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Abstract

The gravimetric isotope mixture method is the primary method to determine
absolute isotope ratios. This method, however, depends on the existence of suit-
able spike materials and knowledge of their purities. Determining the purity of the
spikes can be tedious and labour-intensive. In this publication, an advancement
of the gravimetric isotope mixture method, rendering the determination of the
purity of the spike materials unnecessary, is presented. The advancement com-
bines mass spectrometry and ion chromatography leading to an approach being
independent of the purity of the spike materials. In the manuscript the mathe-
matical background and the basic idea of the novel approach are described using
a two-isotope system like copper or lithium.

Keywords: Isotope amount ratios, Metrology, Mass spectrometry, Ion chromatography

1 Introduction

Isotope amount ratios R are useful tools in many scientific areas, ranging from
archaeology [1] to zoology [2]. Mass spectrometry is usually the method of choice for
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the isotope analysis of samples. With mass spectrometry excellent precision can be
obtained, but isotope amount ratios (unit molmol−1) are not directly available. Users
obtain ion intensity ratios r (unit V/V,A/A or s−1/s−1), which are numerically dif-
ferent from the isotope amount ratios, in some cases the difference is up to 25% [3–6].
This difference is due to the so-called instrumental isotopic fractionation (IIF) [7] or
mass bias. The second term is rather colloquial and does not describe the chemical
and physical causes adequately. Both terms are collective terms for all possible effects
which lead to the difference between the isotope amount ratio and the ion intensity
ratio, for example different ionization probabilities, space charge effects or detection
efficiencies. These effects can be minimized, but not totally eliminated, and therefore
correction is needed, see equation 1.

Ri =
ni

n1
= Kiri = Ki

Ii
I1

(1)

Ri is the i
th isotope ratio, ni is the amount of substance of the ith isotope, n1 is the

amount of substance of the so-called reference isotope, in most cases the most abun-
dant isotope of the element under investigation. ri is the ratio of the measured ion
intensities of the ith isotope and the reference isotope. Ii and I1 are the measured ion
intensities of the ith isotope and the reference isotope, respectively. Ki is the so-called
K-factor, which transforms the measured intensity ratio r into the isotope amount
ratio R or in other words corrects for the mass bias. The K-factor can be determined
by using a certified isotope reference material, which is to the International System
of Units traceable (SI) and chemically as close as possible to the sample. The sample
and reference need to be measured within the same campaign, since the IIF varies
over time. With the knowledge of the certified isotope amount ratio and the measured
ion intensity ratio of the reference material the K-factor can be determined by apply-
ing equation 1. This K-factor can also be used for the correction of the measured ion
intensity ratio of the sample. This simple correction scheme requires that a suitable
reference material exists. Since absolute isotope amount ratios are not directly avail-
able via mass spectrometry, the question arises how the isotopic composition of the
reference material can be determined in the first place. This situation is quite similar
to the famous chicken or the egg causality dilemma. Without knowing R, K cannot
be determined and vice versa – a classical catch-22 situation. But there is a way out
of this dilemma and it is known as the gravimetric isotope mixtures (GIM) method
[8]. The GIM procedure is a primary method for the determination of SI-traceable iso-
tope ratios. Since it is a primary method no prior knowledge of the true isotope ratio
is required. Only measured quantities (not having the unit molmol−1) are needed.
In brief, the basic idea to derive the K-factors for a system with Niso isotopes is to
have Niso spike materials (each enriched in one of the isotopes) and to prepare at
least Niso − 1 binary blends of these spike (or parent) materials under gravimetric
control. In the following steps the ion intensity ratios of the parent materials and the
binary blends are measured. The isotope amount ratios of the blends can be expressed
as a function of the isotope amount fractions of the corresponding parent materials.
These functions form a system of linear equations, which can be solved for the wanted
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K-factors. More detailed information about the basic idea and the underlying math-
ematics can be found in the literature [9–12]. In case of a two-isotope system (e.g.,
lithium or copper) the K-factor can be expressed as [13, 14]:

K2 =
M1

M2

wAmAB (rA,2 − rAB,2) + wBmBA (rB,2 − rAB,2)

wAmAB (rAB,2 − rA,2) rB,2 + wBmBA (rAB,2 − rB,2) rA,2
(2)

M1 is the atomic weight of the reference isotope (in the case of lithium 7Li), M2 is
the atomic weight of the other isotope. The small r’s are the measured ion intensity
ratios of the two parent materials (A and B) and the blend AB. mAB and mBA are
the masses of the parent materials A and B, respectively, used for the preparation
of the blend AB. wA and wB are the mass fractions of the element of interest in
the parent materials, or in other words the purity of the parent materials. Since wA

and wB are needed, these have to be determined as well to derive the K-factor and
finally the absolute isotope ratio R. The established primary method to determine the
analyte content w is the so-called isotope dilution mass spectrometry (IDMS). The
basic principles of the IDMS have been reviewed by Heumann [15] and Vogl et. al
[16] and the underlying mathematics have been generalized by Ouerdane et al. [17].
Besides the fact, that the IDMS is both highly precise and accurate, it has several other
advantages. For instance, once the sample has been well mixed with the spike material,
loss of the mixture does not alter the result since only ratios (being intensive quantities)
are measured. Another advantage is that it is less time consuming than standard
addition [18]. For the determination of the analyte content, a reference material Z is
needed, with a known content wZ. Material Z is mixed with the sample/spike to be
analysed (in this case A or B) and finally the isotope ratios in the parent materials
and the blends are measured. Following the aforementioned procedure, the analyte
content w of material A and material B can be expressed as:

wA = wZ
mZA

mAZ

rZ,2 − rAZ,2

rAZ,2 − rA,2

M1 +K2rA,2M2

M1 +K2rZ,2M2
(3)

and

wB = wZ
mZB

mBZ

rZ,2 − rBZ,2

rBZ,2 − rB,2

M1 +K2rB,2M2

M1 +K2rZ,2M2
. (4)

