric element. Subsequently, the positioning of the elements takes place in accordance with the 
nominal positions. The absolute position and orientation of the elements towards the coordinate 
system is generally not clearly determined. Here, the user must decide where the elements lie. For 
example, the elements can be oriented towards symmetry lines of the product, centres of holes, 
median planes or lateral surfaces. Nominal datum elements in the engineering drawing used as a 
basis should absolutely be taken into account during positioning. Datum elements which are 

identified with Ⓜ belong to the gauge.  

Often, the position points of geometric elements are not clearly determined. In the case of a 
cylinder, For example, each point can be selected on the axis to determine the position. A possible 
approach in case of an ambiguous definition is to transfer the centres of the geometric elements 
from the technical drawing.    
 
Calculation of an initial value according to Gauss: At the beginning of the arithmetical fit, the 
workpiece coordinate system (with the extracted geometry) and the gauge coordinate system are 
superimposed. In this configuration, the gauge and the workpiece are strongly staggered and 
twisted. By means of an initial value, the gauge must be roughly oriented towards the extracted 
workpiece. This allows the arithmetical hole pattern fit to be reliably carried out later on. 
 

The Gaussian method provides very good initial values. A variant is to calculate the 
transformation of the gauge for all gauge geometric elements and all measurement points at the 
same time, which minimizes the square sum of the orthogonal distances between points and the 
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gauge. The disadvantage of this approach is that the calculation is very time-consuming for a large 
number of gauge elements or measurement points.  
 

If the measurement points of the extracted geometry are uniformly and densely distributed on 
the product surface, a clearly simpler variant can be used for an initial value. This variant considers 
the centre of the ideal geometry in the technical drawing and the centre of gravity of the extracted 
geometry from the measurement data for each gauge element. For a uniform and dense product 
extraction it is expected that these points will lie close to each other for the hole pattern fit. Thereby, 
a procedure for the initial value is motivated where – in addition to all gauge elements – the sum of 
the distance squares between the ideal centre points and the centres of gravity are minimized. By 
reducing the fitting to the centre points, the calculation effort is clearly reduced in comparison to the 
first initial value variant. Technical details for the approach are provided for the application examples 
in the following sections. 
 
3D hole pattern fit: In the last step, the numerical core procedure is carried out for the hole pattern 
fit. This procedure is a fitting application according to the Chebyshev criterion. At the beginning, the 

relevant measurement point set 𝑃(𝑘)is attributed to each gauge element k. Value  𝑎 specifies a 
vector of transformation parameters for the translation and rotation of the virtual gauge for the 
extracted geometry. Furthermore, the orthogonal distances between the exterior gauge surfaces and 
the extracted measurement points are considered. They are called 𝑓𝑘𝑖(𝑎). Index 𝑘 is the geometry 

element number and index 𝑖 specifies the measurement point from 𝑃(𝑘). If the point is outside the 
material of the gauge, the distance is 𝑓𝑘𝑖(𝑎) ≤ 0. At this point, the gauge has empty space to the 
product or touches it just at this point. If the point is in the interior of the gauge, the following 
applies: 𝑓𝑘𝑖(𝑎) > 0. The gauge overlaps with the product at this point. The Chebyshev fitting 
program 

min
𝑎
max
𝑘,𝑖

𝑓𝑘𝑖(𝑎)       (1) 

calculates the vector of transformation parameters which minimizes the maximum distance between 
the measurement points and the gauge.  

If there is a transformation 𝑎∗ with 𝐹(𝑎∗) ≔ max
𝑘,𝑖

𝑓𝑘𝑖(𝑎
∗) ≤ 0, then there is empty space between 

the gauge and the extracted product. For 𝐹(𝑎∗) = 0 some measurement points touch the surface of 
the gauge exactly. In this case, the fitting capability of the extracted product with the CAD model of 
the gauge has been detected. Program (1) especially determines the transformation 𝑎 with the 
biggest empty space 𝐹(𝑎) ≤ 0 and/or with the smallest overlap, if the solution is 𝐹(𝑎) > 0. In the 
second case, there is no transformation where gauge and product are completely fittable. 

For an arithmetical handling of Task (1), the following notes must be taken into account. These 
notes are especially aimed at developers of evaluation software for 3D hole pattern fits. 

1. Task (1) is a minimax program and belongs to the field of non-linear and non-smooth 
optimization. The direct numerical handling can be carried out with the respective algorithms 
– e.g. bundle methods [16].  

2. An equivalent formulation for (1) is the ordinary nonlinear optimization program. 
min
𝑎,𝑠
𝑠 s. t. 𝑓𝑘𝑖(𝑎) ≤ 𝑠  for all 𝑘 and 𝑖    (2) 

It is possible to solve this with the aid of special iterative methods like gradient method, 
penalty-barrier method or SQP procedure [16]. 

3. The initial value according to Gauss is recommended as the initial solution for the numerical 
algorithms to handle (1) or (2). 

4. The numerical solver must be adapted in such a way that a calculation can be made in one 
calculation step with as little measurement points as possible. Thereby, linear equation 
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systems which must often be solved in subalgorithms must be kept of small dimensions. For 
example, it is suitable to apply active-set methods. These methods only calculate with the 
points which fulfil the constraints in (2) with equivalence. 

5. The transformations of the gauge are calculated via trigonometric functions. To ensure that 
they run stable and that arithmetic rounding errors have lower influence on the solution 
accuracy, at least double floating point number precision should be used for the calculation. 
The standard IEEE 754 [17] defines the corresponding double precision format which is 
supported by default in modern computer hardware. In case of critical calculation with 
susceptibility to rounding errors, number formats and arithmetic with higher precision 
should be used, if possible.  

6. The parallelisation of the solver is possible for the calculation with the distance values 𝑓𝑖𝑗(𝑎) 

and their gradients. For very large measurement point amounts which especially occur for CT 
measurements, the calculation time can thus be clearly shortened. In the case of the 3D hole 
pattern fit with double arithmetic precision (IEEE 754 Double Precision) the CPU 
parallelisation is to be preferred to the GPU parallelisation on graphic boards. In principle, 
graphic processors are designed for the processing of large data amounts with simple 
arithmetic operations, however, most of the models available on the market only support a 
single arithmetic calculation precision. The software-based simulation of a calculation with 
double precision leads to a very high performance loss which can annul the advantages of 
the parallelisation.  

7.  

2.5. Influence of measurement uncertainties on the fitting result 
Measurement uncertainties are a measure for the informative value of the 3D hole pattern fit 
results. According to the methodology in Figure 3, the uncertainty of the 3D hole pattern fit can be 
subdivided into one component for product extraction and one component for arithmetical fitting. If 
both uncertainty features are small, as compared to the calculated empty space between the gauge 
and the extracted product, there is a high probability that the real product lies within the specified 
tolerance. The same applies for overlapping which is considerably larger than the measurement 
uncertainty of the procedure. The product is then a reject, with very high probability.  
 

The results of the 3D hole pattern fit – whose measurement uncertainty and empty space or 
overlapping 𝐹(𝑎) lie within the same order of magnitude – require particular attention. In this case, a 
reliable statement on the fitting capability is not given. It is possible that an arithmetically fittable 
component does not fit in practice. Vice versa, arithmetically non-fittable features may well be 
coupled with the counterpart. A safe classification of whether the component lies within the 
tolerance or is a reject is thus not possible.   

 
For the economical use of the 3D hole pattern fit for the inspection of products, it is thus 

important to sufficiently know the measurement uncertainties for product extraction and the 
numerical evaluation, and, if necessary, reduce them by means of suitable procedures and methods 
to the required precision. As in the previous description of the product extraction – filtering and 
reduction – this is only possible by means of precise inspection of the product's characteristics and of 
the measurement process. What is relevant is the geometrical nature of the product surface, e.g. 
ripple and roughness. Furthermore, the system-specific measurement errors of the measuring 
machines must be taken into account. The software-based uncertainty can be detected by means of 
independent algorithm tests. There are appropriate approaches for the assignment of single 
geometric elements [18]. Tests for overall procedures during the 3D hole pattern fit are under 
development for this test platform.  
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3. Application example 1: flanges 
The example of "assembly of a flange", as it occurs during the construction of wind engines shows 
that a seemingly simple geometrical product cannot always be treated in a trivial way. Characteristic 
for the flange at modern facilities are the large dimensions of more than 5 m of flange diameter as 
well as the high number of holes on the flange. The arithmetical simulation of assembly requires the 
extraction of almost the entire external surface of the flange. This is possible, for example with the 
aid of surface measuring optical sensors. Due to the geometry, the arising data amount is particularly 
large and too complex for a description of the hole pattern fit.  

