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METROLOGY FOR THE DIGITALIZATION
OF THE ECONOMY AND SOCIETY E

Abstract

Digitalization is one of the major current 
societal challenges and its appropriate handling 
will determine the future economic success 
of Germany and the EU. The dramatic devel-
opment over recent years of computational 
capacities, the introduction of smart sensors 
and their interconnection via the Internet have 
enabled new technological advances that will 
change daily life. Future metrology faces a transi-
tion from the assessment of single measurement 
devices to fully connected sensor systems raising 
new challenges such as their calibration or 
uncertainty quantification. Established math-
ematical and statistical approaches are often no 
longer sufficient and need to be expanded or 
even replaced with new methods. This paper 
intends to identify and discuss the need for the 
development of novel methods in mathematics 
and statistics for metrology required to success-
fully deal with the challenges of digitalization 
over the next decades. 

1  Introduction

Data analysis and mathematical procedures play 
a key role in today’s metrology. Without the 
application of advanced techniques from signal 
processing, statistics and numerical analysis, 
current high-accuracy measurement results 
would not be possible. M. Sené, I. Gilmore and 
J. T. Janssen from the National Physical Labora-
tory (NPL) in the UK, for example, emphasize 
the role of advanced data analysis and related 
uncertainty quantification in metrology in a 
recent viewpoint in Nature [1]: 

“Measurement technology is becoming more 
powerful and complex. … Tracking and quanti-
fying the uncertainty of the final result can get 
lost amid all this data crunching ... An increasing 
number of research areas lack a metrological 
framework, however ... Quantifying uncertainty 
in complex problems is almost becoming a field 
in itself. The metrology community needs to step 
up to this challenge, in particular by engaging 
more statisticians, data experts.”

Mathematics and Statistics  
for Digitalization 

Markus Bär1 and Clemens Elster2

Figure 1: 
Impact of mathe-
matics and statis-
tics on digitized 
metrology.

1 Prof. Dr. Markus Bär,  
Department  
“Mathematical Modelling 
and Data Analysis”, 
e-mail: markus.baer@
ptb.de

2 Dr. Clemens Elster, 
Working Group  
“Data Analysis and  
Measurement  
Uncertainty”, 
e-mail: clemens.elster@
ptb.de

doi: 10.7795/310.20170402

mailto:markus.baer@ptb.de
mailto:markus.baer@ptb.de
mailto:clemens.elster@ptb.de
mailto:clemens.elster@ptb.de
https://doi.org/10.7795/310.20170402


70

E   Metrology for the Digitalization of the Economy and Society PTB-Mitteilungen 127 (2017), Heft 4

Digitalization drastically boosts the importance 
and impact these methods have on metrology. The 
expertise in mathematical and computational tools 
will decide about the leading role in future metrol-
ogy and the speed of the transition of classical 
metrology to digitized metrology. The impact of 
statistical data analysis in this transition is under-
lined in National Science Review [2] by J. Fan, 
F. Han and H. Liu, statisticians from Princeton Uni-
versity and Johns Hopkins University:

“Big Data bring new opportunities to modern 
society and challenges to data scientists ... the 
massive sample size and high dimensionality of Big 
Data introduce unique computational and statis-
tical challenges…. Valid statistical analysis for Big 
Data is becoming increasingly important.”

Metrology as the science of measurement has 
always been, and will always be, concerned with 
quantitative results, including the quantification 
of their uncertainty. Without a reliable char-
acterization of the measurement uncertainty, 
measurement results cannot be traced back to 
the basic units of measurement, a key mission of 
any National Metrology Institute (NMI). While 
uncertainty quantification is well understood for 
conventional metrology, corresponding concepts 
are lacking for some of the tasks faced in digitized 
metrology. Examples comprise the uncertainty 
associated with a sensor network or an empir-
ical model built from a huge amount of data by 
machine learning techniques. The development of 
novel methods for uncertainty evaluation therefore 
is a major challenge for the successful handling of 
digitalization.