The three equations (2 to 4) form a system of non-linear equations. Although there
are as many equations as unknowns (three equations and the three unknowns K, wA

and wB ), there is no solution with a physical meaning. Solving this system leads to
solutions where either wA or wB are zero and K is negative. The solutions are given in
the supplement of this manuscript. A possible explanation could be that there is not
enough information to describe the system mathematically correctly. While there are
primary methods to determine absolute isotope ratios and the analyte content (GIM
and IDMS) they cannot be combined to one method. Such a method would allow the
determination of both quantities, due to the lack of additional mathematical informa-
tion. Hence, it seems that it is impossible to determine absolute isotope amount ratios,
without knowing the purity of the spike materials. A potential, but only theoretical,
solution would be to have a second material Z2, with a known content. Instead of blend
BZ blend BZ2 is prepared and equation 4 changes accordingly. Since there are now
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three truly independent equations a unique solution can be found. But this approach
has no practical meaning, since two conditions must be fulfilled. Firstly, there must
be a second material Z2, which is hardly the case and secondly, the isotopic composi-
tion of Z2 must be significantly different from Z. If the latter condition is not fulfilled
the correct K-factor can be calculated but the relative uncertainty associated with
it increases dramatically the more similar the isotopic composition of Z and Z2 are.
In the supplement, a simulation showing the described effect can be found as well as
the algebraic solutions. This publication moreover presents a possible solution to this
issue. Since the method is based on the GIM method and additional ion chromatog-
raphy measurements, it is called ICeGIM, which is short for Ion Chromatography
enhanced Gravimetric Isotope Mixtures.

2 Basic Idea and Mathematical Derivation

In this section a solution to the problem described above is presented. The solution is
an advancement of the GIM method. The basic idea of the advancement is schemati-
cally depicted for a two-isotope system in figure 1, and will be explained step-by-step.
In theory the method presented can be used for systems with two or more isotopes,
but for the sake of simplicity only a two-isotope system is considered here. The aim of
the following mathematical considerations is to eliminate wA and wB from equation
2. The isotope amount ratio RAB of the blend AB can be expressed as:

RAB,2 =
n2

n1
=

xA,2nA + xB,2nB

xA,1nA + xB,1nB
(, ) (5)

where nA and nB are the amounts of substance of the materials A and B used
for the preparation of blend AB. xA,i is the amount-of-substance fraction of the ith

isotope in material A, and xB,i is analogously defined. Next the substance content β
is introduced, β is defined as1 :

βi =
ni

mi
, (6)

where mi is the mass of the respective solution. This mass includes impurities, solvents
etc., and ni is the amount of substance of the analyte.

Every xi can be expressed as

xi =
Ri∑Niso

j=1 Rj

. (7)

With Ri = Kiri, equation 5 can be reformulated as:

K2rAB,2 =
βAmAB

K2rA,2

1+K2rA,2
+ βBmBA

K2rB,2

1+K2rB,2

βAmAB
1

1+K2rA,2
+ βBmBA

1
1+K2rB,2

(8)

Equation 8 can be solved for K.

1The International Union of Pure and Applied Chemistry (IUPAC) does not recommend a single symbol
for the substance content but n/m [19]. In this publication the symbol β is used for the sake of briefness.
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K2 =
βAmAB (rA,2 − rAB,2) + βBmBA (rB,2 − rAB,2)

βAmAB (rB,2rAB,2 − rB,2rA,2) + βBmBA (rA,2rAB,2 − rA,2rB,2)
(9)

Now an expression for βi must be found since ni is unknown, and the isotopic
composition of material i is also not known. βi can also be expressed as:

βi =
ni

mi

Mi

mi

Mi

mi

=
wi

Mi
(10)

By considering equation 7, the molar mass Mi can be expressed as:

Mi =
1

1 +Ri
M1 +

Ri

1 +Ri
M2 (11)

Combining equations 10 and 11 and considering Ri = Kiri in the case of the
reference material Z, leads to:

βZ =
wZ

1
1+RZ,2

M1 +
RZ,2

1+RZ,2
M2

=
wZ

1
1+RZ,2

(M1 +RZ,2M2)

=
wZ (1 +RZ,2)

M1 +RZ,2M2
=

wZ (1 +K2rZ,2)

M1 +K2rZ,2M2

(12)

Now a way has to be found to express βA and βB in terms of βZ, since only wZ

is known. Here, ion chromatography (IC) might be a useful tool. The area A under
the peak in the chromatogram is proportional to the ratio of the amount of substance
of the corresponding ion to the mass of the loaded analyte mass. For this approach
another material Y is needed. Material Y is an internal standard, which does not
contain the element of the other materials A, B and Z. In the next step three blends
are prepared under gravimetric control; ZY, AY and BY, see figure 1 lower part. For
instance blend ZY is prepared by mixing mass mZY of material Z with mass mYZ of
material Y. AY and BY are prepared analogously. The area AZ of the peak of the
main element of Z in the blend ZY can mathematically be expressed as:

AZ = kZβZ
mZY

msln,Z
(13)

kZY is the sensitivity coefficient. It depends on the specific ion (e.g. Li+), the
conductivity detection, the ion exchange column and other parameters. k is however
constant for a specific ion, as long as the samples have a similar chemical composition
and the same set-up has been used for the measurement. mZY is the mass of material
Z used to prepare ZY and msln,Z is the total mass of the solution including mZY,
mYZ and mdil being the mass of the added solvent, if further dilution is necessary.
For better clarification, the area AZ is depicted in the box called ZY in figure 1. It is
shaded in two colours since it is a result of the two isotopes of the element of interest.
In a similar way the area AY (blue shaded in box ZY of figure 1) can be expressed as:

AYZ = kYZβY
mYZ

msln,Z
(14)
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All quantities occurring in equation 14 are analogously defined to those in equation
13. The ratio fZ of these two areas is:

fZ =
AZ

AYZ
=

kZY
kYZ

βZ

βY

mZY

mYZ
(15)

In the case of the two other blends (AY and BY) the ratio of the two peak areas
can be expressed analogously.

fX =
AX

AYX
=

kX
kYX

βX

βY

mXY

mYX
, X ∈ {A,B} (16)

Since the sensitivity coefficient k is constant for a specific ion, the following is valid.

kA
kYA

=
kB
kYB

=
kZ
kYZ

(17)

From equation 15 follows:

kYZ

kZ
=

1

fZ

βZ

βY

mZY

mYZ
(18)

Now combining equations 15 and 18 allows to express βA and βB as:

βA = wZ
1 +K2rZ,2

M1 +K2rZ,2M2

mZY

mYZ

mYA

mAY

fA
fZ

(19)

and

βB = wZ
1 +K2rZ,2

M1 +K2rZ,2M2

mZY

mYZ

mYB

mBY

fB
fZ

, (20)

respectively. These two expressions (equations 19 and 20) can be inserted into
equation 9, which then can be solved for K, leading to:

K2 =
mYA

mAY
fAmAB (rA,2 − rAB,2) +

mYB

mBY
fBmBA (rB,2 − rAB,2)

mYA

mAY
fAmAB (rB,2rAB,2 − rB,2rA,2) +

mYB

mBY
fBmBA (rA,2rAB,2 − rA,2rB,2)

(21)

All steps leading to equation 21 are shown in the electronic supplement of this
publication. With the knowledge of K also wA and wB can be calculated, by using
equations 3 and 4. This applies, in the case that additional mixtures of Z + A and Z +B
are prepared. At this point it should be added, that wA and wB can also be expressed
only in terms of measured quantities (so without directly using K). But since these
expressions are quite long they are only shown in the electronic supplement. In short:
Equations 19 and 20 can be rearranged yielding:

wA = wZ
1 +KrZ
1 +KrA

M1 +KrAM2

M1 +KrZM2

mZY

mYZ

mYA

mAY

fA
fZ

(22)

and

wB = wZ
1 +KrZ
1 +KrB

M1 +KrBM2

M1 +KrZM2

mZY

mYZ

mYB

mBY

fB
fZ

(23)
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Fig. 1 Schematic presentation of the ICeGIM method. The upper part of the figure shows the
mass spectrometry experiment including the measurement of the standard material Z, the two spike
materials A and B and the blend AB. The masses mAB and mBA are the amounts of material A and
material B used for the preparation of AB, respectively. The lower part shows the ion chromatography
experiment. This includes measurements of three blends. These blends consist of the internal standard
Y and of the materials A,B or Z. The masses (mYX or mXY with X ∈ {A,B,Z}) are the amounts
of the corresponding material used to prepare the three blends AY, BY and ZY. All unknown (or
wanted) quantities are marked with a question mark.

Inserting equation 21 into the last two equations yields equations ?? and ?? in the
supplement. From equation 21 it can easily be seen that ICeGIM allows determina-
tion of absolute isotope ratios without knowing the purity of the spike materials and
that therefore their associated uncertainties do not contribute to the uncertainties of
the absolute isotope ratios. This feature is especially useful if the spike material is
not a high purity metal but a chemical compound with unknown stoichiometry and
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molar mass (e.g. Li2CO3). Actually, even knowledge of wZ is not needed for the deter-
mination of absolute isotope ratios. Hence, material Z can be any material with a
similar chemical composition, but it is an important feature of the ICeGIM method
that if you are only interested in the isotope ratios alone, no material Z is needed
(see eq. 21). Also the molar masses of the materials A and B (MA, MB) are not
needed. Equation 2 shows another characteristic of ICeGIM. Unlike GIM, ICeGIM
does not require knowledge of the atomic masses of the isotopes. This is due to the
usage of ion chromatography, since here all isotopes are detected as one signal. Besides
ion chromatography, other analytical techniques could also be used. These might be
inductively coupled plasma atomic emission spectrometry, conductometry, quantita-
tive nuclear magnetic resonance (qNMR) or any other method which delivers signals
being proportional to the amount-of-substance fraction of the analyte irrespective of
the isotopic composition.