To show the core requirements for the arithmetical assembly simulation of the flange including 
3D hole pattern fit we therefore resort to the simplified model in Figure 6. The principal set-up is 
equivalent to a flange for wind engines. The measures and the number of the holes are clearly 
smaller. Furthermore, different measuring systems can be used for the extraction of this type of 
products.  

 

Figure 6 Application example of flange 

The application example for the flange is shown in Figure 6. The top surface of the flange is 
described by two parallel planes at a distance of 8.0 mm. The external surface represents a cylinder 
with a diameter of 70.0 mm. The internal surface of the flange is described as cylinder with a 
diameter of 50.0 mm. Both cylinders are coaxial and perpendicular to both top surfaces.  On the bolt 
circle with a diameter of 58.0 mm there are 5 individual holes. Each of them is staggered by 72°. 
Each hole has a diameter of 4.0 mm.  

 

3.1. Inspection according to the standard 
In order to be able to plug the flange, the contact surface (assembly surface) must be level. 
Furthermore, the holes are required to be orthogonal to the assembly surface. In addition, the bolt 
circle is concentrical to the axis of the cylinder of the external lateral surface. Thereby, there will be 
no eccentricity during operation later on which would lead to an increased wear of mobile parts for 
wind engines.  

Top surface 
(Assembly 
surface) 

Bolt circle 

Internal lateral 
surface 

External lateral 

surface 

Hole for 
assembly with 
bolts 
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Figure 7 ISO 1101 compliant inspection of the flange.  

 

According to these requirements, an unambiguous unique test task including tolerances of the 
manufactured flange can be derived. Figure 7 shows a technical drawing according to ISO 1101. The 
arithmetical inspection results in the following task: An ideal geometrical plane – identified as datum 
A – must be aligned to the real assembly surface at a minimum distance. Datum B specifies an ideal 
cylinder that is orthogonal to plane A and whose diameter is the smallest possible diameter where 
the external lateral surface of the product is completely enclosed, i.e. all measurement points lie 
within the assigned cylinder. The datum assignment is represented in Figure 8.  

 
Finally, the size and position of the individual holes to the datum surface (datum point) and to the 

axes of the datum cylinder must be inspected. This is shown in Figure 9. The tolerance from Figure 7 

with the symbol  for the maximum material condition hereby defines 5 gauge cylinders with the 
diameter of 3.8 mm (MMVS). The axes of the cylinder are parallel to the datum axis B. They are 
regularly arranged on a bolt circle with a diameter of 58,0 mm at a distance of 72° segments. The 
bolt circle is parallel to the datum plane A. Its centre point lies on the datum axis B. A transformation 
is allowed for the fitting which rotates the gauge around the axis of the datum cylinder. One must 
check if there is a rotation angle where all gauge bolts are within the holes without overlapping with 
the material of the flange ring. In this case, the product is within the range of tolerance. On the other 
hand, the product cannot be assembled due to the inspection result.  
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Figure 8 Datum assignment at the manufactured flange. 

 

Figure 9 3D hole pattern fit for the flange (on the left: perspective view, on the right: top view); the 
gauge cylinder highlighted in red overlaps with the hole. By rotating all gauge cylinders around the 
datum axis, no position is found where all cylinders lie within the holes.  

3.2. Mathematical modelling for datum features and fitting 
In order to be able to carry out the 3D hole pattern fit arithmetically, a correct and reliable 
mathematical modelling is fundamental in order to meet the requirements and targets of the 
inspection. Figure 10 gives an overview at the process of the 3D hole pattern fit for the flange. Here, 
the calculation of measurands on the basis of the extracted data is shown. The 3D hole pattern fit is 
carried out in six consecutive steps. Every step is individual and requires an independent calculation 
method for the finalization. 
 

The starting point is the calculation of the datum elements 𝐴 and 𝐵. They include single geometric 
elements that are assigned to the extracted flange according to the Chebyshev and likewise 
Minimum circumscribed condition. A workpiece coordinate system is derived from the datum 
elements which – apart from a rotation at the workpiece – is uniquely determined. The lacking 
degree of freedom is determined by a special transformation of the measurement points at the initial 
position into the workpiece coordinate system. The modelling at the hole pattern fit includes the 
calculation of the gauge geometry (ideal counterpart for the hole pattern fit), the calculation of an 
initial solution of the fitting and, finally, the implementation of the hole pattern fit. The goal is to 
determine the position of the virtual gauge in such a way that maximum empty space and/or 
minimum overlapping is achieved between the gauge geometry and measurement points. By means 
of the Gaussian method for the calculation of the initial solution, this target is attained only roughly. 
The desired position at the gauge can only actually be determined by applying the Chebyshev 
criterion. 
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Figure 10 Flowchart of the 3D hole pattern fit for the flange.  

The following subsections present details on the mathematical modelling and on the tasks to be 
solved for each of the 6 steps. 

3.2.1. Assignment of the datum plane 
The datum plane is assigned to the extracted top surface of the flange as an adjacent Chebyshev 
plane (minimum zone criterion). The input data for the calculation of the plane are the extracted 
points of the top surface. 

𝑃 ≔ {𝑃1, … , 𝑃𝑚},   𝑃𝑖 ∈ ℝ
3 

Every point has the form 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)
𝑇 . The coordinates 𝑥, 𝑦  and 𝑧  are specified in the 

measurement point coordinate system. The assigned plane has an ideal geometrical form. It has 
been parameterized via the normal vector  

𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)
𝑇
∈ ℝ3 

and a point on the plane. 

𝐶 = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧)
𝑇
∈ ℝ3 

With this definition, the representation of an ideal plane is not yet unambiguous. For example, for 
𝐶, every arbitrary point of the plane is possible. Thus, further constraints are made on the 
parameters. On the one hand, the normal vector is supposed to have the length 1. 

〈𝑣, 𝑣〉 = 1.      (3) 
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On the other hand, the point of the plane must be located so that the distance to the centroid 𝐺 
of the data 𝑃 is at a minimum. For this purpose, 𝑣1, 𝑣2 ∈ ℝ

3 shall be two vectors with a length of 1 
which are orthogonal to the normal 𝑣. For those, 〈𝑣1, 𝑣2〉 = 0 applies. Then, point 𝐶 is the projected 
centroid, if  

〈𝐺 − 𝐶, 𝑣1〉 = 0
〈𝐺 − 𝐶, 𝑣2〉 = 0

                      (4) 

is met. The centroid is calculated as an arithmetic mean. 

𝐺 =
1

𝑚
∑𝑃𝑖

𝑚

𝑖=1

. 

For the correct assignment of the datum plane the orthogonal distances between the ideal plane 
and the measurement points are considered. These are as follows: 

𝑓𝑖(𝐶, 𝑣) = 〈𝑃𝑖 − 𝐶, 𝑣〉 

 

The assignment finally takes place according to the following mathematical model.  

Assignment task: Chebyshev plane as adjacent datum plane 

If 𝑃 is the extracted geometry of a plane surface. The assigned Chebyshev plane has the parameters 𝐶 
and 𝑣 which solve  

𝑚𝑖𝑛
𝐶,𝑣

𝑚𝑎𝑥
𝑖
|𝑓𝑖(𝐶, 𝑣)|      (5) 

and meet the constraints (3) and (4). For 𝑠 = 𝑚𝑎𝑥
𝑖
|𝑓𝑖(𝐶, 𝑣)|, the adjacent Chebyshev datum plane 

with the parameters �̂�, 𝑣 is calculated by means of the translation  

�̂� = 𝐶 + 𝑠 ∙ 𝑣.       (6) 

The sign of 𝑣 must be determined in such a way that this vector points away from the material side of 
the extracted geometry for the calculation of (6). 

 

3.2.2. Assignment of the datum cylinder 
The input data for the cylinder calculation are the points measured at the outer flange surface. In the 
case of the planes, they are simply called 𝑃. The assigned cylinder has a geometrically ideal form. It is 
parameterized by a parameter for the direction of the cylinder axis  

𝑣 = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧)
𝑇
∈ ℝ3, 

a parameter for the position of the cylinder axis 

𝐶 = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧)
𝑇
∈ ℝ3 

and the radius of the cylinder lateral surface 

𝑟 > 0 

As the cylinder is assigned as secondary datum element, the following constraints apply for the 
parameters. The direction of the cylinder axis corresponds to the normal vector of the datum plane 
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previously determined. For the unambiguous calculation of the position, a further criterion for the 
position of the point on the cylinder axis must be given. This point can be the intersection between 
the axis and the datum plane. 