Digitalization will significantly intensify the 
need for large-scale metrology, i.e. metrology 
that is concerned with measurands consisting 
of a large, or even a huge, number of quantities 
(105 or more, say). Sensor networks are just one 
example, but also for conventional metrology 
this issue is becoming increasingly relevant, e.g. 
within dynamic metrology, where the goal is 
the determination of a whole function such as a 
time-dependent dynamic force in a crash test, or 
when characterizing spectral properties in photo-
metry. Metrology is also turning, more and more, 
towards emerging fields such as health metrology, 
where imaging methods are often developed into 
quantitative tools, or nanometrology, where the 
ever-improving spatial resolution of measurement 
techniques provides high-dimensional sets of 
data. Currently, the relevant tasks are solved only 
approximately, for example by ignoring the pres-
ence of correlation in the results. This is because 
current computational techniques cannot success-
fully deal with full covariance matrices of such 
high dimensions. 

Modern computer capacities have strongly 
enhanced the use of virtual experiments. Virtual 

experiments allow the cheap and comprehensive 
exploration of complex measurement devices. 
They are particularly suitable when designing 
such devices. Today, virtual experiments have also 
become an integral part of measurement devices, 
used in the analysis of the recorded data. Typically, 
virtual experiments produce huge amounts of data, 
and often the modelling of the physical principles 
is computationally expensive. Issues of large-scale 
metrology therefore enter the analysis of virtual 
experiments, as well as surrogate modelling for the 
approximate, numerically efficient representation 
of the results of a virtual experiment.

Digitalization leads to a rapid increase of situ-
ations where huge amounts of data are produced 
that shall be used for modelling, prediction and 
control. Examples comprise such different applica-
tions as health monitoring from various modalities 
or process control via large amounts of interacting 
sensors in industrial facilities. In order to retrieve 
the relevant information from such unstructured 
data, methods from machine learning are used for 
empirical model building and decision-making. 
Challenges for metrology are that these methods 
need to be accompanied with an uncertainty 
quantification. Furthermore, when such methods 
become an integral part of novel measurement 
systems, reference procedures and reference data 
need to be developed to properly assess them.

Statistical process control applies statistical 
procedures to monitor processes and immediately 
detect when these processes no longer follow 
intended specifications. Digitalization poses 
challenges for these established techniques, and 
current tools may no longer be applicable. Legal 
metrology is one field where digitalization can 
lead to a huge impact of techniques from statistical 
process control. 

In the following, these different challenges in 
mathematics, statistics and numerical computation 
are illustrated and discussed.

2 Large-scale metrology

Large-scale metrology is concerned with meas-
urands that consist of large, or even huge, numbers 
of quantities to be determined simultaneously from 
measured data. Examples comprise applications in 
conventional metrology such as dynamic meas-
urements, nanometrology or photometry, where 
either a whole function is to be determined or large 
numbers of quantities (105 or more). The sheer 
amount of variables and measured data can already 
prohibit the estimation and handling of covariance 
matrices by conventional means. Another challenge 
is that current computational tools for nonlinear 
regression problems such as least-squares fitting or 
state-of-the-art Monte Carlo techniques in statistics 
do not scale well to dimensions significantly larger 
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and electromagnetic scattering. Numerical tools 
such as the finite-element method are applied to 
explore the behaviour of a measurement device 
including the object under study. The employed 
algorithms, however, often produce a large amount 
of data points in order to adequately reproduce the 
corresponding continuum functions representing, 
e.g. flow or electric fields, see e.g. [15, 16]. 

The mathematical and statistical challenges are 
then similar to those of large-scale metrology. 
However, in some cases, virtual experiments are 
still computationally too expensive, and tools from 
surrogate modelling are needed. These methods 
are particularly important for adequate uncertainty 
characterization in measurements where the rela-
tionship between the variables is governed by partial 
differential equations. Metamodelling techniques 
use values of a computationally expensive model 
to determine a computationally cheap surrogate 
model, which then allows statistical analyses, 
including uncertainty quantification, to be per-
formed that would have been intractable otherwise.