3 Simulation and Uncertainty Consideration

To test the advancement of the GIM method presented above, a simulation has been
performed. The simulation can be found in the electronic supplement of this publica-
tion. The purpose of this simulation was to demonstrate the principal of ICeGIM and
also to assess the achievable uncertainties. The supplement enables potential users to
perform their own calculations using their own data. In this simulation copper was
chosen as the possible two-isotope system. Real values and realistic estimates of the
uncertainties associated with the input quantities were used to assess the achievable
uncertainties. For example, in the simulation the NIST material 3114 [20] was used
as the certified reference material Z. In table 1, the relative uncertainties used in this
simulation are listed. These uncertainties are typical for each of the input quantities.
Since ICeGIM depends on IC measurements the achievable precision of IC is crucial.
Brennan et al. [21] showed that by applying internal standardization analyte anion
mass fractions can be determined with expanded relative uncertainties as low as 0.2%.
This value can be seen as upper limit, since the peak area ratio is only one part of the
uncertainty budget reported by Brennan et al. Also Rökher et al. [22] reported simi-
lar relative uncertainties for Li, Na, K, Mg and Ca. Therefore, 0.1% is a reasonable
but conservative estimate for the relative uncertainty associated with fA or fB. The
whole data set can be found in the supplement part 2.

The calculation of the associated uncertainty of K was done by a Monte
Carlo simulation following internationally accepted rules and recommendations [23–
25]. The result obtained using 1 000 000 trials is shown in figure 2 and K =
0.9455(33)molV/molV, with k = 2, was determined. The relative expanded uncertainty
Urel is 0.35%, which is in the same order of magnitude if compared with previous two-
isotope GIM experiments, such as Malinovsky et al. (carbon, Urel = 0.22% ) [26], or
De Bièvre et al. (boron, Urel = 0.26% ) [27]. At this point it must be stressed, that
such a comparison of different isotope systems can only be a general orientation. Nev-
ertheless the simulation shows that with ICeGIM comparable uncertainties could be
obtained. It should be added that correlation was not considered in the simulation.
Therefore, it is likely that lower uncertainties can be achieved.
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Table 1 Relative uncertainty of all
input quantities used in this
simulation.

relative uncertainty value in %

u(fA) 0.10
u(fB) 0.10
u(mAB) 0.022
u(mBA) 0.019
u(mYA) 0.028
u(mAY) 0.053
u(mYB) 0.029
u(mBY) 0.057
u(rA,2) 0.010
u(rB,2) 0.010
u(rAB,2) 0.0010

φ
(K

2
)
in

(m
ol
/m

ol
V
/V

)−
1

K2 in (mol/mol V/V)

Gaussian fit
Best estimate of K2

K2 ± 2 · u

Fig. 2 Probability density of K2 derived using 106 Monte Carlo trials. The green curve represents
the Gaussian fit, the two purple lines represent K2±2·u and the blue line represents the best estimate
of K2.

4 Generalization

In the second section of this publication, the mathematics of the ICeGIM method have
been derived for a two-isotope system. This approach can be generalized for systems
with an arbitrary number of isotopes Niso. The above-described mathematical problem
can be transformed into a matrix equation. The whole transformation is given in the
supplement.

Ak = b (24)
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Matrix A is defined as:

Ai,j =(
rAX(i+1),i+1 · rA,j+1 − rX(i),i+1 · rA,j+1

)
·mYX(i+1) ·mAY ·mX(i+1)A · fX(i+1)−(

rAX(i+1),i+1 · rX(j),i+1 − rA,i+1 · rX(j),i+1

)
·mX(i+1)Y ·mYA ·mAX(i+1) · fA

(25)
i and j are running variables (from 1 to Niso − 1), X(i) is a function returning

the i
th

letter of the alphabet (e.g. X(2)=B), and all other quantities are analogously
defined as in the above-mentioned two-isotope system.

The vector k contains all the K-factors, therefore it is defined as:

ki = Ki+1, i ∈ {1, Niso − 1} (26)

And finally, vector b is defined as:

bi = −
[ (

rAX(i),i − rX(i),i+1

)
·mYX(i+1) ·mAY ·mX(i+1)Y · fX(i+1)+(

rAX(i+1),i+1 − rA,i+1

)
·mX(i+1)Y ·mYA ·mAX(i+1) · fA

]
(27)

By multiplying equation 24 with A−1 (the inverse of A), the wanted K-factors can
be calculated. Note, inverting a matrix is computationally expensive and for larger
systems it is advisable to use methods like Gaussian elimination, Cholesky decomposi-
tion or LU decomposition. The latter is implemented in the accompanying supplement
to this paper. Applying Cramer’s rule allows a generic solution for the K-factors to
be formulated. It is noteworthy that Ouerdane et al. [17] also employed Cramer’s rule
to solve IDMS equations.

Ki+1 =
det (Ai)

det (A)
(28)

Ai can be formed by replacing the ith column with the vector b. The above equations
allow the easy calculate the wanted K-factors for systems with an arbitrary number
of isotopes and therefore also the uncertainties associated with them.

5 Conclusion and Prospects

For the determination of absolute isotope ratios, knowledge of the purities of the spike
materials used for the preparation of the gravimetric mixtures was needed. In this
publication, an advancement of the primary method “gravimetric isotope mixtures”
is presented. The method described above combines mass spectrometry and ion chro-
matography measurements. This approach has a distinct advantage over the classical
GIM method. The purities of the spike materials are not needed any longer and there-
fore also do not contribute to the uncertainty of the absolute isotope ratios. This is
a big advantage since ICeGIM allows to determine absolute isotope ratios in cases
where no certified content reference material exists. This is a huge advantage espe-
cially in cases where no high purity metals are available but only salts with unknown
stoichiometry and molar mass. In principle, the purities of the spike materials could
be very low and do not have to be known with high accuracy. This is the case as long
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as measurements are not biased by it. For example, if the matrices (impurities) of the
spike materials are very different from the sample this would lead to quite different
conditions in the argon plasma and, therefore leading to a different mass bias. The
mathematical background of ICeGIM for a two-isotope system has been presented in
detail. An initial simulation with realistic data demonstrated that, in terms of achiev-
able uncertainties, ICeGIM is a reasonable alternative, when determining the spike
purity is not possible. Moreover, it is worth further developing and testing this alter-
native method. In the last section the mathematical ansatz was generalized, so that
the ICeGIM approach can be applied to any number of isotopes. First practical tests
will be presented in a follow-up publication.
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Appendix: List of Quantities

Table 2 Quantities used in the GIM method. MS is short for mass spectrometry.