 
The assignment of the cylinder parameters is carried out according to the minimum circumscribed 

element criterion. For its mathematical formulation the orthogonal distances  

𝑓𝑖(𝐶, 𝑣, 𝑟) = ‖(𝑃𝑖 − 𝐶)×𝑣‖ − 𝑟 

between the measurement points from 𝑃 and the lateral surface of the ideal cylinder are considered. 
The following task must be solved for the correct calculation of the cylinder parameters. 

Assignment task: envelope cylinder as secondary datum vertically to a plane:  

Determine the point 𝐶 and the radius 𝑟 in such a way that 

𝑚𝑖𝑛
𝐶,𝑟

𝑟                                       𝑠. 𝑡.  𝑓𝑖(𝐶, 𝑣, 𝑟) ≤ 0   𝑓𝑜𝑟  1 ≤ 𝑖 ≤ 𝑚  (7) 

is obtained. 

 

3.2.3. Workpiece coordinate system and virtual gauge 
In the case of the flange considered here, the virtual gauge for the hole pattern fit must only be 
rotated around the axis of the datum cylinder. As the axis can generally be tilted in space, this can 
only be solved with great technical effort. By suitably assigning a workpiece coordinate system and 
the suitable geometry of the virtual gauge, the fitting can be technically realized more easily.  
 
Assignment of the workpiece coordinate system 
The axis of the envelope cylinder (7) is the basis for the definition of the workpiece coordinate 
system. This example specifies that the direction vector 𝑣 defines the z axis 𝑧𝑊 of the workpiece. 
Likewise, point 𝐶 from (7) is defined as the centre point of the workpiece coordinate system. The 
remaining axes 𝑥𝑊 and 𝑦𝑊 are not clearly determined by the datum system. It is only during the 
transformation of the extracted geometry into the workpiece coordinate system – which is still 
incomplete at that point in time – that they are specified. The transformation shown here is a 
possible variant for this. There are also other approaches which lead to the same fitting result later 
on, however, they will not be discussed here.  

The conversion of point coordinates 𝑃𝑖 ∈ ℝ
3  into the workpiece coordinate system is 

implemented by the linear transformation 

�̂�𝑖 = 𝑅(𝑃𝑖 − 𝐶). 

The 3x3 matrix 𝑅 defines a rotation which map the direction vector 𝑣 of the datum cylinder on 
the basis vector 𝑒𝑧 = (0,0,1)

𝑇. As  𝑣  corresponds to the z axis of the coordinate system, the 
following must be valid 

𝑅𝑣 = 𝑒𝑧. 

By means of the Tait-Bryan angles for rotations around the x and/or y axis 

𝑅𝑥 = (
1
0
0

0
cos(𝛼)

sin(𝛼)
−

0
sin(𝛼)

cos(𝛼)
) and 𝑅𝑦 = (

cos(𝛽)
0

−sin(𝛽)

0
1
0

sin(𝛽)
0

cos(𝛽)
) 
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𝑅 ≔ 𝑅𝑦
𝑇𝑅𝑥

𝑇 

is created. The point coordinates �̂�𝑖 then lie in the workpiece coordinate system with the origin point 
𝑊0 = (0,0,0)

𝑇, x axis 𝑥𝑤 = (1,0,0)
𝑇, y axis 𝑦𝑤 = (0,1,0)

𝑇 and z axis 𝑧𝑤 = (0,0,1)
𝑇.  

The following algorithm provides a numerically more stable procedure for the calculation of the 
two Euler rotation angles 𝛼 and 𝛽. 

Algorithms for the calculation of the rotation angles for the 
coordinate transformation 

Step 0: Set a positive accuracy 𝜀 ≪ 1. 

Step 1:  Calculate  𝑡 = √𝑣𝑦
2 + 𝑣𝑧

2 

If 𝑡 < 𝜀, set 𝑐𝑜𝑠(𝛼) = 1 and sin(𝛼) = 0. 

If not, set 𝑐𝑜𝑠(𝛼) =
𝑣𝑧

𝑡
, sin(𝛼) =

𝑣𝑦

𝑡
 and 𝑣𝑧

′ = t.      

 

Step 2:  Calculate 𝑡 = √𝑣𝑥
2 + 𝑣′𝑧

2   
If 𝑡 < 𝜀, set 𝑐𝑜𝑠(𝛽) = 1 and sin(𝛽) = 0. 

If not, set 𝑐𝑜𝑠(𝛽) =
𝑣′𝑧

𝑡
 and sin(𝛽) =

𝑣𝑥

𝑡
.          

 
The limit for the precision 𝜀 determines when a component of a vector 𝑣 already lies close enough 

to the direction achieved of the z axis. In this case, no further rotation of the data is done.  

The transformation must be implemented for all measurement points which have been assigned 
to the cylindrical holes on the flange. Each hole is available with its own set of measurement points.  

𝑃(1) = {𝑃1
(1)
, … , 𝑃𝑚1

(1)
}, 

𝑃(2) = {𝑃1
(2)
, … , 𝑃𝑚2

(2)
}, 

𝑃(3) = {𝑃1
(3)
, … , 𝑃𝑚3

(3)
}, 

𝑃(4) = {𝑃1
(4)
, … , 𝑃𝑚4

(4)
}, 

𝑃(5) = {𝑃1
(5)
, … , 𝑃𝑚5

(5)
} 

For simplification reasons, the index 𝑘 with 1 ≤ 𝑘 ≤ 5 will be introduced for the assignment of 

the measurement point sets to the individual holes in the following. It is written as 𝑃(𝑘) and/or 𝑃𝑖
(𝑘)

 

with the coordinate values 𝑃𝑖
(𝑘)
= (𝑥𝑘𝑖, 𝑦𝑘𝑖 , 𝑧𝑘𝑖)

𝑇. Furthermore, the values 𝑚𝑘 stand for the number 

of points of the extracted geometric element with the index k. The transformation of the 

measurement data is �̂�𝑖
(𝑘)
= 𝑅 (𝑃𝑖

(𝑘)
− 𝐶). The extracted geometry is outlined with the workpiece 

coordinate system in Figure 11. 
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Figure 11 Workpiece coordinate system and extracted geometry at the flange. 

To simplify things, the further notation 𝑃𝑖
(𝑘)

 is used instead of �̂�𝑖
(𝑘)

 for the point coordinates in 

the workpiece coordinate system referring to the respective context. 

Specification of the virtual gauge: 
The virtual gauge consists of 5 cylinders with an ideal geometrical form. All cylinder axes are parallel 
with the common direction vector 𝑣 = (0,0,1)𝑇. Likewise, every cylinder has the same radius 𝑟 = 1.9 
mm. However, the positions of the individual cylinder axes  

𝐶1, … , 𝐶5 

are different. They are also referred to as 𝐶𝑘 (𝑘 = 1,… ,5). The nominal position is carried out by 
means of the specified bolt circle with the radius 𝑟𝐿 = 29 mm and the angular distance 𝜏 = 72° to 

𝐶𝑘 = (

𝐶𝑘𝑥
𝐶𝑘𝑦
𝐶𝑘𝑧

) = (
𝑟𝐿 cos(𝑘𝜏)

𝑟𝐿 sin(𝑘𝜏)
0

) 

The following matrix formulation is suitable for the storage of the geometric parameters of the 
gauge.  

𝑀 =

(

 
 
 

𝐶1𝑥 𝐶1𝑦 𝐶1𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑟

𝐶2𝑥 𝐶2𝑦 𝐶2𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑟

𝐶3𝑥 𝐶3𝑦 𝐶3𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑟

𝐶4𝑥 𝐶4𝑦 𝐶4𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑟

𝐶5𝑥 𝐶5𝑦 𝐶5𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑟)

 
 
 

    (8) 

Note: The formulation of (8) requires that the normal vector of the datum plane A points towards 
the material side of the flange. However, if the datum direction is turned, i.e. if the normal vector 
points away from the material, then the sequence of the entries in the parameter matrix changes. 
Then, 𝐶5 to 𝐶1 must be entered instead of 𝐶1 to 𝐶5. 

3.2.4. Initial value and 3D hole pattern fit for the flange 
The starting point for the modelling of the 3D hole pattern fit for the flange are the measurement 

points of the holes 𝑃(1), … , 𝑃(5) in the workpiece coordinate system and the matrix with the 
parameters of the gauge geometry 𝑀.  
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The free parameter of the fitting is the rotational angle 𝜑 which turns the gauge or, likewise, the 
gauge parameter around the z axis in the coordinate origin of the coordinate system. The angle 
determines a special rotary matrix 𝐻. 