4 Statistical monitoring  
and process control

Statistical process control comprises well-estab-
lished statistical techniques for the control and 
monitoring of processes [17]. Control charts such 
as multivariate Shewhart charts are routinely 
applied nowadays to detect the onset of instabilities. 
Digitalization poses challenges for these established 
techniques, for example, when decisions need 
to be made in view of huge amounts of unstruc-
tured data for which current control charts are no 
longer applicable. Legal metrology is another field 
in which statistical monitoring can become an 
important tool. While today conformity assessment 
is usually done by checking a single device, or a 
sample of devices (drawn randomly from a large 
population of devices), digitilization may enable 
conformity assessments to be made online, and 
for whole populations of devices at the same time. 
Proceeding in such a way will result in huge savings. 
And it will also improve the desired quality assur-
ance significantly as all devices may undergo an 
ongoing, permanent conformity assessment check. 
However, in order to meet the specific legal require-
ments through online statistical quality assurance, 
corresponding statistical procedures need to be 
developed which optimally address the specific 
legal requirements. This in turn calls for individual 
solutions in different fields due to their different 
requirements.

5 Machine learning

Machine learning refers to computer algorithms 
that are able to learn and to make predictions 

than 104. New statistical methods and computa-
tional tools are needed to extend today’s metrology 
to large-scale measurement systems, and their 
development represents current frontiers in statis-
tical research [3–11].

So far, large-scale metrology has been constrained 
to a few special areas within metrology such as 
coordinate measurement techniques. In mainstream 
metrology, major tasks are still dominated by single 
device systems and the presence of a small number 
of quantities, or even of a single quantity, that 
constitutes the measurand [12]. However, digital-
ization will drastically change this situation and 
force metrology to successfully deal with large-scale 
metrology. Sensor networks (e.g. for environmental 
monitoring with high spatial and temporal reso-
lution) are just one example that emerges from the 
new possibilities that digitalization creates. The 
transition to digitized metrology will move issues 
of large-scale metrology from the edge to the centre 
of modern metrology, and all the mathematical and 
statistical challenges faced for large-scale metrology 
need to be properly addressed.

 3 Virtual experiments

The development of modern computer capacities 
allows the implementation of virtual experiments 
that capture the features of complex measurement 
devices in a realistic way. Virtual experiments 
enable the comprehensive exploration of possibil-
ities and limitations without the need for carrying 
out real experiments, thereby providing a cheap way 
to optimally design new measurement devices. PTB 
has, for example, developed SimOptDevice, a flex-
ible tool for designing and running virtual experi-
ments for optical form measurements [13, 14] that 
has proven essential in several industrial projects.

Virtual experiments have meanwhile also become 
an integral part of novel measurement devices. For 
example, the tilted-wave interferometer [13] is actu-
ally based on a virtual experiment. The tendency of 
virtual experiments to become a part of measure-
ment devices is growing, and when interconnecting 
a large number of smart sensors and measurement 
devices, at least some of them can be expected to 
depend on a virtual experiment. Metrology is faced 
with questions such as how to calibrate virtual 
experiments or the way an uncertainty is assigned to 
their outputs. At the same time, it can be expected 
that such questions will often need to be addressed 
in an online fashion. 