Symbol Unit Quantity Property

K molV/molV Mass bias correction factor Result
wA g/g Mass fraction of analyte element in enriched

parent solution A
Unknown

wB g/g Mass fraction of analyte element in enriched
parent solution B

Unknown

wZ g/g Mass fraction of analyte element in natural
standard solution Z

certified

βA mol/g Substance content of enriched analyte element
in parent solution A with bA = wA/MA

Unknown

βB mol/g Substance content of enriched analyte element
in parent solution B with bB = wB/MB

Unknown

Ri mol/mol Amount ratio of spike isotope (2) over refer-
ence isotope (1) in sample, standard, parent or
mixture i with i ∈ {A,B,Z,AB} and R = Kr

Unknown

ri V/V Signal intensity ratio of spike isotope (2) over
reference isotope (1) in sample, standard, par-
ent or mixture i with i ∈ {A,B,Z,AB} and
R = Kr

Measured (MS)

mA g Mass of parent solution A blended with parent
solution B to yield mixture AB

Measured (balance)

mB g Mass of parent solution B blended with parent
solution A to yield mixture AB

Measured (balance)
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Table 3 Quantities (masses) used the in preparation of the blend needed for the IC
measurements

Symbol Unit Quantity Property

mAY g Mass of parent solution A blended with inter-
nal standard solution Y to yield mixture AY

Measured (balance)

mYA g Mass of internal standard solution Y blended
with parent solution A to yield mixture AY

Measured (balance)

mBY g Mass of parent solution B blended with inter-
nal standard solution Y to yield mixture BY

Measured (balance)

mYB g Mass of internal standard solution Y blended
with parent solution B to yield mixture BY

Measured (balance)

mZY g Mass of standard solution Z blended with
internal standard solution Y to yield mixture
ZY

Measured (balance)

mYZ g Mass of internal standard solution Y blended
with standard solution Z to yield mixture ZY

Measured (balance)

Table 4 Quantities obtained by IC.

Symbol Unit Quantity Property

fA µS/min Ratio of the area of the chromato-
graphic peak of the analyte element
over the area of the chromatographic
peak of the internal standard element
(ion chromatography) in the mixture
AY of parent solution A and internal
standard solution Y

Measured (IC)

fB µS/min Ratio of the area of the chromato-
graphic peak of the analyte element
over the area of the chromatographic
peak of the internal standard element
(ion chromatography) in the mixture
BY of parent solution B and internal
standard solution Y

Measured (IC)

fZ µS/min Ratio of the area of the chromato-
graphic peak of the analyte element
over the area of the chromatographic
peak of the internal standard element
(ion chromatography) in the mixture
ZY of standard solution Z and internal
standard solution Y

Measured (IC)
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Preface

All equations occurring in this text are numbered as “S.X”, equations labelled only
with an integer number are the same as in the main part of this manuscript.

1 Non-physical Solutions of Equations 2, 3 and 4

As mentioned in the main part of this publication, solving equations 2, 3 and 4 leads
to solutions with no physical meaning. These solutions are:

K2 =





− M1

M2rA,2

− M1

M2rB,2

(S.1)

wA =





0

−wZ
mZA(rA,2 − rB,2)(rAZ,2 − rZ,2)

mAZ(rA,2 − rAZ,2)(rB,2 − rZ,2)

(S.2)
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wB =





wZ
mZB(rA,2 − rB,2)(rBZ,2 − rZ,2)

mBZ(rA,2 − rZ,2)(rB,2 − rBZ,2)

0

(S.3)

2 IDMS with two Reference Materials

In the main manuscript, it was mentioned that the described problem could be solved
by using a second reference material Z2. Instead of blend BZ, BZ2 is prepared, hence
equation 4 becomes:

wB = wZ2
mZ2B,2

mBZ2,2

rZ2,2 − rBZ2,2

rBZ2,2 − rB,2

M1 +K2rB,2M2

M1 +KrZ2,2M2
. (S.4)

By considering equations 3, 2 and S.4 the K2-factor can expressed as:

K2 =

M1(mABmBZ2mAZ1(rAB,2−rA,2)(rZ1,2−rAZ1,2)(rB,2−rBZ2,2)wZ1+
mAZ1mBAmBZ2(rAB,2−rB,2)(rA,2−rAZ1,2)(rZ2,2−rBZ2,2)wZ2,2)

M2(mABmBZ2mAZ1rZ2,2(rA,2−rAB,2)(rZ1,2−rAZ1,2)(rB,2−rBZ2,2)wZ1−
mAZ1mBAmBZ2rZ1,2(rAB,2−rB,2)(rA,2−rAZ1,2)(rZ2,2−rBZ2,2)wZ2)

(S.5)

Mathematically, this approach would work but if uncertainties are also considered
it becomes obvious that this method works only theoretically. In order to demonstrate
this another simulation was performed. As example two-isotope system copper was
chosen. The international reference material for copper is NIST 3114 [1], in this sim-
ulation it is material Z. The isotopic composition of material Z can assumed to be
natural and was taken from de Laeter et al.[2] The isotopic composition of the second
reference Z2 materiel, which is only hypothetical, was changed according to equation
S.6, whereas xZ2