𝑀(𝜑) = 𝑀 ∙ 𝐻(𝜑) 

There is  

𝐻(𝜑) =

(

 
 
 
 

    𝑐𝑜   𝑠𝑖 0 0 0 0 0
−𝑠𝑖    𝑐𝑜 0 0 0 0 0
   0     0  1 0 0 0 0
   0     0  0 1 0 0 0
   0     0  0 0 1 0 0
   0     0  0 0 0 1 0
   0     0  0 0 0 0 1)

 
 
 
 

    (9) 

with the values 𝑠𝑖 = sin(𝜑) and 𝑐𝑜 = cos(𝜑). In addition, 
 

𝐶𝑘(𝜑) = (𝐶𝑘𝑥, 𝐶𝑘𝑦, 𝐶𝑘𝑧)
𝑇
∙ (
𝑐𝑜
−𝑠𝑖
0

𝑠𝑖
𝑐𝑜
0

0
0
1
) 

 
is used for the rotated position points of the gauge cylinders in order to simplify the notation for the 
mathematical modelling of the fitting task.  
 

In the following subsections, the mathematical models are described for a consistent 3D hole 
pattern fit. The procedure starts with a Gaussian-type coarse fitting which is used as the starting 
solution for the exact fit according to the Chebyshev criterion (1). 

Starting solution with a Gaussian fitting 

In a first step, the centroid 𝑄𝑘 = (𝑞𝑘𝑥, 𝑞𝑘𝑦, 0)
𝑇

 is calculated for every point set 𝑃(𝑘). Thereby the 

following applies: 

𝑞𝑘𝑥 =
1

𝑚𝑘
∑𝑥𝑘𝑖

𝑚𝑘

𝑖=1

 

and 

𝑞𝑘𝑦 =
1

𝑚𝑘
∑𝑦𝑘𝑖

𝑚𝑘

𝑖=1

. 

The calculation is also efficient for large data sets. In order to determine the starting position of 
the gauge, the angle 𝜑0 is calculated by means of a best fitting which solves the minimization 
program  

min
φ0
  
1

2
∑ ‖𝐶𝑘(𝜑0) − 𝑄𝑘‖

25
𝑘=1      (10) 

The sum of the distance squares between the centre point of the gauge cylinder axes and the 
point cloud centroids is hereby minimized. This coarse fitting is shown in Figure 12. 
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Figure 12 Coarse fitting at the flange 

On the left, the initial situation where the workpiece coordinate system and the gauge are 
superimposed is shown. Measurement points and gauge cylinders are shown in the top view on the 
x-y-plane. The gauge cylinders coloured in blue are clearly staggered to the black dotted extracted 
holes. On the right side of the figure, the distances between the gauge centre points and the point 
cloud centroids were minimized. Thereby, the gauge coordinate system was rotated around the 
angle 𝜑0. 

Calculation of the 3D hole pattern fit 
The measurement points at the 5 individual holes describe cylinders which – due to measurement 
and manufacturing deviations – do not have an ideal geometric shape. In general, there are 
deviations of measure, shape and position. They influence the result of the previous Gaussian fit. The 
angle 𝜑0 calculated from the initial value (10) is not yet the angle with the smallest possible overlap 
or largest possible empty space between the gauge cylinders and the measurement points available.  

For the calculation of the 3D hole pattern fit, the orthogonal distances between the gauge 
cylinders and the measurement points of the holes are defined as follows: 

𝑓𝑘𝑖(𝑀(𝜑)) = 𝑟 − ‖(𝑃𝑖
(𝑘)
− 𝐶𝑘(𝜑))×𝑣‖ 

Index 𝑘 is the number of the hole and index 𝑖 specifies the number of the measurement points to 
the hole 𝑘. The norm is the Euclidean standard norm in the ℝ3. 

 
The application of the general fitting program (2) from Chapter 2.4 thereby provides the 3D hole 

pattern fit for the flange (11). 

min
φ∈ℝ,𝑠∈ℝ

𝑠           𝑠. 𝑡.    𝑓𝑘𝑖(𝜑) ≤ 𝑠  ∀ 𝑘 = 1, . . ,5  𝑎𝑛𝑑 ∀ 𝑖 = 1,… ,𝑚𝑘   (11) 

The rotation angle 𝜑  calculated from this program and the maximum distance 𝑠  is the 
determination of the quantity searched – minimum overlapping or maximum empty space –  and 
easy to realize. The following statements are valid 

 If 𝑠 > 0, there is an overlap between the gauge and the measurement points. It has the value 
𝑠. 

 If 𝑠 < 0, there is empty space between the gauge and the measurement points. It has the 
value 𝑠. 
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 If 𝑠 = 0, the gauge is adjacent to the measurement points. There is neither empty space nor 
overlap. 

 Further comments: 
(a) The procedure (11) for 3D hole pattern fit including the Chebyshev criterion does not lead to a 

correct solution for arbitrary starting angles 𝜑0. 
(b) By means of the individual values of the distances 

𝑠𝑘 ≔ max
i=1,.,,,mk

𝑓𝑘𝑖(𝜑) 

it can be individually realized which holes, if necessary, must be processed further, and where 
and how, so that the product is within the tolerance.  
 

3.4 Generalization of the test task for the simulation of assembly 
A further application of 3D hole pattern fitting exists for the simulation of assembly of two parts. The 
flange according to Figure 4 and the counterpart in Figure 13 are given. 

 

Figure 13 Counterpart for flange assembly. 

The counterpart for the flange is defined by a cylindrical disc with a diameter of 70.0 mm and a 
height of 10.0 mm. 5 bolts with a diameter of 3.8 mm are arranged perpendicularly to the surface of 
the disc on a circle with a diameter of 58.0 mm. The radial distances between the holes are 72°, 
respectively. The circle is concentrical to the axis of the disc.  

 
The basic idea of the inspection procedure is to extract the manufactured product in a first step 

and to assign ideal geometric elements to it in a suitable manner. These elements then form a virtual 
gauge. In a second step, the arithmetical 3D hole pattern fit is used to inspect whether these virtual 
gauges and the extracted flange can be fitted to each other.  

 

Figure 14 Assignment of the virtual gauge to the counterpart.  
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Figure 14 illustrates the assignment of the gauge to the product. The measured features of the 
counterpart are used to construct a virtual gauge. At the surface of the counterpart disc, an adjacent 
plane is assigned according to the Chebyshev criterion. The latter is marked in blue. To determine the 
centre of the gauge – which is required as a position for the later fitting – a minimum circumscribed 
cylinder is calculated for the lateral surface of the disc whose axis runs orthogonally to the assigned 
plane. This cylinder is marked green. In a last step of the gauge calculation, a surrounding minimum 
circumscribed cylinder is assigned to each extracted bolt (yellow). The axes are perpendicular to the 
adjacent blue plane in the form of a constraint. The gauge coordinate system (𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺) is applied 
parallel to the axis of the external cylinder. The point of origin is located in the assigned plane. 

With the gauge geometry measured from the counterpart, the hole pattern fitting to the flange is 
carried out as described at the beginning of this chapter. As the position and the measurements of 
the gauge cylinder can vary, the arithmetical counterpart generally no longer has rotation symmetry. 
Therefore, 5 different starting positions must be inspected for the virtual gauge. This is achieved by 
means of cyclically exchanging the assignment between measurement points of the holes and the 
gauge cylinders.  

Generally, the procedure can also be transferred to the assembly of two flanges including bolts. 
Thereby, one of the flanges is treated like the gauge part. Instead of circumscribed cylinders, 
inscribed cylinders are assigned to the holes. Each of these cylinders must have a minimum diameter 
in order to push the bolts through. The second step of the arithmetical assembly simulation is carried 
out by means of 3D hole pattern fit.  

4. Application example 2: conical discs  
The conical disc describes the fitting of several groups of geometric elements including different sizes 
and shapes. Generally, the arrangement of the elements is not rotation-symmetrical. The application 
example is shown in Figure 15. 

 

Figure 15 Example of a conical disc 

A truncated cone forms the base geometry. The diameters at the two circular ends are 70.0 mm 
and 40.0 mm. The height of the cone is 30.0 mm. Parallel to the cone axis, five cylindrical holes have 
been integrated. Each hole has a diameter of 8.0 mm. They are situated on a bolt circle. This bolt 
circle is concentrical to the conical axis and has a diameter of 44.0 mm. Each axis of the five holes is 
arranged around 60° segments of the bolt circle. Vis-à-vis of the holes is a slot. The internal surfaces 
of the slot include a rear and two side surfaces. They are parallel to the conical axis. The width of the 
slot is 16 mm. Furthermore, the lateral surfaces are oriented symmetrically to the conical axis. The 
rear surface has a distance of 11 mm to the conical axis. The model corresponds to the typical 

Slot side surface 

Seitenfläche 

Slot rear surface 

Cone lateral 

surface 

gelseitenfläche 

Holes 

Bolt circle 
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industrial applications. The cone is a specific kind of mating part. The tapering cone shape leads to a 
centring when plugged on a similarly shaped counterpart. For example, such fits are used for drill 
chucks for assembly via a transmission shaft. By means of the slot, an orientation of the conical part 
is possible. The holes have other functional tasks. For example, they can be used as clearance holes 
for screws or for running lines through. 