Nowadays computational advances also allow 
the realistic modelling and simulation of measure-
ment processes when the governing physical laws 
are well understood and easily cast in the form of 
basic equations such as the Navier-Stokes equa-
tions and their variants in flow metrology, or the 
Maxwell equations in many applications in optics 
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from empirical data. It comprises a large variety 
of methods that describe how empirical models 
are extracted from data. These models are typic-
ally employed to produce reliable and repeatable 
decisions and to uncover hidden correlations and 
structures from data sets. The field has strong 
relations to computational statistics and statistical 
learning theory [18] and draws upon the theory 
and methods from mathematical optimization. 
While machine learning has been known for 
decades, recent developments in both compu-
tational capacities as well as methodo logical 
advances (such as deep convolutional neural 
networks [19]) have boosted their importance sig-
nificantly, and meanwhile methods from machine 
learning represent the state of the art in applica-
tions such as the diagnostics of diseases based on 
medical imaging data or pattern recognition in 
language processing and computer vision [20]. The 
aspect of uncertainty associated with the results of 
methods from machine learning has recently been 
brought to the fore under the label of probabilistic 
machine learning, but is still in its infancy [21]. 
Methods from machine learning are expected to 
play a major role in future digitized metrology, 
and the further development of these methods, 
particu larly focusing on issues of uncertainty 
quantification, represents a statistical research 
program that will be highly relevant for future 
metrology.

6 Measurement uncertainty

Comparison of measurement results, reliable deci-
sion-making and conformity assessment require 
the evaluation of uncertainties associated with 
measurement results. The ability to compare meas-
urements made in different places and at different 
times underpins international metrology. The 
Guide to the Expression of Uncertainty in Meas-
urement (GUM [22]) provides the current state 
of the art for uncertainty evaluation in metrology. 
JRP EMRP NEW04 (08/12-07/15) [23] extended 
the methods of the GUM to inverse and regres-
sion problems and to computationally expensive 
systems.

In recent years, metrology has expanded to 
support new fields to address societal challenges 
relating to energy and sustainability, climate and 
environmental monitoring, life sciences and 
health, using measurement modalities such as 
imaging, spectroscopy, earth observation and 
sensor networks. Reliable uncertainty evaluation 
is particularly important in these applications, 
e.g. to safeguard diagnostics in medical imaging 
or to reliably monitor air pollution. However, due 
to the large numbers of unknown quantities and 
measured data (105 or larger) involved in these 

applications, e.g. where a sensor network is used to 
measure and predict environmental quantities with 
high spatial and temporal resolutions, neither the 
GUM nor the methods developed within EMRP 
NEW04 are applicable.

Digitalization will substantially strengthen these 
developments and the need for novel uncertainty 
quantification methods. Furthermore, for each 
of the above-discussed mathematical issues that 
are becoming relevant in digitized metrology, 
i.e. large-scale metrology, virtual experiments, 
statistic al process control and machine learning, 
the adequate evaluation of uncertainties associ-
ated with the results is challenging. For example, 
large-scale metrology is concerned with meas-
urands of large, or even huge, dimensions which 
already challenges uncertainty characterizations 
in terms of full covariance matrices, and even 
more so when characterizing uncertainty through 
prob ability distributions. Characterizing the 
uncertainty associated with results from virtual 
experiments is often faced with high-dimensional 
quantities and computationally expensive models, 
and generally virtual experiments yield a necessar-
ily imperfect image of a real process which needs 
to be accounted for. Finally, machine learning is 
usually applied for estimating model relation-
ships or determining a classification only, without 
providing an uncertainty quantification associated 
with these results. When applied for digitized 
metrology, these methods need to be accompanied 
with an uncertainty quantification. While con-
cepts for the evaluation of uncertainty for machine 
learning are an issue of current research (e.g. [21]), 
substantially more research is needed before these 
techniques can be safely applied for digitized 
metrology when similar demands on the quality of 
results shall be posed as in today’s metrology.

7 Summary and conclusion

We have identified large-scale metrology, virtual 
experiments, statistical process control, machine 
learning and uncertainty quantification as key 
challenges for metrology in the age of digitaliza-
tion. Digitalization drastically boosts the already 
high importance and impact mathematics and 
statistics have in today’s metrology. Further-
more, established mathematical and statistical 
approaches will need to be expanded, or even be 
replaced, by new methods in order to successfully 
face the transition of classical metrology to digit-
ized metrology. Metrology in the decades ahead 
will strongly depend on mathematics and statistics 
and their future developments.
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