(
65Cu

)
= 1 − xZ2

(
63Cu

)
. δZ2 ranged from −900h to 445h (being

the upper limit otherwise xZ2

(
65Cu

)
would be less than zero). The isotopic compo-

sition, the masses of the spike material A and B as well as the measured intensity
ratios can be found in the EXCEL sheet accompanying this supplement. The K fac-
tor was estimated from an earlier measurement of the reference material NIST 885 [3]
and assuming its isotopic composition to be natural. For each of the isotopic different
materials Z2 the K-factor and is associated relative uncertainty urel(K) was calculated
as well as the relative deviation from the theoretical (“true”) value, see equation S.7.
The uncertainties were calculated via a Monte Carlo simulation following international
recommendations[4] and using 105 trials. The results of this simulation are graphically
shown in figure 1. Subfigure 1a shows the absolute value of ∆K plotted against δZ2.
The other subfigure shows urel(K) also plotted against δZ2. Please mind the logarith-
mic y-scale used in both figures. From these two subfigures it becomes instantly clear,
that the isotopic composition of Z2 must be significantly different from the compo-
sition of Z, otherwise the uncertainty associated with K becomes huge (in the worst
case ≈ 300% with δZ2 = 0h) and also a deviation from the true value can be wit-
nessed. Only if |δZ2| exceeds 400h both the relative uncertainty and the deviation
from the true value get acceptable. A second reference material with a significantly

2



different isotopic composition is hardly the case for many elements and therefore using
two reference materials is only a theoretical approach.

δZ2 =

(
xZ2

(
63Cu

)

xZ

(
63Cu

) − 1

)
· 1000h (S.6)

∆K2
=

(
K2,calc

K2,true
− 1

)
· 100% (S.7)
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(a) |∆K2
| as a function of δZ2. Each point

represents a Monte Carlo simulation with
105 trails.

(b) urel(K2) as a function of δZ2. Each
point represents a Monte Carlo simulation
with 105 trails.

Fig. 1: Results of investigation of the influence of the isotopic composition of the
second reference material Z2 on the K itself and its associated uncertainty.

3 Step-by-Step Derivation of Equation 9

RAB =
n2

n1
=

nAxA,2 + nBxB,2

nAxA,1 + nBxB,1
(S.8)

βX =
nX

mX
(S.9)

RAB =
βAmABxA,2 + βBmBAxB,2

βAmABxA,1 + βBmBAxB,1
(S.10)

xX,2 =
RX,2

RX,1 +RX,2
=

RX,2

1 +RX,2
, X ∈ {A,B,Z} (S.11)
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RAB =

βAmAB
RA,2

1 +RA,2
+ βBmBA

RB,2

1 +RB,2

βAmAB
1

1 +RA,2
+ βBmBA

1

1 +RB,2

=

βAmAB
RA,2

1 +RA,2
+ βBmBA

RB,2

1 +RB,2

βAmAB
1

1 +RA,2
+ βBmBA

1

1 +RB,2

(S.12)

K2rAB,2 =

βAmAB
K2rA,2

1 +K2rA,2
+ βBmBA

K2rB,2

1 +K2rB,2

βAmAB
1

1 +K2rA,2
+ βBmBA

1

1 +K2rB,2

(S.13)

rAB,2 =

βAmAB
rA,2

1 +K2rA,2
+ βBmBA

rB,2

1 +K2rB,2

βAmAB
1

1 +K2rA,2
+ βBmBA

1

1 +K2rB,2

(S.14)

rAB,2

(
βAmAB

1

1 +K2rA,2
+ βBmBA

1

1 +K2rB,2

)
=

βAmAB
rA,2

1 +K2rA,2
+ βBmBA

rB,2

1 +K2rB,2

(S.15)

βAmAB
rAB,2

1 +K2rA,2
+ βBmBA

rAB,2

1 +K2rB,2
=

βAmAB
rA,2

1 +K2rA,2
+ βBmBA

rB,2

1 +K2rB,2

(S.16)

(1 +K2rB,2) rAB,2βAmAB + (1 +K2rA,2) rAB,2βBmBA =

(1 +K2rB,2) rA,2βAmAB + (1 +K2rA,2) rB,2βBmBA

(S.17)

rAB,2βAmAB +K2rB,2rAB,2βAmAB + rAB,2βBmBA +K2rA,2rAB,2βBmBA =

rA,2βAmAB +K2rB,2rA,2βAmAB + rB,2βBmBA +K2rA,2rB,2βBmBA

(S.18)

K2rB,2rAB,2βAmAB +K2rA,2rAB,2βBmBA −K2rB,2rA,2βAmAB −K2rA,2rB,2βBmBA =

rA,2βAmAB + rB,2βBmBA − rAB,2βAmAB − rAB,2βBmBA(S.19)
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K2 (βAmAB (rB,2rAB,2 − rB,2rA,2) + βBmBA (rA,2rAB,2 − rA,2rB,2)) =

βAmAB (rA,2 − rAB,2) + βBmBA (rB,2 − rAB,2)
(S.20)

K2 =
βAmAB (rA,2 − rAB,2) + βBmBA (rB,2 − rAB,2)

βAmAB (rB,2rAB,2 − rB,2rA,2) + βBmBA (rA,2rAB,2 − rA,2rB,2)
(9)

4 Step-by-Step Derivation of Equations 19 and 20

βZ ≡ nZ

mZ
(S.21)

βZ =
wZ

MZ
(S.22)

MZ = xZ,1M1 + xZ,2M2 (S.23)