4.1. Inspection according to the standards 
A simple inspection task on the conical disk is shown in Figure 16.  

 
Figure 16 Tolerancing for the conical disc (basis ISO 1101). 

The position of the five holes is inspected on the common bolt circle according to MMC. In 
addition, there is reference datum system available. The conical lateral surface forms the primary 
datum A. This corresponds to a centring conical fit during the assembly. The drawing specifications 
for a cone have been implemented according to DIN EN ISO 3040 [18]. The nominal cone angle 𝛼 =

2 ∗ 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑐

2
) ≅ 26.565° is calculated by the taper ratio 𝑐 = 1: 1.  

 
The assignment of a geometrically ideal cone for the external lateral surface in order to form the 

datum A is shown in Figure 17. The cone angle 𝛼 has been specified for the assignment. It is used to 
determine the cone parameters in such a way as to minimize the largest distance between the 
manufactured cone lateral surface and the ideal cone lateral surface. It is externally adjacent to the 
product.  The assignment is specified as Chebyshev assignment within the scope of the Guide. 

 

The slot forms the secondary datum B. The additional specification Ⓜ following the datum A in 
the tolerance frame indicates that B must be considered as part of the gauge for the inspection of 
the product. The gauge required for the inspection of the product is sketched in Figure 18. The left 
part of the figure shows the extracted geometry and the gauge in a perspective view. The lateral 
surfaces of the gauge prism for the slot is marked in green. Their theoretical exact width is 15.85 mm. 
The blue cylinders are gauge counterparts for the holes. They have a nominal exact diameter of 7.8 
mm. Both the lateral surfaces of the slot and the cylinders are parallel to the axis of the cone. The 
extent of the surfaces and the length of the cylinders are theoretically unlimited. However, they are 
represented in truncated form in the figure. The manufactured product only shows the functional 
surfaces that are relevant for the assembly. They include the inner surfaces of the holes and the 
lateral surfaces of the slot. The degree of freedom for the fit is the rotation of the whole gauge 
geometry around the axis of the datum cone. A shift along the axis is not permitted. This degree of 
freedom is blocked via the datum point of the cone apex. The given example sketches a position of 
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the gauge to the product geometry with the complete fitting capability (empty space between the 
product and the gauge). 

 
Figure 17 Datum assignment at the manufactured conical disc.  

 
Figure 18 3D hole pattern fit for the conical disc. 

Additional form and position tolerances are not available for the conical disc and the slot. Hereby, 
an elementary tolerancing of the product is considered. For practical applications, further tolerances 
must be taken into account for datum creation. See Section 2.3. 

4.2. Mathematical model of datum creation and fit 
In this section, the precise procedure of arithmetical 3D hole pattern fit is described for the 
application example 2, the conical disc. The starting point is the extracted product geometry which, 
for example, has been determined by means of a coordinate measurement system. To implement 
the 3D hole pattern fit, the steps shown in Figure 19 must be completed.  

Datum point 
 

Datum axis Datum cone 

Manufactured 

conical disc 
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Figure 19 Flowchart for 3D hole pattern fit for a conical disk. 

The following subsections clarify details on the individual steps of the arithmetical fit.  

4.2.1. Assignment of the datum cone 
The cone as a datum element must be fitted with its nominal value of the cone angle according to 
ISO 5459. The assignment is implemented according to the Chebyshev criterion. The latter aims at 
the minimization of the largest distance between the product’s surface and the assigned cone’s 
lateral surface. The lateral surface of the conical disc is extracted for the fit. The 𝑚 ∈ ℕ measurement 
points should be available, whereby m≥6 is assumed. The measurement points are referred to as 
follows:  

𝑃 = {𝑃1, … , 𝑃𝑚} 

The individual points have the coordinates 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)
𝑇  for all 𝑖 ∈ 𝐼 ≔ {1,… ,𝑚} . The 

geometry of the assigned cone is described by three parameters. The first parameter is the direction 
of the cone axis.  

𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)
𝑇
. 

It points towards the cone apex. The definition requires 

𝑣𝑇𝑣 = 1                             (12) 

i.e., the direction vector is standardized to the length 1. The second parameter is the position of a 
point on the cone axis, specified by the coordinates.  

𝐶 = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧)
𝑇
. 

As the position of the point can be arbitrarily situated on the cone axis, a further constraint was 
introduced which exactly determines the position. The centroid 𝐺 of the point cloud projected on the 
cone axis is thus especially robust as a definition of 𝐶. It can be calculated from the condition 

〈𝐺 − 𝐶, 𝑣〉 = 0      (13) 
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whereby 

𝐺 =
1

𝑚
∑𝑃𝑖

𝑚

𝑖=1

. 

The third parameter is the cone radius in the point 𝐶. The latter is designated by the symbol 

𝑟 > 0. 

The parameter is the radius of the circular cross section orthogonal to the cone axis. The circular 
cross section has the centre 𝐶. Furthermore, the cone geometry is described by the cone angle of 
0 < 𝛼 < 180. 

 
Next, the orthogonal distances between the lateral cone surfaces and the extracted measurement 

points are considered. Their definition is 

𝑓𝑖(𝐶, 𝑣, 𝑟) ≔ (𝑒𝑖 − 𝑟) cos (
𝛼

2
) − 𝑑𝑖 sin (

𝛼

2
) 

 with 𝑒𝑖 ≔ ‖(𝑃𝑖 − 𝐶)×𝑣‖ and 𝑑𝑖 ≔ 〈𝑃𝑖 − 𝐶, 𝑣〉. The values are defined for all 𝑖 ∈ 𝐼. Finally, the 
following mathematical assignment task results for the datum cone: 

Chebyshev assignment for an adjacent cone:  
Determine the parameters 𝐶 ∈ ℝ3, 𝑣 ∈ ℝ3 and 𝑟 > 0 with (12) and (13) which solve 
 

𝑚𝑖𝑛
𝐶,𝑣,𝑟

𝑚𝑎𝑥
𝑖∈𝐼
|𝑓𝑖(𝐶, 𝑣, 𝑟)|     (14) 

 
The externally adjacent Chebyshev cone is calculated from the solution of (14) by the translation  

�̂� = 𝐶 + 𝛾 ∙ 𝑣       (15) 
 
The value for the translation factor is  
 

𝛾 =
𝑚𝑎𝑥
𝑖∈𝐼

|𝑓𝑖(𝐶,𝑣,𝑟)|

𝑠𝑖𝑛(
𝛼

2
)

.      (16) 

 

4.2.2. Workpiece  coordinate system and definition of the gauge geometry 
In case of the flange, the separate determination of a workpiece coordination system leads to the 
simplification of the fitting model. A similar situation is the example of the cone disc. Here, the hole 
pattern fit has the constraint that the virtual counterpart (gauge) can only be rotated around the axis 
of the datum cone.  

Determination of the workpiece coordinate system 
The z axis of the workpiece coordinate system is determined as the direction of the cone axis 𝑣 from 
(14). The coordinate origin point 𝑊0is the projected centroid C on the cone axis. The remaining axes 
𝑥𝑊  and 𝑦𝑊  are not clearly defined by the datum element. Again, they are caused by the 
transformation of the measurement points of the extracted geometry in the incomplete workpiece 
coordinate system.  

The transformation of the measurement point coordinates is �̂� = 𝑅 ∙ (𝑃 − 𝐶). As in case of the 
flange, 𝑅 is a rotary matrix which turns the direction vector 𝑣 to the basis vector (0,0,1)𝑇. For the 
translated measurement point coordinates, 𝑥𝑊 = (1,0,0)

𝑇 and 𝑦𝑊 = (0,1,0)
𝑇 are the determination 

for the undefined axes of the workpiece coordinate system. The calculation of the transformation 
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parameter is identical to the procedure in section 3 (algorithm for the calculation of the rotation 
angle for the coordinate transformation). In the case of the conical disc, the geometry parameter 𝐶 
and 𝑣 are derived from the datum cone axis. The assigned coordinate system is sketched in Figure 20. 

 

Figure 20 Workpiece coordinate system for the conical disc 

For the conical disc, special measurement point amounts are available  

𝑃(1) = {𝑃1
(1)
, … , 𝑃𝑚1

(1)
}, 

𝑃(2) = {𝑃1
(2)
, … , 𝑃𝑚2

(2)
}, 

𝑃(3) = {𝑃1
(3)
, … , 𝑃𝑚3

(3)
}, 

𝑃(4) = {𝑃1
(4)
, … , 𝑃𝑚4

(4)
}, 

𝑃(5) = {𝑃1
(5)
, … , 𝑃𝑚5

(5)
} 

for the five holes. Furthermore, 

𝑃(6) = {𝑃1
(6)
, … , 𝑃𝑚6

(6)
} 

and 

𝑃(7) = {𝑃1
(7)
, … , 𝑃𝑚7

(7)
} 

stand for the lateral surfaces situated opposite of the slot. When defining 𝑃(𝑘), 𝑚𝑘  is the 
respective number of points per data set. The transformation of the measurement points into the 

workpiece coordinate system is formally calculated by �̂�𝑖
(𝑘)
= 𝑅 (𝑃𝑖

(𝑘)
− 𝐶). In the following, the 

designation 𝑃𝑖
(𝑘)

 is used for the points in the workpiece coordinate system to simplify the notation.  

 
Specification of the virtual gauge 
The virtual gauge consists of five cylinders and a pair of parallel planes with an ideal geometrical 
form. All cylinder axes are parallel to the common direction vector 𝑣 = (0,0,1)𝑇. Likewise, every 
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cylinder has the radius 𝑟 = 3.9 mm (diameter 7.8 mm). However, the positions of the individual 
cylinder axes are different: 

𝐶1, … , 𝐶5 

They are also referred to as 𝐶𝑘 (𝑘 = 1,… ,5). The calculation of the nominal position is carried out 
by means of the specified bolt circle with the radius 𝑟𝐿 = 22 mm, 𝜏0 = −30°0 and the angular 
distance 𝜏 = 60° 

𝐶𝑘 = (

𝐶𝑘𝑥
𝐶𝑘𝑦
𝐶𝑘𝑧

) = (
𝑟𝐿 cos(𝜏0 + 𝑘𝜏)

𝑟𝐿 sin(𝜏0 + 𝑘𝜏)
0

). 

The pair of parallel planes for the slot is initially defined by the normal vector 𝑛 = (1,0,0)𝑇 in its 
orientation. Thus, the planes are parallel to the conical axis and symmetrical to the five gauge 
cylinders. For each plane, the sign of the normal is selected in such a way that it points away from the 
theoretical material side in the technical drawing and/or at the real product. Furthermore, the 
position is defined by a point which is situated centrally between the two planes. For 𝑘 = 6 and 𝑘 =
7 this point is 

𝐶𝑘 = (

𝐶𝑘𝑥
𝐶𝑘𝑦
𝐶𝑘𝑧

) = (
0
−22
0
). 

This is exactly the intersection point of the theoretically exact bolt circle and the y axis of the 
gauge coordinate system which is situated centrally in the slot. The orthogonal distance of the lateral 
planes to the median plane via point 𝐶𝑘 with the normal vector 𝑛 is 𝑑 = 7.925 mm. The matrix 
formulation for the storing of the gauge geometry parameters is   

𝑀 =

(

 
 
 
 
 
 

𝐶1𝑥 𝐶1𝑦 𝐶1𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧    0      0    0     𝑟

𝐶2𝑥 𝐶2𝑦 𝐶2𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧    0      0    0     𝑟

𝐶3𝑥 𝐶3𝑦 𝐶3𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧    0      0    0     𝑟

𝐶4𝑥 𝐶4𝑦 𝐶4𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧    0      0    0     𝑟

𝐶5𝑥 𝐶5𝑦 𝐶5𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧    0      0    0     𝑟

𝐶6𝑥 𝐶6𝑦 𝐶6𝑧   0   0   0 −𝑛𝑥 −𝑛𝑦 −𝑛𝑧 𝑑

𝐶7𝑥 𝐶7𝑦 𝐶7𝑧   0   0   0   𝑛𝑥    𝑛𝑦     𝑛𝑧 𝑑)

 
 
 
 
 
 

.   (17) 

The first five lines are the parameters of the gauge bolts for the holes. The two remaining lines 
provide the parameters of the pair of planes for the fitting of the slot.  

 

4.2.3. Calculation of the initial value and the 3D hole pattern fit  
The starting point for the modelling of the 3D hole pattern fit of the conical disc are the 

measurement points transformed into the workpiece coordinate system of the holes 𝑃(1), … , 𝑃(7) 
and the matrix with the parameters of the gauge geometry 𝑀.   

The free parameter of the fitting is the angle 𝜑 which rotates the gauge in the coordinate origin 
around the z axis of the workpiece coordinate system.  The angle determines a special rotary matrix 
𝐻 which helps to calculate the parameters of the rotated gauge via 

𝑀(𝜑) = 𝑀 ∙ 𝐻(𝜑). 

Hereby,  
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 𝐻(𝜑) =

(

 
 
 
 
 
 
 

𝑐𝑜
−𝑠𝑖
0
0
0
0
0
0
0
0

𝑠𝑖
𝑐𝑜
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
𝑐𝑜
−𝑠𝑖
0
0

0
0
0
0
0
0
𝑠𝑖
𝑐𝑜
0
0

0
0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
1)

 
 
 
 
 
 
 

   (18) 

with the values 𝑠𝑖 = sin(𝜑) and 𝑐𝑜 = cos(𝜑). In 𝑀(𝜑), only the position entries (the x and y 
coordinates of the gauge bolts, plane centre) and the normal vectors of the pair of planes change. 
For a simplified notation, these entries are thus also referred to as  

𝐶𝑘(𝜑) = (𝐶𝑘𝑥, 𝐶𝑘𝑦, 𝐶𝑘𝑧) (
𝑐𝑜    𝑠𝑖 0
−𝑠𝑖 𝑐𝑜 0
  0    0  1

) 

and 

𝑛𝑘(𝜑) = (𝑛𝑘𝑥, 𝑛𝑘𝑦, 𝑛𝑘𝑧) (
𝑐𝑜    𝑠𝑖 0
−𝑠𝑖 𝑐𝑜 0
  0    0  1

). 

 

4.2.3 Initial value and 3D hole pattern fit for the conical disc 
In this subsection, the mathematical models are described for the 3D hole pattern fit. In turn, a 
coarse fitting starts according to a suitable Gaussian criterion. Subsequently, the 3 D hole pattern fit 
is implemented according to the Chebyshev criterion.  

Starting solution with a Gaussian fitting 
As in the case of the flange, the calculation of a coarse fitting considered here is oriented towards the 
centres of the ideal gauge geometries and the measurement points. In a first step, the centroid is 

calculated for each extracted hole 𝑃(𝑘) with 𝑘 = 1,… ,5. The z component of the centroid is set to 0, 
as it must not influence the fitting result. The other components are 

𝑞𝑘𝑥 =
1

𝑚𝑘
∑𝑥𝑘𝑖

𝑚𝑘

𝑖=1

 

and  

𝑞𝑘𝑦 =
1

𝑚𝑘
∑𝑦𝑘𝑖

𝑚𝑘

𝑖=1

. 

The calculation is efficient for large data volumes. Likewise, a centroid is calculated for the 

extracted pair of parallel planes of the slot. This centroid is 𝑄6 = (𝑞6𝑥, 𝑞6𝑦, 0)
𝑇

 with 

𝑞6𝑥 =
1

𝑚6 +𝑚7
(∑𝑥6𝑖

𝑚6

𝑖=1

+∑𝑥7𝑖

𝑚7

𝑖=1

) 

and 
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𝑞6𝑦 =
1

𝑚6 +𝑚7
(∑𝑦6𝑖

𝑚6

𝑖=1

+∑𝑦7𝑖

𝑚7

𝑖=1

). 

In order to determine the starting position of the gauge, the angle 𝜑0 is calculated in a second step 
which solves the minimization task  

min
φ0
  
1

2
∑ ‖𝐶𝑘(𝜑0) − 𝑄𝑘‖

2.6
𝑘=1      (19) 

Problem (19) is a Gaussian fitting. It minimizes the sum of the distance squares between the 
centroids of the point clouds and the arithmetically ideal centres of the gauge elements. The 
distances are only calculated in the x-y-plane of the workpiece coordinate system. The situation is 
shown in Figure 21 for a better understanding. 

 

Figure 21 Initial value of the conical disc fitting. 