βZ =
wZ

1

1 +RZ,2
M1 +

RZ,2

1 +RZ,2
M2

=

wZ

1

1 +RZ,2
(M1 +RZ,2M2)

=
wZ (1 +RZ,2)

M1 +RZ,2M2
=

wZ (1 +K2rZ,2)

M1 +K2rZ,2M2

(S.24)

AZ = kZβZ
mZY

msln,Z
(S.25)

AYZ = kYZβY
mYZ

msln,Z
(S.26)

AX = kXβX
mXY

msln,X
(S.27)

AYX = kYXβY
mYX

msln,X
(S.28)

fZ =
AZ

AYZ
=

kZ
kYZ

βZ

βY

mZY

mYZ
(S.29)

fX =
AX

AYX
=

kX
kYX

βX

βY

mXY

mYX
(S.30)

βX =
kYX

kX
fXβY

mYX

mXY
(S.31)
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kYX

kX
=

kYZ

kZ
=

1

fZ

βZ

βY

mZY

mYZ
(S.32)

βX =
1

fZ

βZ

βY

mZY

mYZ
fXβY

mYX

mXY
(S.33)

βX = βZ
mZY

mYZ

mYX

mXY

fX
fZ

,with X ∈ {A,B}, (S.34)

Inserting S.24.

βX = wZ
1 +K2rZ,2

M1 +K2rZ,2M2

mZY

mYZ

mYX

mXY

fX
fZ

,with X ∈ {A,B} (19 & 20)

5 Step-by-Step Derivation of Equation 21

Starting from equation S.7, which can be rearranged to:

βAmAB (rAB,2 − rA,2 +K2 (rB,2rAB,2 − rB,2rA,2)) =
βBmBA (rB,2 − rAB,2 +K2 (rA,2rB,2 − rA,2rAB,2))

(S.35)

Now βA and βB an be replaced with equations 19 and 20, respectively.

wZ
1 +K2rZ,2

M1 +K2rZ,2M2

mZY

mYZ

mYA

mAY

fA
fZ

mAB (rAB,2 − rA,2 +K2 (rB,2rAB,2 − rB,2rA,2)) =

wZ
1 +K2rZ,2

M1 +K2rZ,2M2

mZY

mYZ

mYB

mBY

fB
fZ

mBA (rB,2 − rAB,2 +K2 (rA,2rB,2 − rA,2rAB,2))(S.36)

This expression can then be solved for K2.

mYA

mAY

fA
fZ

mAB (rAB,2 − rA,2 +K2 (rB,2rAB,2 − rB,2rA,2)) =

mYB

mBY

fB
fZ

mBA (rB,2 − rAB,2 +K2 (rA,2rB,2 − rA,2rAB,2))

(S.37)

mYA

mAY

fA
fZ

mAB (rAB,2 − rA,2) +K2 (rB,2rAB,2 − rB,2rA,2)
mYA

mAY

fA
fZ

mAB =

mYB

mBY

fB
fZ

mBA (rB,2 − rAB,2) +K2 (rA,2rB,2 − rA,2rAB,2)
mYB

mBY

fB
fZ

mBA

(S.38)

K2

(
mYA

mAY

fA
fZ

mAB (rB,2rAB,2 − rB,2rA,2) +
mYB

mBY

fB
fZ

mBA (rA,2rAB,2 − rA,2rB,2)

)
=

mYA

mAY

fA
fZ

mAB (rA,2 − rAB,2) +
mYB

mBY

fB
fZ

mBA (rB,2 − rAB,2)(S.39)
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K2 =

mYA

mAY

fA
fZ

mAB (rA,2 − rAB,2) +
mYB

mBY

fB
fZ

mBA (rB,2 − rAB,2)

mYA

mAY

fA
fZ

mAB (rB,2rAB,2 − rB,2rA,2) +
mYB

mBY

fB
fZ

mBA (rA,2rAB,2 − rA,2rB,2)

(S.40)

K2 =

mYA

mAY
fAmAB (rA,2 − rAB,2) +

mYB

mBY
fBmBA (rB,2 − rAB,2)

mYA

mAY
fAmAB (rB,2rAB,2 − rB,2rA,2) +

mYB

mBY
fBmBA (rA,2rAB,2 − rA,2rB,2)

(21)

6 Explicit Solutions of wA and wB

Now we show how equation 22 can be obtained, equation 23 is derived analogously.
We recall the following equations from the main manuscript:

βA = wZ
1 +K2rZ,2

M1 +K2rZ,2M2

mZY

mYZ

mYA

mAY

fA
fZ

(19)

as well as:

MA =
M1 +K × rA,2M2

1 +K × rA,2
(S.41)

and
wA = βAMA (S.42)

Inserting equations 19 and S.41 into equation S.42 leads to equation 22. By insert-
ing equation 21 in equations 22 and 23 (main manuscript) the following expressions
can be obtained.

wA = wZ
mZY

mYZ

fAmABmBYmYA (rA,2 − rAB,2) (rA,2M2 − rB,2M1) + fBmBAmAYmYB (rAB,2 − rB,2) (rA,2M1 − rA,2M2)

fZmABmAYmBY (rA,2 − rAB,2) (rA,2 − rB,2)
·

fAmABmBYmYA (rA,2 − rAB,2) (rB,2 − rZ,2)− fBmBAmAYmYB (rAB,2 − rB,2) (rA,2 − rZ,2)

fAmABmBYmYA (rA,2 − rAB,2) (rB,2M1 − rZ,2M2)− fBmBAmAYmYB (rAB,2 − rB,2) (rA,2M1 − rZ,2M2)