In the top view, the gauge geometry is shown in the direction of the median axis (conical axis). 
The gauge geometry comprises the cylindrical bolts marked in blue and the slot area marked in 
green. The extracted geometry of the holes and slot lateral surfaces is sketched using black points. 
The gauge geometry and the extracted geometry are twisted towards each other prior to the fitting. 
This is shown in the left side of the figure. The ideal centres of the gauge 𝐶𝑘 and the centroids of the 
extracted geometry 𝑄𝑘 defined for the Gaussian fitting are clearly visible. After the rotation of the 
gauge by the calculated angle 𝜑0, the initial fit is available which is shown on the right side of the 
figure.  

Calculation of the 3D hole pattern fit 
The solution angle 𝜑0 from the initial value (19) is not yet the angle with the smallest possible 
overlapping and/or largest possible empty space between the gauge geometry and the measurement 
points. In order to apply the general Chebyshev fitting (2) from chapter 2.4, suitable distance 
functions for the gauge cylinders and the slot must be defined. As in case of the flange, the following 
definition is valid for the gauge cylinder with 𝑘 = 1,… ,5 

𝑓𝑘𝑖(𝑀(𝜑)) = 𝑟 − ‖(𝑃𝑖
(𝑘)
− 𝐶𝑘(𝜑))×𝑣‖. 

𝜑0 
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In case of the slot, a distinction is made between the left and the right lateral surface. This is 
realized by a respective assignment of the point sets to the planes of the gauge geometry and the 

opposite determination of the normal direction. In this application example, 𝑃(6) is the extracted 

geometry of the left lateral surface and 𝑃(7) is the extracted geometry of the right lateral surface. For 
this, the following is valid: 

𝑓𝑘𝑖(𝑀(𝜑)) = 𝑑 − 〈𝑃𝑖
(𝑘)
− 𝐶𝑘(𝜑), 𝑛𝑘(𝜑)〉. 

 

The following fitting procedure is set up. 

min
φ∈ℝ,𝑠∈ℝ

𝑠           𝑠. 𝑡.     𝑓𝑘𝑖(𝜑) ≤ 𝑠  ∀ 𝑘 = 1, . . ,7  𝑎𝑛𝑑 ∀ 𝑖 = 1,… ,𝑚𝑘   (20) 

 

By means of the rotation angle 𝜑 calculated from this fitting program and the maximum distance 
𝑠 the determination of the desired quantity for a minimum overlap or a maximum empty space is 
easy to realize. The following statements are valid: 

 If 𝑠 > 0, there is an overlap between the gauge and the measurement points. It has the value 
𝑠. 

 If 𝑠 < 0, there is empty space between the gauge and the measurement points. It has the 
value 𝑠. 

 If 𝑠 = 0, the gauge is adjacent to the measurement points. There is neither empty space nor 
overlap. 
 

To be able to evaluate for which of the gauge geometry elements there is an overlap where 𝑠 >
0, the distances to the locally assigned measurement points can be inspected for each individual 
element. These are as follows:  

𝑠𝑘 ≔ max
i=1,.,,,mk

𝑓𝑘𝑖(𝑀(𝜑)) 

 for all 𝑘 = 1,… ,7. If 𝑠𝑘 > 0, there is an overlapping with the product.  

 

5. Application example 3: cubes 
In the case of the application examples of flanges and conical discs considered above, the gauge 
elements are parallel. The inspection using a physical gauge is possible by means of a one-sided 
plugging of the gauge with the test specimen. In contrast to this, the application example for cubes 
considers the assembly of products on top of holes or bolts that are twisted toward each other. I.e., 
the geometry elements of the gauge are no longer parallel. As a result, the inspection by means of 
physical gauges that are made of only one part are no longer possible. Specifically in this case, virtual 
gauging by means of CMM and 3D hole pattern fit is a suitable means of testing with regard to 
feasibility. For the application, the cube sketched in Figure 22 is considered.  
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Figure 22 Application example for a cube 

 

 

Figure 23 ISO 1101 compliant inspection task for the cube.  

 
The cube has an edge length of 40.0 mm. In two of the six lateral surfaces, three holes 

respectively, have been integrated. The depth of all holes is 20.0 mm each. The diameters are 6.0 
mm. All hole axes are vertical to the respective lateral surfaces. In order to better identify the 
position of the holes, the external surface of the cube was drawn as transparent (Fig. 22).  

 

Lateral surfaces 

Upper hole 

Side hole 
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5.1. Inspection according to the standard 
No specific function is attributed to the inspection of the cube. Therefore, a common inspection task 
is described here. This task is shown in Figure 23.  

When selecting the inspection task, a datum or datum system was totally dispensed with. Only 
the position of the six holes is tolerated. This leads to a gauging or 3D hole pattern fit with a 
maximum number of six degrees of freedom. At the same time, it places the highest demands on 
numerical stability and efficiency of mathematical procedures for an arithmetical fit.  

5.2. Mathematical model of the 3D hole pattern fit 
The arithmetical 3D hole pattern fit is carried out by the four steps shown in Figure 24.  

 

Figure 24 Flowchart on the 3D hole pattern fit for the cube. 

At the beginning, the workpiece coordinate system and the gauge parameters were assigned. 
Subsequently, the discussion of a suitable initial value took place. The procedure is much more time-
consuming than for the previous applications. Furthermore, a general 3D transformation of the 
gauge geometry must be defined. Finally, the formal specification of the Chebyshev 3D hole pattern 
fit is carried out. 

Workpiece coordinate system and gauge parameters 
As we have the case of a general fit for the cube (no constraints due to datum elements), basically 
every Cartesian coordinate system can be used as a workpiece coordinate system. In the example, 
the Cartesian measurement point coordinate system is selected for the workpiece, therefore, we do 
not need to convert the point coordinates in this case.  
 

 

Figure 25 Coordinate system and model of the virtual gauge for the cube. 
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The gauge consists of six ideal cylinders. These cylinders are assigned to each hole of the cube. 
They have a radius of 𝑟 = 2.94 mm (corresponding to a diameter of MMVS = 5.88 mm). The position 
and direction of the gauge cylinders is presented in Figure 25.   

On the left side of the figure, the gauge coordinate system of the cube is shown. Furthermore, the 
holes are clearly numbered by the indices of 𝑘 = 1, . . ,6. In the figure on the right, the gauge 
geometry (the counterpart to the fitting) is shown. The centres 𝐶1, … , 𝐶6 of the geometrically ideal 
cylinders have been plotted. Each of these cylinders is located on the axis of the gauge cylinder. The 
position is the centre between the ends of each hole in the technical drawing of the product. In the 
following, the parameter values are provided.  

𝐶1 = (𝐶1𝑥, 𝐶1𝑦, 𝐶1𝑧)
𝑇
= (−10,−30,−10)𝑇, 𝐶4 = (𝐶4𝑥, 𝐶4𝑦, 𝐶4𝑧)

𝑇
= (−30,−10,−10)𝑇 

𝐶2 = (𝐶2𝑥, 𝐶2𝑦, 𝐶2𝑧)
𝑇
= (−30,−25,−10)𝑇, 𝐶5 = (𝐶5𝑥, 𝐶5𝑦, 𝐶5𝑧)

𝑇
= (−10,−10,−25)𝑇 

𝐶3 = (𝐶3𝑥, 𝐶3𝑦, 𝐶3𝑧)
𝑇
= (−10,−10,−10)𝑇, 𝐶6 = (𝐶6𝑥, 𝐶6𝑦, 𝐶6𝑧)

𝑇
= (−30,−10,−30)𝑇 

The direction vector of the cylinders 1 to 3 is 

𝑣1 = (𝑣1𝑥, 𝑣1𝑦, 𝑣1𝑧)
𝑇
= (0,0,1)𝑇. 

The cylinders 4 to 6 have the direction vector 

𝑣2 = (𝑣2𝑥, 𝑣2𝑦, 𝑣2𝑧)
𝑇
= (0,1,0)𝑇 . 

Here, the parameter values are also summarized in a joint matrix 𝑀. 

𝑀 =

(

 
 
 
 

𝐶1𝑥 𝐶1𝑦 𝐶1𝑧 1 𝑣1𝑥 𝑣1𝑦 𝑣1𝑧 𝑟

𝐶2𝑥 𝐶2𝑦 𝐶2𝑧 1 𝑣1𝑥 𝑣1𝑦 𝑣1𝑧 𝑟

𝐶3𝑥 𝐶3𝑦 𝐶3𝑧 1 𝑣1𝑥 𝑣1𝑦 𝑣1𝑧 𝑟

𝐶4𝑥 𝐶4𝑦 𝐶4𝑧 1 𝑣2𝑥 𝑣2𝑦 𝑣2𝑧 𝑟

𝐶5𝑥 𝐶5𝑦 𝐶5𝑧 1 𝑣2𝑥 𝑣2𝑦 𝑣2𝑧 𝑟

𝐶6𝑥 𝐶6𝑦 𝐶6𝑧 1 𝑣2𝑥 𝑣2𝑦 𝑣2𝑧 𝑟)

 
 
 
 

    (21) 

The column with the numerical values of "1" is of special importance for the transformation of the 
parameter matrix. This will be explained in the following.  

Specification of the transformation operator for the fitting 
The transformation comprises six different parameters. Initially, three translations of the gauge along 
the workpiece coordinate system are possible. These translations are denoted by the parameter. 

𝑇 = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧)
𝑇

 

The components indicate the respective fraction of the translation towards the coordinate axis 
with an identical index. Furthermore, three rotations around the workpiece coordinate axes are 
possible. This is realized here with the aid of the Euler rotation angle. 

𝜑 = (𝜑𝑥 , 𝜑𝑦 , 𝜑𝑧)
𝑇

 

Each component defines a rotation matrix. These are  
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𝑅𝑥 = (
1           0          0     
   0 cos(𝜑𝑥) −sin(𝜑𝑥)

  0 sin(𝜑𝑥)   cos(𝜑𝑥)
)

𝑇

, 

𝑅𝑦 = (

   cos(𝜑𝑦) 0 sin(𝜑𝑦)

0     1      0
−sin(𝜑𝑦) 0 cos(𝜑𝑦)

)

𝑇

 

and 

𝑅𝑧 = (
cos(𝜑𝑧) −sin(𝜑𝑧) 0

sin(𝜑𝑧)    cos(𝜑𝑧) 0
    0              0          1

)

𝑇

. 

From the individual rotation matrices, the following matrix is formed by means of multiplication: 

𝑅 = 𝑅𝑥𝑅𝑦𝑅𝑧 = (

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

) 

Thereby, the matrix 𝐻(𝑇, 𝜑) for the transformation of the gauge geometry 𝑀 in (21)  is 

𝐻(𝑇, 𝜑) =

(

 
 
 
 
 
 

𝑟11 𝑟21 𝑟31 0 0    0    0  0
𝑟12 𝑟22 𝑟32 0 0    0    0  0
𝑟13 𝑟23 𝑟33 0 0    0    0  0

 𝑡𝑥   𝑡𝑦  𝑡𝑧 1 0    0    0  0

0   0   0   0 𝑟11  𝑟21 𝑟31  0

0   0   0   0 𝑟12  𝑟22 𝑟32  0

0   0   0   0 𝑟13  𝑟23 𝑟33  0

0    0   0   0 0    0    0  1)

 
 
 
 
 
 

.   (22) 

The transformed parameter matrix is  

𝑀(𝑇, 𝜑) ≔ 𝑀 ∙ 𝐻(𝑇, 𝜑). 

During the calculation, the points indicating the position of the gauge cylinders are rotated and 
subsequently shifted. The calculation formula is 𝐶𝑘(𝑇, 𝜑) = 𝐶𝑘𝑅 + 𝑇. The direction vectors of the 
gauge cylinders are exclusively twisted. The rotated vectors are designated with 𝑣𝑙(𝜑) = 𝑣𝑙𝑅. These 
transformation provisions for the gauge parameters are used for the specification of the fitting task 
later on.  

Formulation of an initial value according to the Gaussian criterion 
Again, a favourable initial orientation of the gauge is being sought for via a suitable Gaussian fitting. 
Initially,  

𝑃(𝑘) = {𝑃1
(𝑘)
, … , 𝑃𝑚𝑘

(𝑘)
} 

with 𝑘 = 1,… ,6 shall be the point clouds of the measured holes of the cube. The indication 
corresponds to the specification from Figure 25. The arithmetical centroid is assigned to each point 
cloud: 

𝑄𝑘 =
1

𝑚𝑘
∑ 𝑃𝑖

(𝑘)
𝑚𝑘

𝑖=1
 

The initial value is then the solution of the Gaussian program  
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min
T0,φ0

  
1

2
 ∑ ‖𝐶𝑘(𝑇0, 𝜑0) − 𝑄𝑘‖
6
𝑘=1

2
.    (23) 

In Figure 26,  the initial value is illustrated once again. The upper part shows the gauge and the 
extracted holes in the starting position. The measured holes are shown in simplified manner by 
means of black dotted contours. The transformation operators are illustrated at the axes of the 
coordinate system. By means of the Gaussian fitting, the median gauge points 𝐶𝑘 are shifted as near 
as possible to the centroids of the point clouds. This is shown by the lower half of the figure.  

 

Figure 26 Initial value for the cube fitting 

Definition of the 3D hole pattern fit for the cube 
Also in this application example, cylindrical gauge elements are available. Therefore, the local 
orthogonal distances between gauge and the measured points near the elements 𝑘 = 1,… ,3 are 
defined by 

𝑓𝑘𝑖(𝑀(𝑇, 𝜑)) = 𝑟 − ‖(𝑃𝑖
(𝑘)
− 𝐶𝑘(𝑇, 𝜑))×𝑣1(𝜑)‖ 

and for 𝑘 = 4,… ,6 by 

Gaussian 
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𝑓𝑘𝑖(𝑀(𝑇, 𝜑)) = 𝑟 − ‖(𝑃𝑖
(𝑘)
− 𝐶𝑘(𝑇, 𝜑))×𝑣2(𝜑)‖. 

The following 3D hole pattern fit procedure is thus formulated as follows: 

min
T∈ℝ3,φ∈ℝ3,𝑠∈ℝ

𝑠           𝑠. 𝑡.     𝑓𝑘𝑖(𝑇, 𝜑) ≤ 𝑠  ∀ 𝑘 = 1, . . ,6  𝑎𝑛𝑑 ∀ 𝑖 = 1,… ,𝑚𝑘  (24) 

 The following statements for the solution of (24) are valid:  

 If 𝑠 > 0, there is an overlap between the gauge and the measurement points. It has the value 
𝑠. 

 If 𝑠 < 0, there is empty space between the gauge and the measurement points. It has the 
value 𝑠. 

 If 𝑠 = 0, the gauge is adjacent to the measurement points. There is neither empty space nor 
overlapping. 

To be able to evaluate in the case of 𝑠 > 0 which gauge geometry element shows an overlap, the 
distances to the locally assigned measurement points can be inspected for each individual element of 
the gauge. These are as follows:  

𝑠𝑘 ≔ max
i=1,.,,,mk

𝑓𝑘𝑖(𝑀(𝑇, 𝜑)) 

 for all 𝑘 = 1,… ,6. If 𝑠𝑘 > 0, the hole shows an overlap of the gauge with the material of the 
extracted geometry. 

5.3. Generalization of the inspection task for the simulation of assembly 
Finally, an application is discussed that uses the measurement of a real counterpart during assembly. 
In turn, the geometry data obtained are used as a measured virtual gauge for the inspection of the 
holes of the cube. Figure 27 shows the example of a simple counterpart to the hole pattern cube.  

 

Figure 27 Counterpart for the cube 

The counterpart consists of two individual components. One of them is marked in green, the 
other is marked in blue. Each component has 3 bolts as counterpart for the holes in the cube. Each 
bolt is 18.0 mm long. This is 2.0 mm shorter than the nominal depth of the holes in the cube. 
Furthermore, the cylinder radius is 2.94 mm as in case of the virtual gauge. Both components can be 
assembled to each other interlockingly.  

 
To set up the virtual gauge, only the lateral surfaces of the 6 bolts are extracted. A geometrically 

ideal enveloping cylinder is assigned to each lateral surface. These cylinders are to be calculated in 
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such a way that they have the smallest possible radiuses where all measurement points of a bolt are 
still enclosed. As centres, the orthogonal projections of the point cloud centroids are adjusted to the 
respective assigned cylinder axis.  

The gauge parameters measured and arithmetically evaluated in this way can also be stored in a 
matrix as in (21). Hereby, every cylinder has different direction vectors and radiuses. In the further 
steps, the initial value according to Gauss and finally the 3D hole pattern fit are inspected by means 
of the extracted holes of the cube. This must be implemented twice. The reason for this is the 
permutability of the assignment of gauge elements and holes. This can be seen from the two 
components of the counterpart. These components are interchangeable due to a simple symmetry of 
the hole positions.  

 
The inspection allows us to arithmetically determine pairs of cubes and counterparts which can 

still be assembled in spite of inadmissible deviations according to the inspection which complies with 
the standard.  
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