(S.43)

wB = wZ
mZY

mYZ

fBmBAmAYmYB (rB,2 − rAB,2) (rB,2M2 − rA,2M1) + fAmABmBYmYA (rAB,2 − rA,2) (rB,2M1 − rB,2M2)

fZmBAmBYmAY (rB,2 − rAB,2) (rB,2 − rA,2)
·

fBmBAmAYmYB (rB,2 − rAB,2) (rA,2 − rZ,2)− fAmABmBYmYA (rAB,2 − rA,2) (rB,2 − rZ,2)

fBmBAmAYmYB (rB,2 − rAB,2) (rA,2M1 − rZ,2M2)− fAmABmBYmYA (rAB,2 − rA,2) (rB,2M1 − rZ,2M2)

(S.44)

7 Generalization

In this section it is shown how the generalized formulas in the main manuscript
(equations 25 and 27) were derived. In order to do so a three-isotope system is con-
sidered. According to equation 8 the measured ratios of the two necessary blends (AB
and AC) can be expressed as:
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rAB,2 =

fAmABmBYmYArA,2(K2rB,2 +K3rB,3 + 1)+
fBmAYmBAmYBrB,2(K2rA,2 +K3rA,3 + 1)

fAmABmBYmYA(K2rB,2 +K3rB,3 + 1)+
fBmAYmBAmYB(K2rA,2 +K3rA,3 + 1)

(S.45)

and

rAC,2 =

fAmACmCYmYArA,2(K2rC,2 +K3rC,3 + 1)+
fCmAYmCAmYCrC,2(K2rA,2 +K3rA,3 + 1)

fAmACmCYmYA(K2rC,2 +K3rC,3 + 1)+
fCmAYmCAmYC(K2rA,2 +K3rA,3 + 1)

(S.46)

The last two equations can be rearranged, leading to:

rAB,2(fAmABmBYmYA(K2rB,2 +K3rB,3 + 1)+
fBmAYmBAmYB(K2rA,2 +K3rA,3 + 1)) =
fAmABmBYmYArA,2(K2rB,2 +K3rB,3 + 1)+
fBmAYmBAmYBrB,2(K2rA,2 +K3rA,3 + 1)

(S.47)

and
rAC,2(fAmACmCYmYA(K2rC,2 +K3rC,3 + 1)+
fCmAYmCAmYC(K2rA,2 +K3rA,3 + 1)) =
fAmACmCYmYArA,2(K2rC,2 +K3rC,3 + 1)+
fCmAYmCAmYCrC,2(K2rA,2 +K3rA,3 + 1)

(S.48)

In the next step some quantities (K2, K3, fA, fB, C, mAB, mAC, mAD, mBA, mCA,
mYA, mAY, mBY, mYB, mYC, mCY) in both expressions can be collected. This leads
to:

fAmABmBYmYArAB,2 + fBmAYmBAmYBrAB,2

+K2(fBmAYmBAmYBrA,2rAB,2 + fAmABmBYmYArAB,2rB,2)

+K3(fBmAYmBAmYBrA,3rAB,2 + fAmABmBYmYArAB,2rB,3) =

fAmABmBYmYArA,2 + fBmAYmBAmYBrB,2

+K2(fAmABmBYmYArA,2rB,2 + fBmAYmBAmYBrA,2rB,2)

+K3(fBmAYmBAmYBrA,3rB,2 + fAmABmBYmYArA,2rB,3)

(S.49)

and

fAmACmCYmYArAC,2 + fCmAYmCAmYCrAC,2

+K2(fCmAYmCAmYCrA,2rAC,2 + fAmACmCYmYArAC,2rC,2)

+K3(fCmAYmCAmYCrA,3rAC,2 + fAmACmCYmYArAC,2rC,3) =
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fAmACmCYmYArA,2 + fCmAYmCAmYCrC,2

+K2(fAmACmCYmYArA,2rC,2 + fCmAYmCAmYCrA,2rC,2)

+K3(fCmAYmCAmYCrA,3rC,2 + fAmACmCYmYArA,2rC,3)

(S.50)

Now all terms containing one of the two K-factors are collected on one side and
the others on the other side, this leads to:

K2

(
fB(mAYmBAmYBrA,2rAB,2 −mAYmBAmYBrA,2rB,2)

+ fA(mABmBYmYArAB,2rB,2 −mABmBYmYArA,2rB,2)
)
+

K3

(
fB(mAYmBAmYBrA,3rAB,2 −mAYmBAmYBrA,3rB,2)

+ fA(mABmBYmYArAB,2rB,3 −mABmBYmYArA,2rB,3)
)

= fA(mABmBYmYArA,2 −mABmBYmYArAB,2)

+ fB(mAYmBAmYBrB,2 −mAYmBAmYBrAB,2)

(S.51)

K2

(
fC(mAYmCAmYCrA,2rAC,2 −mAYmCAmYCrA,2rC,2)

+ fA(mACmCYmYArAC,2rC,2 −mACmCYmYArA,2rC,2)
)
+

K3

(
fC(mAYmCAmYCrA,3rAC,2 −mAYmCAmYCrA,3rC,2)

+ fA(mACmCYmYArAC,2rC,3 −mACmCYmYArA,2rC,3)
)

= fA(mACmCYmYArA,2 −mACmCYmYArAC,2)+

fC(mAYmCAmYCrC,2 −mAYmCAmYCrAC,2)

(S.52)

The last two equations allow to determine the generic formulas given in the main
manuscript.
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